Academic literature on the topic 'Thermal conductivity measurements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal conductivity measurements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal conductivity measurements"
Pryazhnikov, M. I., A. V. Minakov, V. Ya Rudyak, and D. V. Guzei. "Thermal conductivity measurements of nanofluids." International Journal of Heat and Mass Transfer 104 (January 2017): 1275–82. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.080.
Full textCheruparambil, K. R., B. Farouk, J. E. Yehoda, and N. A. Macken. "Thermal Conductivity Measurement of CVD Diamond Films Using a Modified Thermal Comparator Method." Journal of Heat Transfer 122, no. 4 (May 9, 2000): 808–16. http://dx.doi.org/10.1115/1.1318206.
Full textBlows, J. L., P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu. "Thermal lensing measurements and thermal conductivity of Yb:YAB." Applied Physics B: Lasers and Optics 76, no. 3 (March 1, 2003): 289–92. http://dx.doi.org/10.1007/s00340-002-1092-4.
Full textTwitchen, D. J., C. S. J. Pickles, S. E. Coe, R. S. Sussmann, and C. E. Hall. "Thermal conductivity measurements on CVD diamond." Diamond and Related Materials 10, no. 3-7 (March 2001): 731–35. http://dx.doi.org/10.1016/s0925-9635(00)00515-x.
Full textGoodrich, L. E. "Field measurements of soil thermal conductivity." Canadian Geotechnical Journal 23, no. 1 (February 1, 1986): 51–59. http://dx.doi.org/10.1139/t86-006.
Full textSturm, Matthew, and Jerome B. Johnson. "Thermal conductivity measurements of depth hoar." Journal of Geophysical Research: Solid Earth 97, B2 (February 10, 1992): 2129–39. http://dx.doi.org/10.1029/91jb02685.
Full textBalaya, P., H. S. Jayanna, Hemant Joshi, G. Sumana, V. G. Narasimha Murthy, V. Prasad, and S. V. Subramanyam. "Thermal conductivity measurements at low temperatures." Bulletin of Materials Science 18, no. 8 (December 1995): 1007–11. http://dx.doi.org/10.1007/bf02745187.
Full textBuliński, Z., S. Pawlak, T. Krysiński, W. Adamczyk, and R. Białecki. "Application of the ASTM D5470 standard test method for thermal conductivity measurements of high thermal conductive materials." Journal of Achievements in Materials and Manufacturing Engineering 2, no. 95 (August 1, 2019): 57–63. http://dx.doi.org/10.5604/01.3001.0013.7915.
Full textSuhad Dawood Salman, Dr. Khalid Mershed, and Mr. Aoday Hatem. "New formula for predication thermal conductivity for homologous alkanes series function of carbon number." journal of the college of basic education 14, no. 62 (October 10, 2019): 125–39. http://dx.doi.org/10.35950/cbej.v14i62.4738.
Full textHotra, Oleksandra, Svitlana Kovtun, Oleg Dekusha, and Żaklin Grądz. "Prospects for the Application of Wavelet Analysis to the Results of Thermal Conductivity Express Control of Thermal Insulation Materials." Energies 14, no. 17 (August 24, 2021): 5223. http://dx.doi.org/10.3390/en14175223.
Full textDissertations / Theses on the topic "Thermal conductivity measurements"
Dougherty, Brian P. "An automated probe for thermal conductivity measurements." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/101183.
Full textM.S.
Mathis, Nancy Elaine. "Measurements of thermal conductivity anisotropy in polymer materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ62173.pdf.
Full textRees, Mary Frances. "Thermal conductivity measurements on high Tâ†c superconductors." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317234.
Full textMadrid, Lozano Francesc. "Thermal Conductivity and Specific Heat Measurements for Power Electronics Packaging Materials. Effective Thermal Conductivity Steady State and Transient Thermal Parameter Identification Methods." Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/5348.
Full textMartin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.
Full textKalkundri, Kaustubh. "Development and verification of an apparatus for thermal resistance and thermal conductivity measurements." Diss., Online access via UMI:, 2006.
Find full textTsai, Andy 1969. "Investigation of variability in skin tissue intrinsic thermal conductivity measurements." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36036.
Full textVita.
Includes bibliographical references (leaves 75-76).
by Andy Tsai.
M.S.
Shaikh, Samina. "Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41301.
Full textIncludes bibliographical references (leaves 106-107).
The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep boreholes. This information is required to insure that waste temperatures will not exceed tolerable limits. Such experimental verification is essential because analytical models and empirical correlations can not accurately predict effective thermal conductivities for complex configurations of poorly characterized media, such as beds of irregular particles of mixed sizes. The experimental apparatus consisted of a 2.54 cm. diameter cylindrical heater (heated length = 0.5 m) , surrounded by a 5.0 cm inner diameter steel tube. Six pairs of thermocouples were located axially on the inside of the heater sheath, and in grooves on the air-fan-cooled outer tube. Test media were used to fill the annular gap, and the temperature drop across the gap measured at several power levels covering the range of heat fluxes expected on a waste canister soon after emplacement. Values of effective thermal conductivity were measured for air, water; particle beds of sand, SiC, graphite and aluminum; and an air gap subdivided by a thin metal sleeve insert. Results are compared to literature values and analytical models for conduction, convection and radiation. Agreement within a factor of 2 was common, and the results confirm the adequacy, and reduce the uncertainty of prior borehole system design calculations. All particle bed data fell between 0.3 and 0.5 W/moC, hence other attributes can determine usage.
by Samina Shaikh.
S.M.and S.B.
Ma, Luyao. "Optimization of experimental conditions of hot wire method in thermal conductivity measurements." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93765.
Full textArnold, David Feversham. "Thermal conductivity measurements of semi-crystalline silica using a modified comparative method." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ39631.pdf.
Full textBooks on the topic "Thermal conductivity measurements"
Kasirga, T. Serkan. Thermal Conductivity Measurements in Atomically Thin Materials and Devices. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5348-6.
Full textYung, Bee Lang. Measurements of the thermal conductivity of liquid bromine and chlorine. Birmingham: University of Birmingham, 1986.
Find full textHust, J. G. Round-robin measurements of the apparent thermal conductivity of two refractory insulation materials, using high-temperature guarded-hot-plate apparatus. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textHust, J. G. Round-robin measurements of the apparent thermal conductivity of two refractory insulation materials, using high-temperature guarded-hot-plate apparatus. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textHust, J. G. Round-robin measurements of the apparent thermal conductivity of two refractory insulation materials, using high-temperature guarded-hot-plate apparatus. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textHust, J. G. Round-robin measurements of the apparent thermal conductivity of two refractory insulation materials, using high-temperature guarded-hot-plate apparatus. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textRabinovich, V. A. Viscosity and thermal conductivity of individual substances in the critical region. New York: Begell House, 1996.
Find full textRoder, H. M. Experimental thermal conductivity values for mixtures of methane and ethane. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textRoder, H. M. Experimental thermal conductivity values for mixtures of methane and ethane. [Washington, D.C.]: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textBook chapters on the topic "Thermal conductivity measurements"
Bae, S. C. "Transient Measurements of Insulation Materials." In Thermal Conductivity 20, 389–401. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7_37.
Full textRoth, E. P. "Measurement of Thermal Conductivity from High Temperature Pulse Diffusivity and Calorimetry Measurements." In Thermal Conductivity 18, 513–24. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_48.
Full textWhite, B. J., J. P. Davis, L. C. Bobb, and D. C. Larson. "Thermal Conductivity Measurements with Optical Fiber Sensors." In Thermal Conductivity 20, 277–86. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7_27.
Full textOverfelt, R. A., and R. E. Taylor. "Thermophysical Property Measurements for Casting Process Simulation." In Thermal Conductivity 23, 538–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719-56.
Full textGraves, R. S., D. W. Yarbrough, and D. L. McElroy. "Apparent Thermal Conductivity Measurements by an Unguarded Technique." In Thermal Conductivity 18, 339–55. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_34.
Full textJuc-Bouhali, Agnés, Renée Pujola, and Daniel Balageas. "Thermal Diffusivity in Situ Measurements of Carbon/Carbon Composite Reinforcements." In Thermal Conductivity 18, 613–24. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_57.
Full textGustavsson, M., N. S. Saxena, E. Karawacki, and S. E. Gustafsson. "Specific Heat Measurements with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 23, 56–65. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719-8.
Full textSengupta, A. K., and C. Ganguly. "Thermal Conductivity Measurements of Ceramic Nuclear Fuels by Laser Flash Method." In Thermal Conductivity 20, 153–62. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7_14.
Full textKoski, J. A. "Sensitivity and Accuracy Analysis of Pulse Diffusivity Measurements on Layered Samples." In Thermal Conductivity 18, 525–36. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_49.
Full textGustafsson, Silas E. "Thermal Properties of Surface Layers Using Pulse Transient Hot Strip Measurements." In Thermal Conductivity 18, 553–63. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_51.
Full textConference papers on the topic "Thermal conductivity measurements"
GOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK, and ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.
Full textGARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK, and HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.
Full textLAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER, and ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.
Full textHUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON, and MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.
Full textNuszkowski, John P., Nick W. Hudyma, and Marcus Polito. "Thermal Conductivity Measurements of Weathered Limestone." In IFCEE 2018. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481585.038.
Full textAbu-Isa, Ismat A. "Thermal Properties of Automotive Polymers II Thermal Conductivity Measurements." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-1320.
Full textTan, Chun Chia, Rong Zhao, Luping Shi, Tow Chong Chong, James A. Bain, T. E. Schlesinger, Jonathan A. Malen, and Wee Liat Ong. "Thermal conductivity measurements of nitrogen-doped Ge2Sb2Te5." In 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2011. http://dx.doi.org/10.1109/nvmts.2011.6137080.
Full textWang, H., W. D. Porter, and J. Sharp. "Thermal conductivity measurements of bulk thermoelectric materials." In ICT 2005. 24th International Conference on Thermoelectrics, 2005. IEEE, 2005. http://dx.doi.org/10.1109/ict.2005.1519895.
Full textWang, G., W. A. Byers, M. Y. Young, J. Deshon, Z. Karoutas, and R. L. Oelrich. "Thermal Conductivity Measurements for Simulated PWR Crud." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16655.
Full textBeasley, J. Donald. "Thermal conductivity measurements in nonlinear optical materials." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Roger L. Facklam, Karl H. Guenther, and Stephan P. Velsko. SPIE, 1993. http://dx.doi.org/10.1117/12.148389.
Full textReports on the topic "Thermal conductivity measurements"
Wang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/885883.
Full textClemens, Rebecca, Jaron D. Kuppers, and Leslie Mary Phinney. Thermal conductivity measurements of Summit polycrystalline silicon. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/897917.
Full textAntonangeli, D., and D. Farber. Thermal Diffusivity and Conductivity Measurements in Diamond Anvil Cells. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/902295.
Full textA. L. Robinson, S. G. Buckley, N. Yang, and L. L. Baxter. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/755936.
Full textWang, H. G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/885664.
Full textJostlein, H., and N. Schmidgall. D0 Silicon Upgrade: Thermal Conductivity Measurements of Adhesives and Metal Strips. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/1033288.
Full textBraase, Lori, Cynthia Papesch, and David Hurley. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1202890.
Full textAndersson, Anders, Xiang-Yang Liu, Kenneth Mcclellan, Jason Lashley, Darrin Byler, Christopher Stanek, Krzysztof Gofryk, and Michael Tonks. Molecular dynamics simulations and experimental measurements of UO2 and UO2+x thermal conductivity. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164424.
Full textCahill, David G. Acquisition of a Magneto-Optical Cryostat for Measurements of Thermal Conductivity in High Magnetic Fields. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada529978.
Full textA. L. Robinson, S. G. Buckley, N. Yang, and L. L. Baxter. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/755103.
Full text