Journal articles on the topic 'Thermal conductivity'

To see the other types of publications on this topic, follow the link: Thermal conductivity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermal conductivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Szurgot, Marian A. "O przewodności cieplnej meteorytu Jezersko." Nafta-Gaz 77, no. 1 (January 2021): 10–19. http://dx.doi.org/10.18668/ng.2021.01.02.

Full text
Abstract:
The thermal conductivity (K) of Jezersko H4 meteorite was predicted by various models of rocks, using literature data on the chemical composition, porosity (P), and by relationships between thermal conductivity and porosity, and between thermal conductivity and thermal diffusivity (D). The results confirm that the porosity of the chondrite and air pressure significantly affect thermal conductivity. The thermal conductivity of the chondrite skeleton/matrix predicted by the modal composition of the meteorite and by the geometric mean model is equal to 4.35 W m−1 K−1, and by arithmetic and harmonic mean models: 4.9 W m−1 K−1at 300 K. Bulk thermal conductivity of the meteorite predicted by the geometric mean model is equal to 2.6 W m-1 K-1 for air pressure of 1 atm, and 1.0 W m−1 K−1in vacuum at 300 K. The Hashin–Shtrikman model predicts the values: 2.4 and 1.9 W m−1 K−1, the Clausius–Mossotti model: 2.2 and 1.9 W m-1 K-1, and the mean of two-layer models: 2.1 and 2.0 W m−1 K−1 at 300 K, for air pressure of 1 atm, and in vacuum, respectively. The relationships between thermal conductivity and porosity based on experimental data for ordinary chondrites indicate a mean K value for bulk thermal conductivity of the Jezersko meteorite in vacuum: 1.18 W m−1 K−1, and between thermal conductivity and thermal diffusivity the mean value: 1.12 W m−1 K−1at 200–300 K. The mean value for all predictions for bulk thermal conductivity of the meteorite for air at 1 atm is equal to 2.45 ± 0.30 W m−1 K−1 (range: 2.0–2.9 W m−1 K−1) at 300 K, and in vacuum: 1.40 ± 0.40 W m−1 K−1 (range: 0.95–2.0 W m−1 K−1) at 200–300 K. Predicted values of bulk thermal conductivity of the Jezersko meteorite, for air and in vacuum, are in the range of values recently reported by Soini et al. (2020) for the H4 group of chondrites: 2.8 ± 0.6 W m−1 K−1, mean K for air at 1 atm, and 1.9 ± 1.0 W m−1 K−1 mean K value in vacuum at 200–300 K.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Seung-Rae. "Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles." Journal of the Korean Society of Civil Engineers 33, no. 6 (2013): 2381. http://dx.doi.org/10.12652/ksce.2013.33.6.2381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tolibjonovich, Tojiboyev Boburjon. "LIQUID COMPOSITE THERMAL INSULATION COATINGS AND METHODS FOR DETERMINING THEIR THERMAL CONDUCTIVITY." International Journal of Advance Scientific Research 02, no. 03 (March 1, 2022): 42–50. http://dx.doi.org/10.37547/ijasr-02-03-07.

Full text
Abstract:
The article describes the analysis of existing methods for determining the thermal conductivity of liquid composite thermal insulation coatings and the results of experimental studies on its improvement.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, U.-Seung, Yeong-Min Kim, Kuan Chen, and Won-Gi Cheon. "Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors." Transactions of the Korean Society of Mechanical Engineers B 26, no. 3 (March 1, 2002): 439–47. http://dx.doi.org/10.3795/ksme-b.2002.26.3.439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakane, Koji, Shinya Ichikawa, Shuya Gao, Mikita Seto, Satoshi Irie, Susumu Yonezawa, and Nobuo Ogata. "Thermal Conductivity of Polyurethane Sheets Containing Alumina Nanofibers." Sen'i Gakkaishi 71, no. 1 (2015): 1–5. http://dx.doi.org/10.2115/fiber.71.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Donovan, Ryan, Karyanto Karyanto, and Ordas Dewanto. "STUDI SIFAT TERMAL BATUAN DAERAH LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN PENGUKURAN METODE KONDUKTIVITAS TERMAL." Jurnal Geofisika Eksplorasi 4, no. 3 (January 17, 2020): 103–19. http://dx.doi.org/10.23960/jge.v4i3.44.

Full text
Abstract:
Research on Way Ratai geothermal field has been done by measuring the thermal conductivity method. The thermal conductivity data is used to generate a map of the dispersion of heat conductively conductive rocks in the geothermal system. The result of measurement by thermal conductivity method in Way Ratai geothermal field is data of k (conductivity), Rt (thermal resistivity), and T (temperature). The value of the measured conductivity data in the geothermal field has range between 0.056-0.664 W/mK, the measured thermal resistivity value has range between 1.344-17.527mK/W, and the measured temperature value is between 22.68-52.59°C. The difference value of rock’s thermal conductivity is influenced by several factors, which is the existing geological structures in the field such as normal faults and lineaments, the presence of alteration, also the manifestation zone of hot water or hot vapor that caused from fumaroles.
APA, Harvard, Vancouver, ISO, and other styles
7

Vonlanthen, P., S. Paschen, D. Pushin, A. D. Bianchi, H. R. Ott, J. L. Sarrao, and Z. Fisk. "Thermal conductivity ofEuB6." Physical Review B 62, no. 5 (August 1, 2000): 3246–50. http://dx.doi.org/10.1103/physrevb.62.3246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Núez Regueiro, M., B. Salce, R. Calemczuk, C. Marin, and J. Y. Henry. "Thermal conductivity ofNd1.85Ce0.15CuO4." Physical Review B 44, no. 17 (November 1, 1991): 9727–30. http://dx.doi.org/10.1103/physrevb.44.9727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shiozawa, Sho, and Gaylon S. Campbell. "Soil thermal conductivity." Remote Sensing Reviews 5, no. 1 (January 1990): 301–10. http://dx.doi.org/10.1080/02757259009532137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

JACOBY, MITCH. "GRAPHENE’S THERMAL CONDUCTIVITY." Chemical & Engineering News 88, no. 15 (April 12, 2010): 5. http://dx.doi.org/10.1021/cen-v088n015.p005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Probert, Doug. "Thermal conductivity 19." Applied Energy 32, no. 4 (January 1989): 321. http://dx.doi.org/10.1016/0306-2619(89)90019-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kutcherov, V. G. "Теплопроводность нефтей при высоком давлении." Chemistry and Technology of Fuels and Oils 634, no. 6 (2022): 54–56. http://dx.doi.org/10.32935/0023-1169-2022-634-6-54-56.

Full text
Abstract:
The results of measuring the thermal conductivity and the relative volume of two samples of crude oils with a pressure change of up to 1 GPa at room temperature are presented. It is shown that the dependence of thermal conductivity on pressure isa linear function, depends on the isothermal compressibility of the liquid, and always increases with increasing pressure.
APA, Harvard, Vancouver, ISO, and other styles
13

Krivchikov, A. I., G. A. Vdovychenko, O. A. Korolyuk, and O. O. Romantsova. "Thermal Conductivity of Molecular Crystals with Self-Organizing Disorder." Ukrainian Journal of Physics 59, no. 3 (March 2014): 319–25. http://dx.doi.org/10.15407/ujpe59.03.0319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Il’inkov, A. V., T. A. Il’inkova, A. V. Shchukin, I. V. Basargin, and R. R. Valiev. "Thermal conductivity of thermal barrier coatings." Russian Aeronautics (Iz VUZ) 52, no. 3 (September 2009): 340–46. http://dx.doi.org/10.3103/s1068799809030131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Klemens, P. G., and M. Gell. "Thermal conductivity of thermal barrier coatings." Materials Science and Engineering: A 245, no. 2 (May 1998): 143–49. http://dx.doi.org/10.1016/s0921-5093(97)00846-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Anderson, D. W., R. Viskanta, and F. P. Incropera. "Effective Thermal Conductivity of Coal Ash Deposits at Moderate to High Temperatures." Journal of Engineering for Gas Turbines and Power 109, no. 2 (April 1, 1987): 215–21. http://dx.doi.org/10.1115/1.3240027.

Full text
Abstract:
The effective thermal conductivity of coal ash deposits strongly influences heat transfer in pulverized coal-fired boilers. In this study thermal conductivity measurements were performed over a wide range of temperatures for fly ash, slagging deposits, and fouling deposits. The effects of ash particle size, thermal history, and physical structure of the deposit are discussed. Thermal history and deposit structure were observed to have the greatest influence on the local thermal conductivty, which increased by an order of magnitude with particle melting. Conductivities for solid-porous deposits were twice those of the same sample in particulate form.
APA, Harvard, Vancouver, ISO, and other styles
17

Ghai, Ramandeep Singh, Kuiying Chen, and Natalie Baddour. "Modelling Thermal Conductivity of Porous Thermal Barrier Coatings." Coatings 9, no. 2 (February 7, 2019): 101. http://dx.doi.org/10.3390/coatings9020101.

Full text
Abstract:
Thermal conductivity of porous thermal barrier coatings was evaluated using a newly developed five-phase model. It was demonstrated that porosities distributed in coating strongly affect thermal conductivity. The decisive reason for this change in thermal conductivity can be traced back to defect morphology and its orientation, depending on the coating deposition technique and process parameters used during deposition. In this paper, the Bruggeman’s two-phase model was used as a reference, and a five-phase model was developed to evaluate the thermal conductivity of porous coatings. This approach uses microstructural details of the shape, size, orientation and volumetric fraction of defects of coatings as input parameters. The proposed model can predict thermal conductivity values better than the previous two-phase model.
APA, Harvard, Vancouver, ISO, and other styles
18

Sobti, Amit, and R. K. Wanchoo. "Thermal Conductivity of Nanofluids." Materials Science Forum 757 (May 2013): 111–37. http://dx.doi.org/10.4028/www.scientific.net/msf.757.111.

Full text
Abstract:
Enhanced thermal conductivity of nanofluids compared to that of the base fluid has received attention of many researchers in the last one decade. Experimental data on thermal conductivity of nanofluids using varied nanoparticles in the size range 10-100 nm have been reported. However, there is lot of variance in the data and needs critical analysis. Many models have been proposed by various research groups for predicting the thermal conductivity of nanofluids. Due to complexity of various parameters involved (size, % volume fraction, specific surface area and the type of nano particles, pH of nano fluid, thermal conductivity and viscosity of base fluid) no single model can be used for predicting the thermal conductivity of nanofluids. Inconsistent and conflicting results are reported on the enhanced thermal conductivity of nanofluids. Further, insufficient understanding and inconclusive mechanism behind enhanced thermal conductivity requires further attempt to work in this field. This article critically reviews the available literature on thermal conductivity of nanofluids.
APA, Harvard, Vancouver, ISO, and other styles
19

Watari, Koji, and Subhash L. Shinde. "High Thermal Conductivity Materials." MRS Bulletin 26, no. 6 (June 2001): 440–44. http://dx.doi.org/10.1557/mrs2001.113.

Full text
Abstract:
Every university student becomes familiar with the concept of thermal conductivity, a fundamental physical property of materials, through his or her textbooks. Initial work on high thermal conductivity was carried out in 1911 by Eucken, who discovered that diamond was a reasonably good conductor for heat at room temperature. Theoretical support for this discovery was established by Debye in 1914.
APA, Harvard, Vancouver, ISO, and other styles
20

HAIGH, S. K. "Thermal conductivity of sands." Géotechnique 62, no. 7 (July 2012): 617–25. http://dx.doi.org/10.1680/geot.11.p.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Abitha, M., Roshanara, and V. Subramaniam. "Thermal Conductivity of Fabrics." Applied Mechanics and Materials 813-814 (November 2015): 768–72. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.768.

Full text
Abstract:
An Investigation on thermal conductivity of woven fabrics is reported. Thermal conductivity knitted fabrics to be found to be lower that of woven fabrics. Finishes also had an effect on Thermal conductivity.
APA, Harvard, Vancouver, ISO, and other styles
22

Geng, Z. Z., H. L. Ning, Ju Sheng Ma, Y. G. Wang, and G. N. Zhang. "Thermal Conductivity of LTCC." Materials Science Forum 423-425 (May 2003): 311–14. http://dx.doi.org/10.4028/www.scientific.net/msf.423-425.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vasylkivskyi, I. S., V. O. Fedynets, and Ya P. Yusyk. "THERMAL CONDUCTIVITY LIQUID TRANSMITTER." Scientific Bulletin of UNFU 27, no. 9 (November 30, 2017): 99–103. http://dx.doi.org/10.15421/40270921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pan, Wei, Simon R. Phillpot, Chunlei Wan, Aleksandr Chernatynskiy, and Zhixue Qu. "Low thermal conductivity oxides." MRS Bulletin 37, no. 10 (October 2012): 917–22. http://dx.doi.org/10.1557/mrs.2012.234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mucha, J. "Thermal conductivity of REIn3compounds." Journal of Physics: Condensed Matter 18, no. 4 (January 13, 2006): 1427–39. http://dx.doi.org/10.1088/0953-8984/18/4/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gao, Tao, and Bjørn Petter Jelle. "Thermal Conductivity of TiO2Nanotubes." Journal of Physical Chemistry C 117, no. 3 (January 9, 2013): 1401–8. http://dx.doi.org/10.1021/jp3108655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Zhongwei, and Jie Chen. "Thermal conductivity of nanowires." Chinese Physics B 27, no. 3 (March 2018): 035101. http://dx.doi.org/10.1088/1674-1056/27/3/035101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sarid, Dror, Brendan McCarthy, and Ranjan Grover. "Scanning thermal-conductivity microscope." Review of Scientific Instruments 77, no. 2 (February 2006): 023703. http://dx.doi.org/10.1063/1.2168391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

PIORKOWSKA, EWA, and ANDRZEJ GALESKI. "Thermal conductivity of polymers." Polimery 30, no. 04 (April 1985): 136–41. http://dx.doi.org/10.14314/polimery.1985.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Smirnov, I. A., L. S. Parfen’eva, A. Jezowski, H. Misiorek, S. Krempel-Hesse, F. Ritter, and W. Assmus. "Thermal conductivity of YbInCu4." Physics of the Solid State 41, no. 9 (September 1999): 1418–21. http://dx.doi.org/10.1134/1.1131010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Singh, A. "Thermal Conductivity of Nanofluids." Defence Science Journal 58, no. 5 (September 24, 2008): 600–607. http://dx.doi.org/10.14429/dsj.58.1682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Toberer, Eric S., Lauryn L. Baranowski, and Chris Dames. "Advances in Thermal Conductivity." Annual Review of Materials Research 42, no. 1 (August 4, 2012): 179–209. http://dx.doi.org/10.1146/annurev-matsci-070511-155040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mori, Takao, Joshua Martin, and George Nolas. "Thermal conductivity of YbB44Si2." Journal of Applied Physics 102, no. 7 (October 2007): 073510. http://dx.doi.org/10.1063/1.2785017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pursky, O. I., and V. A. Konstantinov. "Thermal conductivity of solid." Physica B: Condensed Matter 403, no. 1 (January 2008): 190–94. http://dx.doi.org/10.1016/j.physb.2007.08.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Minato, Kazuo, Hiroyuki Serizawa, and Kousaku Fukuda. "Thermal conductivity of technetium." Journal of Alloys and Compounds 267, no. 1-2 (March 1998): 274–78. http://dx.doi.org/10.1016/s0925-8388(97)00514-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Klemens, P. G. "Thermal conductivity of composites." International Journal of Thermophysics 11, no. 5 (September 1990): 971–76. http://dx.doi.org/10.1007/bf00503587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fink, J. K., and L. Leibowitz. "Thermal conductivity of zirconium." Journal of Nuclear Materials 226, no. 1-2 (October 1995): 44–50. http://dx.doi.org/10.1016/0022-3115(95)00110-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Singh, Rao Martand, and Abdelmalek Bouazza. "Thermal conductivity of geosynthetics." Geotextiles and Geomembranes 39 (August 2013): 1–8. http://dx.doi.org/10.1016/j.geotexmem.2013.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lopes, E. B., and M. Almeida. "Thermal conductivity of K0.3MoO3." Physics Letters A 130, no. 2 (June 1988): 98–100. http://dx.doi.org/10.1016/0375-9601(88)90246-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Petravic, Janka. "Thermal conductivity of ethanol." Journal of Chemical Physics 123, no. 17 (November 2005): 174503. http://dx.doi.org/10.1063/1.2102867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Falkowski, M., and A. M. Strydom. "Thermal Conductivity of Ce2Ru3Ga9Compound." Acta Physica Polonica A 127, no. 2 (February 2015): 240–42. http://dx.doi.org/10.12693/aphyspola.127.240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Andersson, Britt M., Bertil Sundqvist, John Niska, and Bengt Loberg. "Thermal conductivity of polycrystallineYBa2Cu4O8." Physical Review B 49, no. 6 (February 1, 1994): 4189–98. http://dx.doi.org/10.1103/physrevb.49.4189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Corezzi, Silvia, Marco Bianucci, and Paolo Grigolini. "Chaos and thermal conductivity." Physical Review E 52, no. 6 (December 1, 1995): 6881–84. http://dx.doi.org/10.1103/physreve.52.6881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Aubin, H. "Quasiparticles and Thermal Conductivity." Science 280, no. 5360 (April 3, 1998): 11a—11. http://dx.doi.org/10.1126/science.280.5360.11a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Negreeva, S. N. "Thermal conductivity of organoplastics." Mechanics of Composite Materials 33, no. 2 (March 1997): 194–200. http://dx.doi.org/10.1007/bf02269609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lucuta, P. G., Hj Matzke, R. A. Verrall, and H. A. Tasman. "Thermal conductivity of SIMFUEL." Journal of Nuclear Materials 188 (June 1992): 198–204. http://dx.doi.org/10.1016/0022-3115(92)90471-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vesilind, P. Aarne, and C. James Martel. "Thermal conductivity of sludges." Water Research 23, no. 2 (February 1989): 241–45. http://dx.doi.org/10.1016/0043-1354(89)90048-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wasim, S. M., and A. Noguera. "Thermal conductivity of CuGaTe2." Solid State Communications 64, no. 4 (October 1987): 439–42. http://dx.doi.org/10.1016/0038-1098(87)90754-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kamatagi, M. D., N. S. Sankeshwar, and B. G. Mulimani. "Thermal conductivity of GaN." Diamond and Related Materials 16, no. 1 (January 2007): 98–106. http://dx.doi.org/10.1016/j.diamond.2006.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Shan Xiong. "Thermal conductivity of sands." Heat and Mass Transfer 44, no. 10 (January 8, 2008): 1241–46. http://dx.doi.org/10.1007/s00231-007-0357-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography