Academic literature on the topic 'Thermal conductivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal conductivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal conductivity"

1

Szurgot, Marian A. "O przewodności cieplnej meteorytu Jezersko." Nafta-Gaz 77, no. 1 (January 2021): 10–19. http://dx.doi.org/10.18668/ng.2021.01.02.

Full text
Abstract:
The thermal conductivity (K) of Jezersko H4 meteorite was predicted by various models of rocks, using literature data on the chemical composition, porosity (P), and by relationships between thermal conductivity and porosity, and between thermal conductivity and thermal diffusivity (D). The results confirm that the porosity of the chondrite and air pressure significantly affect thermal conductivity. The thermal conductivity of the chondrite skeleton/matrix predicted by the modal composition of the meteorite and by the geometric mean model is equal to 4.35 W m−1 K−1, and by arithmetic and harmonic mean models: 4.9 W m−1 K−1at 300 K. Bulk thermal conductivity of the meteorite predicted by the geometric mean model is equal to 2.6 W m-1 K-1 for air pressure of 1 atm, and 1.0 W m−1 K−1in vacuum at 300 K. The Hashin–Shtrikman model predicts the values: 2.4 and 1.9 W m−1 K−1, the Clausius–Mossotti model: 2.2 and 1.9 W m-1 K-1, and the mean of two-layer models: 2.1 and 2.0 W m−1 K−1 at 300 K, for air pressure of 1 atm, and in vacuum, respectively. The relationships between thermal conductivity and porosity based on experimental data for ordinary chondrites indicate a mean K value for bulk thermal conductivity of the Jezersko meteorite in vacuum: 1.18 W m−1 K−1, and between thermal conductivity and thermal diffusivity the mean value: 1.12 W m−1 K−1at 200–300 K. The mean value for all predictions for bulk thermal conductivity of the meteorite for air at 1 atm is equal to 2.45 ± 0.30 W m−1 K−1 (range: 2.0–2.9 W m−1 K−1) at 300 K, and in vacuum: 1.40 ± 0.40 W m−1 K−1 (range: 0.95–2.0 W m−1 K−1) at 200–300 K. Predicted values of bulk thermal conductivity of the Jezersko meteorite, for air and in vacuum, are in the range of values recently reported by Soini et al. (2020) for the H4 group of chondrites: 2.8 ± 0.6 W m−1 K−1, mean K for air at 1 atm, and 1.9 ± 1.0 W m−1 K−1 mean K value in vacuum at 200–300 K.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Seung-Rae. "Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles." Journal of the Korean Society of Civil Engineers 33, no. 6 (2013): 2381. http://dx.doi.org/10.12652/ksce.2013.33.6.2381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tolibjonovich, Tojiboyev Boburjon. "LIQUID COMPOSITE THERMAL INSULATION COATINGS AND METHODS FOR DETERMINING THEIR THERMAL CONDUCTIVITY." International Journal of Advance Scientific Research 02, no. 03 (March 1, 2022): 42–50. http://dx.doi.org/10.37547/ijasr-02-03-07.

Full text
Abstract:
The article describes the analysis of existing methods for determining the thermal conductivity of liquid composite thermal insulation coatings and the results of experimental studies on its improvement.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, U.-Seung, Yeong-Min Kim, Kuan Chen, and Won-Gi Cheon. "Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors." Transactions of the Korean Society of Mechanical Engineers B 26, no. 3 (March 1, 2002): 439–47. http://dx.doi.org/10.3795/ksme-b.2002.26.3.439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakane, Koji, Shinya Ichikawa, Shuya Gao, Mikita Seto, Satoshi Irie, Susumu Yonezawa, and Nobuo Ogata. "Thermal Conductivity of Polyurethane Sheets Containing Alumina Nanofibers." Sen'i Gakkaishi 71, no. 1 (2015): 1–5. http://dx.doi.org/10.2115/fiber.71.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Donovan, Ryan, Karyanto Karyanto, and Ordas Dewanto. "STUDI SIFAT TERMAL BATUAN DAERAH LAPANGAN PANAS BUMI WAY RATAI BERDASARKAN PENGUKURAN METODE KONDUKTIVITAS TERMAL." Jurnal Geofisika Eksplorasi 4, no. 3 (January 17, 2020): 103–19. http://dx.doi.org/10.23960/jge.v4i3.44.

Full text
Abstract:
Research on Way Ratai geothermal field has been done by measuring the thermal conductivity method. The thermal conductivity data is used to generate a map of the dispersion of heat conductively conductive rocks in the geothermal system. The result of measurement by thermal conductivity method in Way Ratai geothermal field is data of k (conductivity), Rt (thermal resistivity), and T (temperature). The value of the measured conductivity data in the geothermal field has range between 0.056-0.664 W/mK, the measured thermal resistivity value has range between 1.344-17.527mK/W, and the measured temperature value is between 22.68-52.59°C. The difference value of rock’s thermal conductivity is influenced by several factors, which is the existing geological structures in the field such as normal faults and lineaments, the presence of alteration, also the manifestation zone of hot water or hot vapor that caused from fumaroles.
APA, Harvard, Vancouver, ISO, and other styles
7

Vonlanthen, P., S. Paschen, D. Pushin, A. D. Bianchi, H. R. Ott, J. L. Sarrao, and Z. Fisk. "Thermal conductivity ofEuB6." Physical Review B 62, no. 5 (August 1, 2000): 3246–50. http://dx.doi.org/10.1103/physrevb.62.3246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Núez Regueiro, M., B. Salce, R. Calemczuk, C. Marin, and J. Y. Henry. "Thermal conductivity ofNd1.85Ce0.15CuO4." Physical Review B 44, no. 17 (November 1, 1991): 9727–30. http://dx.doi.org/10.1103/physrevb.44.9727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shiozawa, Sho, and Gaylon S. Campbell. "Soil thermal conductivity." Remote Sensing Reviews 5, no. 1 (January 1990): 301–10. http://dx.doi.org/10.1080/02757259009532137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

JACOBY, MITCH. "GRAPHENE’S THERMAL CONDUCTIVITY." Chemical & Engineering News 88, no. 15 (April 12, 2010): 5. http://dx.doi.org/10.1021/cen-v088n015.p005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal conductivity"

1

Tardieu, Giliane. "Thermal conductivity prediction." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/10014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.

Full text
Abstract:
The thermal properties of hydrate bearing sediments remain poorly studied, in part due to measurement difficulties inside the hydrate stability envelope. In particular, there is a dearth of experimental data on hydrate-bearing sediments, and most available measurements and models correspond to bulk gas hydrates. However, hydrates in nature largely occur in porous media, e.g. sand, silt and clay. The purpose of this research is to determine the thermal properties of hydrate-bearing sediments under laboratory conditions, for a wide range of soils from coarse-grained sand to fine-grained silica flour and kaolinite. The thermal conductivity is measured before and after hydrate formation, at effective confining stress in the range from 0.03 MPa to 1 MPa. Results show the complex interplay between soil grain size, effective confinement and the amount of the pore space filled with hydrate on the thermal conductivity of hydrate-bearing sediments.
APA, Harvard, Vancouver, ISO, and other styles
3

Mensah-Brown, Henry. "Thermal conductivity of liquid mixtures." Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peralta, Martinez Maria Vita. "Thermal conductivity of molten metals." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jawad, Shadwan Hamid. "Thermal conductivity of polyatomic gases." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valter, Mikael. "Thermal Conductivity of Uranium Mononitride." Thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122337.

Full text
Abstract:
Thermal conductivity is a crucial parameter for nuclear fuel, as it sets an upper limit on reactor operating temperature to have safety margins. Uranium mononitride (UN) is a prospective fuel for fast reactors, for which limited experimental studies have been conducted, compared to the currently dominating light-water reactor fuel, uranium dioxide. The aim of this thesis is to determine the thermal conductivity in UN and to determine its porosity dependence. This was done by manufacturing dense and porous high-purity samples of UN and examining them with laser flash analysis, which with data on specific heat and thermal expansion gives the thermal conductivity. To analyse the result, a theoretical study of the phenomenology of thermal conductivity as well as a review and comparison with previous investigations were carried out. The porosity range was 0.1–31% of theoretical density. Thermal diffusivity data from laser flash analysis, thermal expansion data and specific heat data was collected for 25–1400 C. The laser flash data had high discrepancy at higher temperatures due to thermal instability in the device and deviations due to graphite deposition on the samples, but the low temperature data should be reliable. As the specific heat data was also of poor quality, literature data was used instead. As for the thermal diffusivity data, the calculated thermal conductivity for lower temperatures are more accurate. A modified version of the porosity model by Ondracek and Schulz was used to analyse the porosity dependence of the thermal conductivity, taking into account the different impacts of open and closed porosity.
Värmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Stephen Ashcraft. "The thermal conductivity of intermetallics." Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/18185.

Full text
Abstract:
Includes bibliographical references.
The thermal conductivity of titanium aluminide and several ruthenium-aluminium alloys has been studied from room temperature up to 500°C. Ruthenium aluminide is a B2-type intermetallic which is unusual and of special interest because of its toughness, specific strength and stiffness, oxidation resistance and low cost. The possible use of ruthenium aluminide in high temperature industrial applications required an investigation of the thermal properties of this compound. Apparatus, capable of measuring thermal conductivity at elevated temperatures has been designed and constructed. This study represents the first experimental results for the thermal conductivity of ruthenium aluminide alloys. The electrical resistivity of the intermetallic compounds has been measured using apparatus based on the Van der Pauw method. The Weidman-Franz ratio of the ruthenium aluminide alloys has been calculated and this indicates that the primary source of heat conduction in these alloys is by electronic movement and that the lattice contribution is minor. The electrical and thermal properties of ruthenium aluminide are shown to be similar to that of platinum and nickel aluminide. This has important implications for the use of these alloys in high temperature applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Karayacoubian, Paul. "Effective Thermal Conductivity of Composite Fluidic Thermal Interface Materials." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2881.

Full text
Abstract:
Thermally enhanced greases made of dispersions of small conductive particles suspended in fluidic polymers can offer significant advantages when used as a thermal interface material (TIM) in microelectronics cooling applications. A fundamental problem which remains to be addressed is how to predict the effective thermal conductivity of these materials, an important parameter in establishing the bulk resistance to heat flow through the TIM.

The following study presents the application of two simple theorems for establishing bounds on the effective thermal conductivity of such inhomogeneous media. These theorems are applied to the development of models which are the geometric means of the upper and lower bounds for effective thermal conductivity of base fluids into which are suspended particles of various geometries.

Numerical work indicates that the models show generally good agreement for the various geometric dispersions, in particular for particles with low to moderate aspect ratios. The numerical results approach the lower bound as the conductivity ratio is increased. An important observation is that orienting the particles in the direction of heat flow leads to substantial enhancment in the thermal conductivity of the base fluid. Clustering leads to a small enhancement in effective thermal conductivity beyond that which is predicted for systems composed of regular arrays of particles. Although significant enhancement is possible if the clusters are large, in reality, clustering to the extent that solid agglomerates span large distances is unlikely since such clusters would settle out of the fluid.

In addition, experimental work available in the literature indicates that the agreement between the selected experimental data and the geometric mean of the upper and lower bounds for a sphere in a unit cell are in excellent agreement, even for particles which are irregular in shape.
APA, Harvard, Vancouver, ISO, and other styles
9

Mutnuri, Bhyrav. "Thermal conductivity characterization of composite materials." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4468.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains vii, 62 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-62).
APA, Harvard, Vancouver, ISO, and other styles
10

Wei, Xiaohao, and 魏晓浩. "Nanofluids: synthesis, characterization and thermal conductivity." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44765861.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermal conductivity"

1

International, Thermal Conductivity Conference (18th 1983 Rapid City S. D. ). Thermal conductivity 18. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilkes, Kenneth E., Ralph B. Dinwiddie, and Ronald S. Graves. Thermal Conductivity 23. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hasselman, D. P. H., and J. R. Thomas, eds. Thermal Conductivity 20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ashworth, T., and David R. Smith, eds. Thermal Conductivity 18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

1937-, Yarbrough D. W., ed. Thermal conductivity 19. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Thermal Conductivity Conference (21st 1989 Lexington, Ky.). Thermal conductivity 21. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Thermal Conductivity Conference (22nd 1993 Arizona State University). Thermal conductivity 22. Lancaster, Penn: Technomic Pub. Co., 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hasselman, D. P. H. Thermal Conductivity 20. Boston, MA: Springer US, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Thermal Conductivity Conference (20th 1987 Blacksburg, Va.). Thermal conductivity 20. New York: Plenum Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ashworth, T. Thermal Conductivity 18. Boston, MA: Springer US, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal conductivity"

1

Gooch, Jan W. "Conductivity (Thermal)." In Encyclopedic Dictionary of Polymers, 166. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hirao, Kiyoshi, and You Zhou. "Thermal Conductivity." In Ceramics Science and Technology, 665–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hirao, Kiyoshi, and You Zhou. "Thermal Conductivity." In Ceramics Science and Technology, 665–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Michaelides, Efstathios E. "Thermal Conductivity." In Nanofluidics, 163–225. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05621-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rusoke-Dierich, Olaf. "Thermal Conductivity." In Diving Medicine, 91–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73836-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brüesch, Peter. "Thermal Conductivity." In Springer Series in Solid-State Sciences, 76–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52271-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gooch, Jan W. "Thermal Conductivity." In Encyclopedic Dictionary of Polymers, 741. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hartwig, Günther. "Thermal Conductivity." In Polymer Properties at Room and Cryogenic Temperatures, 97–116. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-6213-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Godovsky, Yuli K. "Thermal Conductivity." In Thermophysical Properties of Polymers, 43–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51670-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Yong. "Thermal Conductivity." In Physical Properties of Polymers Handbook, 155–63. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69002-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal conductivity"

1

HUA, ZILONG, YUEFANG DONG, and HENG BAN. "Thermal Conductivity Measurement of Ion-irradiated Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK, and ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

HUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON, and MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SONG, ZHUORUI, TYSON WATKINS, and HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CASTIGLIONE, PAOLO, and GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK, and HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DEHN, SUSANNE, ERIK RASMUSSEN, and CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ILLKOVA, KSENIA, RADEK MUSALEK, and JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER, and ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

YARBROUGH, DAVID W., and MICHEL P. DROUIN. "Long-Term Thermal Resistance of Thin Cellular Plastic Insulations." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30340.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal conductivity"

1

Wilkinson, A., and A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guidotti, R. A., and M. Moss. Thermal conductivity of thermal-battery insulations. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/102467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clark, D. Thermal Conductivity of Helium. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/1031796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

M.J. Anderson, H.M. Wade, and T.L. Mitchell. Invert Effective Thermal Conductivity Calculation. US: Yucca Mountain Project, Las Vegas, Nevada, March 2000. http://dx.doi.org/10.2172/894317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/402292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/885883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hin, Celine. Thermal Conductivity of Metallic Uranium. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1433931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bootle, John. High Thermal Conductivity Composite Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvin Solomon, Shripad Revankar, and J. Kevin McCoy. Enhanced Thermal Conductivity Oxide Fuels. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/862369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bootle, John. High Thermal Conductivity Composite Structures. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada379694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography