Journal articles on the topic 'Thermal crossover'

To see the other types of publications on this topic, follow the link: Thermal crossover.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermal crossover.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Jian, and Jian-Sheng Wang. "Dimensional crossover of thermal conductance in nanowires." Applied Physics Letters 90, no. 24 (June 11, 2007): 241908. http://dx.doi.org/10.1063/1.2748342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bushuev, Mark B. "Kinetics of spin crossover with thermal hysteresis." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5586–90. http://dx.doi.org/10.1039/c7cp08554k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grossmann, Siegfried, and Victor S. L’vov. "Crossover of spectral scaling in thermal turbulence." Physical Review E 47, no. 6 (June 1, 1993): 4161–68. http://dx.doi.org/10.1103/physreve.47.4161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Halcrow, Malcolm A. "Spin-crossover Compounds with Wide Thermal Hysteresis." Chemistry Letters 43, no. 8 (August 5, 2014): 1178–88. http://dx.doi.org/10.1246/cl.140464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Desmarest, Ph, and R. Tufeu. "Thermal diffusivity and thermal conductivity of steam in the crossover region." International Journal of Thermophysics 11, no. 6 (November 1990): 1035–46. http://dx.doi.org/10.1007/bf00500558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kou, S. P., J. Q. Liang, Y. B. Zhang, X. B. Wang, and F. C. Pu. "Crossover from thermal hopping to quantum tunneling inMn12Ac." Physical Review B 59, no. 9 (March 1, 1999): 6309–16. http://dx.doi.org/10.1103/physrevb.59.6309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laermans, C., and D. A. Parshin. "Tunneling–thermal activation crossover in neutron irradiated quartz." Physica B: Condensed Matter 263-264 (March 1999): 143–45. http://dx.doi.org/10.1016/s0921-4526(98)01320-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Real, José Antonio, Ana Belén Gaspar, and M. Carmen Muñoz. "Thermal, pressure and light switchable spin-crossover materials." Dalton Transactions, no. 12 (2005): 2062. http://dx.doi.org/10.1039/b501491c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bodapati, Arun, Pawel Keblinski, Patrick K. Schelling, and Simon R. Phillpot. "Crossover in thermal transport mechanism in nanocrystalline silicon." Applied Physics Letters 88, no. 14 (April 3, 2006): 141908. http://dx.doi.org/10.1063/1.2192145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lambaré, H., P. Roche, E. Rolley, S. Balibar, C. Guthmann, and H. J. Maris. "Crossover from quantum to thermal cavitation in superfluid4He." Czechoslovak Journal of Physics 46, S1 (January 1996): 383–84. http://dx.doi.org/10.1007/bf02569607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bushuev, Mark B., Denis P. Pishchur, Elena B. Nikolaenkova, and Viktor P. Krivopalov. "Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex." Physical Chemistry Chemical Physics 18, no. 25 (2016): 16690–99. http://dx.doi.org/10.1039/c6cp01892k.

Full text
Abstract:
Wide thermal hysteresis loops for iron(ii) spin crossover complexes are associated with high activation barriers: the higher the activation barrier, the wider the hysteresis loop for a series of related spin crossover systems.
APA, Harvard, Vancouver, ISO, and other styles
12

Weingartner, Joseph C., Erald Kolasi, and Cameron Woods. "The alignment of interstellar dust grains: thermal flipping and the Davis–Greenstein mechanism." Monthly Notices of the Royal Astronomical Society 504, no. 1 (March 8, 2021): 1164–82. http://dx.doi.org/10.1093/mnras/stab663.

Full text
Abstract:
ABSTRACT Interstellar dust grains are non-spherical and, in some environments, partially aligned along the direction of the interstellar magnetic field. Numerous alignment theories have been proposed, all of which examine the grain rotational dynamics. In 1999, Lazarian & Draine introduced the important concept of thermal flipping, in which internal relaxation processes induce the grain body to flip while its angular momentum remains fixed. Through detailed numerical simulations, we study the role of thermal flipping on the grain dynamics during periods of relatively slow rotation, known as ‘crossovers’, for the special case of a spheroidal grain with a non-uniform mass distribution. Lazarian & Draine proposed that rapid flipping during a crossover would lead to ‘thermal trapping’, in which a systematic torque, fixed relative to the grain body, would time average to zero, delaying spin-up to larger rotational speeds. We find that the time-averaged systematic torque is not zero during the crossover and that thermal trapping is not prevalent. As an application, we examine whether the classic Davis–Greenstein alignment mechanism is viable, for grains residing in the cold neutral medium and lacking superparamagnetic inclusions. We find that Davis–Greenstein alignment is not hindered by thermal trapping, but argue that it is, nevertheless, too inefficient to yield the alignment of large grains responsible for optical and infrared starlight polarization. Davis–Greenstein alignment of small grains could potentially contribute to the observed ultraviolet polarization. The theoretical and computational tools developed here can also be applied to analyses of alignment via radiative torques and rotational disruption of grains.
APA, Harvard, Vancouver, ISO, and other styles
13

MONETTI, ROBERTO A., and EZEQUIEL V. ALBANO. "STUDY OF THE CROSSOVER FROM NON-EQUILIBRIUM STATIONARY STATES TO QUASI-EQUILIBRIUM STATES IN A DRIVEN DIFFUSIVE SYSTEM UNDER THE INFLUENCE OF AN OSCILLATORY FIELD." International Journal of Modern Physics B 16, no. 27 (October 30, 2002): 4165–74. http://dx.doi.org/10.1142/s0217979202013079.

Full text
Abstract:
A driven diffusive system (DDS) is a lattice-gas in contact with a thermal bath in the presence of an external field. Such DDS constantly gains (losses) energy from (to) the driving field (thermal bath) and therefore, for long enough time, it reaches a non-equilibrium steady-state (NESS) with a generally unknown statistical distribution. It is found that if the constant driving is replaced by an oscillatory field of magnitude E and period τ, the system exhibits a crossover from NESS to a quasi-equilibrium state (QES) driven by τ. The crossover behavior is characterized by a typical crossover time which is proportional to the lattice side and consequently relevant to confined systems.
APA, Harvard, Vancouver, ISO, and other styles
14

Brooker, Sally. "Spin crossover with thermal hysteresis: practicalities and lessons learnt." Chemical Society Reviews 44, no. 10 (2015): 2880–92. http://dx.doi.org/10.1039/c4cs00376d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Laisney, J., A. Tissot, G. Molnár, L. Rechignat, E. Rivière, F. Brisset, A. Bousseksou, and M. L. Boillot. "Nanocrystals of Fe(phen)2(NCS)2 and the size-dependent spin-crossover characteristics." Dalton Transactions 44, no. 39 (2015): 17302–11. http://dx.doi.org/10.1039/c5dt02840j.

Full text
Abstract:
We describe the preparation of nano- and microcrystals of the Fe(phen)2(NCS)2 spin-crossover prototypical compound based on the solvent-assisted technique applied to an ionic and soluble precursor and analyze the size-dependent characteristics of the thermal spin-crossover.
APA, Harvard, Vancouver, ISO, and other styles
16

Yamamoto, Kohei, Hiroyuki Ishii, Nobuhiko Kobayashi, and Kenji Hirose. "Crossover to Quantized Thermal Conductance in Nanotubes and Nanowires." Open Journal of Composite Materials 03, no. 02 (2013): 48–54. http://dx.doi.org/10.4236/ojcm.2013.32a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Barbosa, A. L. R., J. G. G. S. Ramos, and D. Bazeia. "Crossover of thermal to shot noise in chaotic cavities." EPL (Europhysics Letters) 93, no. 6 (March 1, 2011): 67003. http://dx.doi.org/10.1209/0295-5075/93/67003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Shasha, Kai Zhou, Tinglian Yuan, Wenrui Lei, Hong-Yuan Chen, Xinyi Wang, and Wei Wang. "Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles." Journal of the American Chemical Society 142, no. 37 (August 26, 2020): 15852–59. http://dx.doi.org/10.1021/jacs.0c05951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ghosh, Suchismita, Wenzhong Bao, Denis L. Nika, Samia Subrina, Evghenii P. Pokatilov, Chun Ning Lau, and Alexander A. Balandin. "Dimensional crossover of thermal transport in few-layer graphene." Nature Materials 9, no. 7 (May 9, 2010): 555–58. http://dx.doi.org/10.1038/nmat2753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zélis, P. Mendoza, G. A. Pasquevich, F. H. Sánchez, A. Veiga, M. Ceolin, A. F. Cabrera, E. Coronado-Miralles, M. Monrabal-Capilla, and J. R. Galan-Mascaros. "Mössbauer thermal scan study of a spin crossover system." Journal of Physics: Conference Series 217 (March 1, 2010): 012017. http://dx.doi.org/10.1088/1742-6596/217/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dong, Lan, Qing Xi, Dongsheng Chen, Jie Guo, Tsuneyoshi Nakayama, Yunyun Li, Ziqi Liang, Jun Zhou, Xiangfan Xu, and Baowen Li. "Dimensional crossover of heat conduction in amorphous polyimide nanofibers." National Science Review 5, no. 4 (January 9, 2018): 500–506. http://dx.doi.org/10.1093/nsr/nwy004.

Full text
Abstract:
ABSTRACT The mechanism of thermal conductivity in amorphous polymers, especially polymer fibers, is unclear in comparison with that in inorganic materials. Here, we report the observation of a crossover of heat conduction behavior from three dimensions to quasi-one dimension in polyimide nanofibers at a given temperature. A theoretical model based on the random walk theory has been proposed to quantitatively describe the interplay between the inter-chain hopping and the intra-chain hopping in nanofibers. This model explains well the diameter dependence of thermal conductivity and also speculates on the upper limit of thermal conductivity of amorphous polymers in the quasi-1D limit.
APA, Harvard, Vancouver, ISO, and other styles
22

Bushuev, Mark B., Viktor P. Krivopalov, Elena B. Nikolaenkova, Katerina A. Vinogradova, and Yuri V. Gatilov. "Hysteretic spin crossover in isomeric iron(ii) complexes." Dalton Transactions 47, no. 29 (2018): 9585–91. http://dx.doi.org/10.1039/c8dt02223b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dankhoff, Katja, Charles Lochenie, and Birgit Weber. "Iron(II) Spin Crossover Complexes with 4,4′-Dipyridylethyne—Crystal Structures and Spin Crossover with Hysteresis." Molecules 25, no. 3 (January 29, 2020): 581. http://dx.doi.org/10.3390/molecules25030581.

Full text
Abstract:
Three new iron(II) 1D coordination polymers with cooperative spin crossover behavior showing thermal hysteresis loops were synthesized using N2O2 Schiff base-like equatorial ligands and 4,4′-dipyridylethyne as a bridging, rigid axial linker. One of those iron(II) 1D coordination polymers showed a 73 K wide hysteresis below room temperature, which, upon solvent loss, decreased to a still remarkable 30 K wide hysteresis. Single crystal X-ray structures of two iron(II) coordination polymers and T-dependent powder XRD patterns are discussed to obtain insight into the structure property relationship of those materials.
APA, Harvard, Vancouver, ISO, and other styles
24

Bushuev, Mark B., Denis P. Pishchur, Vladimir A. Logvinenko, Yuri V. Gatilov, Ilya V. Korolkov, Inna K. Shundrina, Elena B. Nikolaenkova, and Viktor P. Krivopalov. "A mononuclear iron(ii) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition." Dalton Transactions 45, no. 1 (2016): 107–20. http://dx.doi.org/10.1039/c5dt03750f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Boukheddaden, Kamel, Houcem Fourati, Yogendra Singh, and Guillaume Chastanet. "Evidence of Photo-Thermal Effects on the First-Order Thermo-Induced Spin Transition of [{Fe(NCSe)(py)2}2(m-bpypz)] Spin-Crossover Material." Magnetochemistry 5, no. 2 (April 1, 2019): 21. http://dx.doi.org/10.3390/magnetochemistry5020021.

Full text
Abstract:
We have investigated by means of optical microscopy and magnetic measurements the first-order thermal spin transition of the [{Fe(NCSe)(py)2}2(m-bpypz)] spin-crossover compound under various shining intensities, far from the light-induced spin-state trapping region. We found evidence of photo-heating effects on the thermally-induced hysteretic response of this spin-crossover material, thus causing the shift of the thermal hysteresis to lower temperature regions. The experimental results are discussed in terms of the apparent crystal temperature and are analyzed theoretically using two evolution equations of motion, written on the high-spin (HS) fraction and heat balance between the crystal and the thermal bath. A very good qualitative agreement was found between experiment and theory in the stationary regime, explaining the experimental observations well and identifying the key factors governing these photo-thermal effects.
APA, Harvard, Vancouver, ISO, and other styles
26

Hiiuk, Volodymyr M., Sergiu Shova, Aurelian Rotaru, Vadim Ksenofontov, Igor O. Fritsky, and Il'ya A. Gural'skiy. "Room temperature hysteretic spin crossover in a new cyanoheterometallic framework." Chemical Communications 55, no. 23 (2019): 3359–62. http://dx.doi.org/10.1039/c8cc10260k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Suleimanov, Iurii, José Sánchez Costa, Gábor Molnár, Lionel Salmon, and Azzedine Bousseksou. "The photo-thermal plasmonic effect in spin crossover@silica–gold nanocomposites." Chem. Commun. 50, no. 86 (2014): 13015–18. http://dx.doi.org/10.1039/c4cc02652g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tanaka, Daisuke, Naoki Aketa, Hirofumi Tanaka, Takashi Tamaki, Tomoko Inose, Tomoki Akai, Hirotaka Toyama, Osami Sakata, Hiroo Tajiri, and Takuji Ogawa. "Thin films of spin-crossover coordination polymers with large thermal hysteresis loops prepared by nanoparticle spin coating." Chem. Commun. 50, no. 70 (2014): 10074–77. http://dx.doi.org/10.1039/c4cc04123b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Miao, Qiang, and Thomas Barthel. "Eigenstate entanglement scaling for critical interacting spin chains." Quantum 6 (February 2, 2022): 642. http://dx.doi.org/10.22331/q-2022-02-02-642.

Full text
Abstract:
With increasing subsystem size and energy, bipartite entanglement entropies of energy eigenstates cross over from the groundstate scaling to a volume law. In previous work, we pointed out that, when strong or weak eigenstate thermalization (ETH) applies, the entanglement entropies of all or, respectively, almost all eigenstates follow a single crossover function. The crossover functions are determined by the subsystem entropy of thermal states and assume universal scaling forms in quantum-critical regimes. This was demonstrated by field-theoretical arguments and the analysis of large systems of non-interacting fermions and bosons. Here, we substantiate such scaling properties for integrable and non-integrable interacting spin-1/2 chains at criticality using exact diagonalization. In particular, we analyze XXZ and transverse-field Ising models with and without next-nearest-neighbor interactions. Indeed, the crossover of thermal subsystem entropies can be described by a universal scaling function following from conformal field theory. Furthermore, we analyze the validity of ETH for entanglement in these models. Even for the relatively small system sizes that can be simulated, the distributions of eigenstate entanglement entropies are sharply peaked around the subsystem entropies of the corresponding thermal ensembles.
APA, Harvard, Vancouver, ISO, and other styles
30

Song, Yuzhu, Qiang Sun, Meng Xu, Ji Zhang, Yiqing Hao, Yongqiang Qiao, Shantao Zhang, Qingzhen Huang, Xianran Xing, and Jun Chen. "Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect." Materials Horizons 7, no. 1 (2020): 275–81. http://dx.doi.org/10.1039/c9mh01025d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Collet, Eric, Marie-Laure Boillot, Johan Hebert, Nicolas Moisan, Marina Servol, Maciej Lorenc, Loïc Toupet, Marylise Buron-Le Cointe, Antoine Tissot, and Joelle Sainton. "Polymorphism in the spin-crossover ferric complexes [(TPA)FeIII(TCC)]PF6." Acta Crystallographica Section B Structural Science 65, no. 4 (July 11, 2009): 474–80. http://dx.doi.org/10.1107/s0108768109021508.

Full text
Abstract:
We have identified two polymorphs of the molecular complex [(TPA)Fe(III)(TCC)]PF6 [TPA = tris(2-pyridylmethyl)amine and TCC = 3,4,5,6-tetrachlorocatecholate dianion]: one is monoclinic and the other is orthorhombic. By lowering the temperature both undergo a thermal spin-crossover between a high-spin (S = 5/2) and a low-spin (S = 1/2) state, which we detected by magnetic, optical and X-ray diffraction measurements. The thermal crossover is only slightly shifted between the polymorphs. Their crystalline structures consist of similar cation layers alternating with PF6 anion layers, packed differently in the two polymorphs. The magnetic and optical properties of the polymorphs are presented.
APA, Harvard, Vancouver, ISO, and other styles
32

Toulemonde, Olivier, Alexis Devoti, Patrick Rosa, Philippe Guionneau, Mathieu Duttine, Alain Wattiaux, Eric Lebraud, et al. "Probing Co- and Fe-doped LaMO3(M = Ga, Al) perovskites as thermal sensors." Dalton Transactions 47, no. 2 (2018): 382–93. http://dx.doi.org/10.1039/c7dt03647g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Carr, S. M., W. E. Lawrence, and M. N. Wybourne. "Crossover between quantum and thermal regimes of free-standing nanostructures." Physica B: Condensed Matter 316-317 (May 2002): 464–67. http://dx.doi.org/10.1016/s0921-4526(02)00544-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sakhavand, Navid, and Rouzbeh Shahsavari. "Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures." ACS Applied Materials & Interfaces 7, no. 33 (July 22, 2015): 18312–19. http://dx.doi.org/10.1021/acsami.5b03967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gütlich, Philipp, and Andreas Hauser. "Thermal and light-induced spin crossover in iron(II) complexes." Coordination Chemistry Reviews 97 (January 1990): 1–22. http://dx.doi.org/10.1016/0010-8545(90)80076-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Galán-Mascarós, José Ramón, Eugenio Coronado, Alicia Forment-Aliaga, María Monrabal-Capilla, Elena Pinilla-Cienfuegos, and Marcelo Ceolin. "Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles." Inorganic Chemistry 49, no. 12 (June 21, 2010): 5706–14. http://dx.doi.org/10.1021/ic100751a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Oguchi, Haruka, and Nobuhiko Taniguchi. "Thermal Symmetry Crossover and Universal Behaviors in Carbon Nanotube Dots." Journal of the Physical Society of Japan 78, no. 8 (August 15, 2009): 083711. http://dx.doi.org/10.1143/jpsj.78.083711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yamamoto, Takahiro, Satoru Konabe, Junichiro Shiomi, and Shigeo Maruyama. "Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes." Applied Physics Express 2, no. 9 (August 21, 2009): 095003. http://dx.doi.org/10.1143/apex.2.095003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bartual-Murgui, Carlos, Rosa Diego, Sergi Vela, Simon J. Teat, Olivier Roubeau, and Guillem Aromí. "A Spin-Crossover Molecular Material Describing Four Distinct Thermal Pathways." Inorganic Chemistry 57, no. 17 (August 22, 2018): 11019–26. http://dx.doi.org/10.1021/acs.inorgchem.8b01625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chernatynskiy, Aleksandr, Robin W. Grimes, Mark A. Zurbuchen, David R. Clarke, and Simon R. Phillpot. "Crossover in thermal transport properties of natural, perovskite-structured superlattices." Applied Physics Letters 95, no. 16 (October 19, 2009): 161906. http://dx.doi.org/10.1063/1.3253421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Krzysztoń, Tomasz. "Crossover from thermal to quantum creep in layered antiferromagnetic superconductor." Physica C: Superconductivity 340, no. 2-3 (December 2000): 156–60. http://dx.doi.org/10.1016/s0921-4534(00)01548-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Matsuhira, Kazuyuki, Toshiro Sakakibara, Kunihiko Maezawa, and Yoshichika Ōnuki. "Volume Effect in Thermal Properties of CeRu2Si2near the Metamagnetic Crossover." Journal of the Physical Society of Japan 68, no. 7 (July 15, 1999): 2420–25. http://dx.doi.org/10.1143/jpsj.68.2420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Stinchcombe, R. B., and I. R. Pimentel. "Thermal crossover effects resulting from dilution-induced magnon critical dynamics." Journal of Physics A: Mathematical and General 21, no. 16 (August 21, 1988): L807—L811. http://dx.doi.org/10.1088/0305-4470/21/16/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Osipov, Vladimir Al, and Eugene Kanzieper. "Statistics of thermal to shot noise crossover in chaotic cavities." Journal of Physics A: Mathematical and Theoretical 42, no. 47 (November 4, 2009): 475101. http://dx.doi.org/10.1088/1751-8113/42/47/475101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Su-peng, Kou, Liang Jiu-qing, Zhang Yun-bo, Wang Xiao-bing, and Pu Fu-ke (Pu Fu-cho). "Crossover from thermal hopping to quantum tunneling in ferromagnetic particle." Acta Physica Sinica (Overseas Edition) 8, no. 7 (July 1999): 485–89. http://dx.doi.org/10.1088/1004-423x/8/7/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rudavskyi, Andrii, Carmen Sousa, Coen de Graaf, Remco W. A. Havenith, and Ria Broer. "Computational approach to the study of thermal spin crossover phenomena." Journal of Chemical Physics 140, no. 18 (May 14, 2014): 184318. http://dx.doi.org/10.1063/1.4875695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Monier, D., and L. Fruchter. "Thermal-to-quantum crossover of the flux-line dynamics inBi2Sr2CaCu2O8." Physical Review B 58, no. 14 (October 1, 1998): R8917—R8920. http://dx.doi.org/10.1103/physrevb.58.r8917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vlasov, Sergei, Pavel F. Bessarab, Valery M. Uzdin, and Hannes Jónsson. "Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states." Faraday Discussions 195 (2016): 93–109. http://dx.doi.org/10.1039/c6fd00136j.

Full text
Abstract:
Transitions between states of a magnetic system can occur by jumps over an energy barrier or by quantum mechanical tunneling through the energy barrier. The rate of such transitions is an important consideration when the stability of magnetic states is assessed for example for nanoscale candidates for data storage devices. The shift in transition mechanism from jumps to tunneling as the temperature is lowered is analyzed and a general expression derived for the crossover temperature. The jump rate is evaluated using a harmonic approximation to transition state theory. First, the minimum energy path for the transition is found with the geodesic nudged elastic band method. The activation energy for the jumps is obtained from the maximum along the path, a saddle point on the energy surface, and the eigenvalues of the Hessian matrix at that point as well as at the initial state minimum used to estimate the entropic pre-exponential factor. The crossover temperature for quantum mechanical tunneling is evaluated from the second derivatives of the energy with respect to orientation of the spin vector at the saddle point. The resulting expression is applied to test problems where analytical results have previously been derived, namely uniaxial and biaxial spin systems with two-fold anisotropy. The effect of adding four-fold anisotropy on the crossover temperature is demonstrated. Calculations of the jump rate and crossover temperature for tunneling are also made for a molecular magnet containing an Mn4 group. The results are in excellent agreement with previously reported experimental measurements on this system.
APA, Harvard, Vancouver, ISO, and other styles
49

Romero-Morcillo, Tania, Francisco Javier Valverde-Muñoz, Lucía Piñeiro-López, M. Carmen Muñoz, Tomás Romero, Pedro Molina, and José A. Real. "Spin crossover in iron(ii) complexes with ferrocene-bearing triazole-pyridine ligands." Dalton Transactions 44, no. 43 (2015): 18911–18. http://dx.doi.org/10.1039/c5dt03084f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kanetomo, Takuya, Zhen Ni, and Masaya Enomoto. "Hydrogen-bonded cobalt(ii)-organic framework: normal and reverse spin-crossover behaviours." Dalton Transactions 51, no. 13 (2022): 5034–40. http://dx.doi.org/10.1039/d2dt00453d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography