Academic literature on the topic 'Thermal computations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal computations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal computations"
Aithal, S. M. "Charged Species Concentration in Combusting Mixtures Using Equilibrium Chemistry." Journal of Combustion 2018 (October 4, 2018): 1–11. http://dx.doi.org/10.1155/2018/9047698.
Full textMoroz, Dmytro. "MODELING OF MAXIMALLY PARALLEL STRUCTURES OF ALGORITHMS FOR SOLVING THERMAL PROBLEMS." Modern Problems of Metalurgy, no. 24 (March 28, 2021): 98–109. http://dx.doi.org/10.34185/1991-7848.2021.01.10.
Full textSadrizadeh, Sasan. "Numerical Investigation of Thermal Comfort in an Aircraft Passenger Cabin." E3S Web of Conferences 111 (2019): 01027. http://dx.doi.org/10.1051/e3sconf/201911101027.
Full textYan, Yihuan, Xiangdong Li, and Jiyuan Tu. "Effects of manikin model simplification on CFD predictions of thermal flow field around human bodies." Indoor and Built Environment 26, no. 9 (June 7, 2016): 1185–97. http://dx.doi.org/10.1177/1420326x16653500.
Full textBoisse, P., A. Gasser, and J. Rousseau. "Computations of refractory lining structures under thermal loadings." Advances in Engineering Software 33, no. 7-10 (July 2002): 487–96. http://dx.doi.org/10.1016/s0965-9978(02)00064-9.
Full textVeyhl, Christoph, Thomas Fiedler, Tobias Herzig, Andreas Öchsner, Timo Bernthaler, Irina V. Belova, and Graeme E. Murch. "Thermal Conductivity Computations of Sintered Hollow Sphere Structures." Metals 2, no. 2 (May 30, 2012): 113–21. http://dx.doi.org/10.3390/met2020113.
Full textPaya, Bernard, Virgiliu Fireteanu, Alexandru Spahiu, and Christophe Guérin. "3D magneto‐thermal computations of electromagnetic induction phenomena." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 22, no. 3 (September 2003): 744–55. http://dx.doi.org/10.1108/03321640310475164.
Full textBoggs, S., Jinbo Kuang, H. Andoh, and S. Nishiwaki. "Electro-thermal-mechanical computations in ZnO arrester elements." IEEE Transactions on Power Delivery 15, no. 1 (2000): 128–34. http://dx.doi.org/10.1109/61.847240.
Full textHolden, John T. "Improved Thermal Computations for Artificially Frozen Shaft Excavations." Journal of Geotechnical and Geoenvironmental Engineering 123, no. 8 (August 1997): 696–701. http://dx.doi.org/10.1061/(asce)1090-0241(1997)123:8(696).
Full textZiegeler, Nils J., Peter W. Nolte, and Stefan Schweizer. "Quantitative Performance Comparison of Thermal Structure Function Computations." Energies 14, no. 21 (October 28, 2021): 7068. http://dx.doi.org/10.3390/en14217068.
Full textDissertations / Theses on the topic "Thermal computations"
Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.
Full textMahrukh, Mahrukh. "Computational modelling of thermal spraying processes." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/10039.
Full textJang, Tai Seung. "Thermophysiologic issues in computational human thermal models /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418034.
Full textBhatnagar, Himanshu. "Computational Modeling of Failure in Thermal Barrier Coatings under Cyclic Thermal Loads." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230741103.
Full textSeijas, Bellido Juan Antonio. "Computational studies of thermal transport in functional oxides." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669787.
Full textThis Thesis collects the computational works we have done in the field of condensed matter physics, focused on the thermal transport properties of the Lead Titanate (PbTiO3) and the Zinc Oxide (ZnO), both representative materials of many other insulating functional oxides. The first has been modeled using a second-principles potential, that is, a potential parameterized from first-principles calculations, which captures some quantum effects that can be relevant in the material. We have modeled the second one using the Buckingham's potential, a simple analytical expression that seems to describe the behavior of ZnO in a fairly approximate agreement with experiments.
Barakat, Magdi H. "Computation of indoor airflow for thermal comfort in residential buildings." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/23308.
Full textNegrão, Cezar O. R. "Conflation of computational fluid dynamics and building thermal simulation." Thesis, University of Strathclyde, 1995. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21238.
Full textJohansson, Emma. "The thermal comfort of the cockpit: A pilot's experience." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203773.
Full textSaab gör stora satsningar för att säkerställa att cockpiten är en god arbetsplats för piloten. Den här rapporten syftar till att öka kunskapen om termisk komfort genom att kombinera Saabs atmosfärs-, kabin-, och pilotmodeller. För att kunna verifiera att den kombinerade modellen beskriver verkligheten genomfördes en kvalitativ studie med testpiloter. Intervjuerna reducerades till ett par flyg-scenarier, som sedan testades i den kombinerade modellen. Detta för att kunna verifiera att de upplevda obekvämligheterna kunde förutspås. Den kombinerade modellen utökades med en prediktion av bekvämligheten enligt Europeisk standard. Ur intervjuerna kunde situationer identifieras då piloterna känner termiskt obehag. Av dessa situationer är två flygfall och ett markfall, där piloten befinner sig utanför cockpit. Modellen simulerar hur piloten påverkas av den termiska miljön i kabin, på grund av detta kunde inte markfallet analyseras. Modellsimuleringen resulterade i figurer som visar temperaturen i kroppsdelar som piloterna har uttryck känns obehagliga. Predicted Mean Vote, PMV, förutspår komfort på en 6-gradig skala givet omgivningsparametrar så som tryck och temperatur. Predicted Percentage Dissatisfied, PPD, beskriver hur stor andel, i procent, som upplever obehag vid ett givet PMV. Dessa mått på komfort användes för att beräkna komforten i de olika kroppsdelarna. Modellsimuleringen av pilotkomforten stämmer överens med det piloterna nämnde till viss del. I vissa kroppsdelar stämmer det inte överens. Då modellen inte tar hänsyn till fuktighet vid beräkning av kroppstemperaturer kan detta vara en anledning till varför den inte stämmer helt. Fuktigheten påverkar PMV och PPD beräkningarna och i fall 2 visar det sig att PPD ökar med en ökad fuktighet. Slutligen, behöver modellens ses över, och detaljgraden ökas, för att den här rapportens metoder skall vara användbara vid tillverkningen av flygplan.
Eriksson, Christoffer. "Thermal design optimization by geometric parameterization of heat sources." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328011.
Full textXiang, Yetao. "Experimental and computational investigation of building integrated PV thermal air system combined with thermal storage." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/42743/.
Full textBooks on the topic "Thermal computations"
Ellison, Gordon N. Thermal Computations for Electronics. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328.
Full textEllison, Gordon N. Thermal computations for electronic equipment. Malabar, Fla: R.E. Krieger, 1989.
Find full textThermal computations for electronics: Conductive, radiative, and convective air cooling. Boca Raton, FL: CRC Press, 2010.
Find full textArts, Tony. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: A test case for inviscid and viscous flow computations. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1990.
Find full textBottoni, Maurizio. Physical Modeling and Computational Techniques for Thermal and Fluid-dynamics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79717-1.
Full textTatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textPaterson, Duncan. Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11787-0.
Full textEslami, M. Reza. Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions. Dordrecht: Springer Netherlands, 2013.
Find full textKuridan, Ramadan Muftah. Computational neutron transport and thermal-hydraulics feedback and transient models for the safe integral reactor concept. Birmingham: University of Birmingham, 1995.
Find full textSaravanos, D. A. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation. [Washington, D.C.]: NASA, 1990.
Find full textBook chapters on the topic "Thermal computations"
Ellison, Gordon N. "Thermal Radiation Heat Transfer." In Thermal Computations for Electronics, 197–237. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-10.
Full textEllison, Gordon N. "Introduction." In Thermal Computations for Electronics, 1–19. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-1.
Full textEllison, Gordon N. "Conduction I: Basics." In Thermal Computations for Electronics, 239–68. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-11.
Full textEllison, Gordon N. "Conduction II: Spreading Resistance." In Thermal Computations for Electronics, 269–300. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-12.
Full textEllison, Gordon N. "Additional Mathematical Methods." In Thermal Computations for Electronics, 301–23. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-13.
Full textEllison, Gordon N. "Thermodynamics of Airflow." In Thermal Computations for Electronics, 21–28. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-2.
Full textEllison, Gordon N. "Airflow I: Forced Flow in Systems." In Thermal Computations for Electronics, 29–57. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-3.
Full textEllison, Gordon N. "Airflow II: Forced Flow in Ducts, Extrusions, and Pin Fin Arrays." In Thermal Computations for Electronics, 59–77. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-4.
Full textEllison, Gordon N. "Airflow III: Buoyancy Driven Draft." In Thermal Computations for Electronics, 79–85. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-5.
Full textEllison, Gordon N. "Forced Convective Heat Transfer I: Components." In Thermal Computations for Electronics, 87–110. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003029328-6.
Full textConference papers on the topic "Thermal computations"
Zeidan, Dia, Lucy T. Zhang, and Eric Goncalves. "CAVITATING BUBBLY FLOW COMPUTATIONS BY MEANS OF MIXTURE BALANCE EQUATIONS." In 3rd Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/tfec2018.mph.021541.
Full textLós Reis, João Henrique, and Luiz Antonio Alcântara Pereira. "PARTICLE-PARTICLE INTERACTIONS IN PARALLEL COMPUTATIONS FOR HEAT TRANSFER PROBLEMS." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0062.
Full textBouchez, Marc, F. Cheuret, P. Grenard, J. A. Redford, N. D. Sandham, G. T. Roberts, A. Passaro, D. Baccarella, M. Dalenbring, and J. Smith. "Material-Aero-Thermal Interaction Computations in the ATLLAS European Programme." In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4670.
Full textKhalil, Essam E., Osama AbdelLatif, Ahmed A. Attia, and Mahmoud G. Yehia. "On the Computations of Thermal Behaviour of Shell and Tube Heat Exchanger." In 12th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-3768.
Full textAUERBACH, I., D. BENSON, and G. WRIGHT, JR. "Evaluation of thermal and kinetic properties suitable for high heating rate computations." In 22nd Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1512.
Full textBalland, Morgan, Olivier Verseux, and Marie-Josephe Esteve. "Aero-Thermal Computations With Experimental Comparison Applied to Aircraft Engine Nacelle Compartment." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68995.
Full textBouchard, Cedrick, and Julien Sylvestre. "Highly parallel computations of creep deformation in flip-chip interconnections." In 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2017. http://dx.doi.org/10.1109/eurosime.2017.7926259.
Full textShankaran, Gokul V., M. Baris Dogruoz, and Ryan Magargle. "Using state-space models for accurate computations of transient thermal behavior of electronic packages." In 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2014. http://dx.doi.org/10.1109/itherm.2014.6892389.
Full textCai, Chunpeicai, Danny Liu, and Kun Xu. "A Two-Dimensional GasKinetic BGK Scheme for Hypersonic Thermal Non-Equilibirum Flow Computations." In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7961.
Full textTEODOSIU, CATALIN, RALUCA TEODOSIU, and VIOREL ILIE. "The angular discretization impact of thermal radiation computations on heat transfer in rooms." In Fourth International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-093-4-33.
Full textReports on the topic "Thermal computations"
Viecelli, J. A. Thermal blooming threshold computations with a Markov model of velocity turbulence. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6285080.
Full textFeierl, Lukas, and Peter Luidolt. Automated monitoring, failure detection of key components, control strategies and self-learning controls of key components. IEA SHC Task 55, September 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0005.
Full textKeefer, R. H., and L. W. Keeton. Review of computational thermal-hydraulic modeling. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/291150.
Full textCaruso, A., I. Flour, O. Simonin, and C. Cherbonnel. Detailed thermal-hydraulic computation into a containment building. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107791.
Full textTencer, John, Kevin Thomas Carlberg, Marvin E. Larsen, and Roy E. Hogan. Advanced Computational Methods for Thermal Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330205.
Full textGallis, Michail A., Charles R. Bryan, Patrick Vane Brady, John Robert Torczynski, and Carlton, F. Brooks. Computational investigation of thermal gas separation for CO2 capture. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/972886.
Full textGuo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1133123.
Full textGuo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1133135.
Full textGuo, Shengmin, Shizhong Yang, and Ebrahim Khosravi. Computational Design and Experimental Validation of New Thermal Barrier Systems. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1133136.
Full textDavison, Scott, Nicholas Alger, Daniel Zack Turner, Samuel Ramirez Subia, Brian Carnes, Mario J. Martinez, Patrick K. Notz, et al. Computational thermal, chemical, fluid, and solid mechanics for geosystems management. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1029788.
Full text