Journal articles on the topic 'Thermal Arrest Memory Effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thermal Arrest Memory Effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Madangopal, K., S. Banerjee, and S. Lele. "Thermal arrest memory effect." Acta Metallurgica et Materialia 42, no. 6 (June 1994): 1875–85. http://dx.doi.org/10.1016/0956-7151(94)90012-4.
Full textRudajevova, A. "Thermal Arrest Memory Effect in Ni-Mn-Ga Alloys." Advances in Materials Science and Engineering 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/659145.
Full textKrishnan, Madangopal. "New observations on the thermal arrest memory effect in Ni–Ti alloys." Scripta Materialia 53, no. 7 (October 2005): 875–79. http://dx.doi.org/10.1016/j.scriptamat.2005.05.031.
Full textWada, Kiyohide, and Yong Liu. "Two-Way Memory Effect in NiTi Shape Memory Alloys." Advances in Science and Technology 59 (September 2008): 77–85. http://dx.doi.org/10.4028/www.scientific.net/ast.59.77.
Full textJiang, J., L. S. Cui, Y. J. Zheng, D. Q. Jiang, Z. Y. Liu, and K. Zhao. "Negative thermal expansion arrest point memory effect in TiNi shape memory alloy and NbTi/TiNi composite." Materials Science and Engineering: A 549 (July 2012): 114–17. http://dx.doi.org/10.1016/j.msea.2012.04.013.
Full textMeng, Qinglin, Hong Yang, Yinong Liu, Tae-hyun Nam, and F. Chen. "Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys." Journal of Materials Research 26, no. 10 (May 19, 2011): 1243–52. http://dx.doi.org/10.1557/jmr.2011.54.
Full textArizmendi, C. M., and Fereydoon Family. "Memory correlation effect on thermal ratchets." Physica A: Statistical Mechanics and its Applications 251, no. 3-4 (March 1998): 368–81. http://dx.doi.org/10.1016/s0378-4371(97)00662-6.
Full textGorina, I. I., S. S. Yakovenko, and M. Yu Baranovich. "New Thermal Memory Effect in CLC." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 192, no. 1 (January 1, 1990): 263–71. http://dx.doi.org/10.1080/00268949008035639.
Full textMinakawa, Kazunari, Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura. "Thermal Memory Effect in Polymer Optical Fibers." IEEE Photonics Technology Letters 27, no. 13 (July 1, 2015): 1394–97. http://dx.doi.org/10.1109/lpt.2015.2421950.
Full textDe, K., S. Majumdar, and S. Giri. "Memory effect and inverse thermal hysteresis in La0.87Mn0.98Fe0.02Ox." Journal of Applied Physics 101, no. 10 (May 15, 2007): 103909. http://dx.doi.org/10.1063/1.2714645.
Full textRen, X. C., S. M. Wang, C. W. Leung, F. Yan, and P. K. L. Chan. "Thermal annealing and temperature dependences of memory effect in organic memory transistor." Applied Physics Letters 99, no. 4 (July 25, 2011): 043303. http://dx.doi.org/10.1063/1.3617477.
Full textGlavatska, N., I. Glavatsky, G. Mogilny, and V. Gavriljuk. "Magneto-thermal shape memory effect in Ni–Mn–Ga." Applied Physics Letters 80, no. 19 (May 13, 2002): 3533–35. http://dx.doi.org/10.1063/1.1478130.
Full textFernández, J., A. Isalgue, and R. Franch. "Effect of Thermal Cycling on CuAlAg Shape Memory Alloys." Materials Today: Proceedings 2 (2015): S805—S808. http://dx.doi.org/10.1016/j.matpr.2015.07.404.
Full textGalović, S., Z. Šoškić, M. Popović, D. Čevizović, and Z. Stojanović. "Theory of photoacoustic effect in media with thermal memory." Journal of Applied Physics 116, no. 2 (July 14, 2014): 024901. http://dx.doi.org/10.1063/1.4885458.
Full textLi, Jun, Xiao Yang Yi, Wei Hong Gao, Wen Long Song, and Xiang Long Meng. "Temperature Memory Effect of Ti-Ni-Hf-Y High Temperature Shape Memory Alloy." Materials Science Forum 898 (June 2017): 598–603. http://dx.doi.org/10.4028/www.scientific.net/msf.898.598.
Full textSeyidov, MirHasan Yu, Rauf A. Suleymanov, and Emin Yakar. "Thermal expansion and memory effect in the ferroelectric-semiconductor TlGaSe2." Journal of Applied Physics 106, no. 2 (July 15, 2009): 023532. http://dx.doi.org/10.1063/1.3182825.
Full textWang, Lei, Jing Wen, and Bangshu Xiong. "Nanoscale thermal cross-talk effect on phase-change probe memory." Nanotechnology 29, no. 37 (July 6, 2018): 375201. http://dx.doi.org/10.1088/1361-6528/aac43f.
Full textVinnikov, V. A., and V. L. Shkuratnik. "Theoretical model for the thermal emission memory effect in rocks." Journal of Applied Mechanics and Technical Physics 49, no. 2 (March 2008): 301–5. http://dx.doi.org/10.1007/s10808-008-0041-3.
Full textBaity-Jesi, Marco, Enrico Calore, Andres Cruz, Luis Antonio Fernandez, José Miguel Gil-Narvión, Antonio Gordillo-Guerrero, David Iñiguez, et al. "The Mpemba effect in spin glasses is a persistent memory effect." Proceedings of the National Academy of Sciences 116, no. 31 (July 16, 2019): 15350–55. http://dx.doi.org/10.1073/pnas.1819803116.
Full textChen, Shaojun, Zhankui Mei, Huanhuan Ren, Haitao Zhuo, Jianhong Liu, and Zaochuan Ge. "Pyridine type zwitterionic polyurethane with both multi-shape memory effect and moisture-sensitive shape memory effect for smart biomedical application." Polymer Chemistry 7, no. 37 (2016): 5773–82. http://dx.doi.org/10.1039/c6py01099g.
Full textGandhi, Ashish Chhaganlal, Tai-Yue Li, Jen-Chih Peng, Chin-Wei Wang, Ting Shan Chan, Jauyn Grace Lin, and Sheng Yun Wu. "Concomitant Magnetic Memory Effect in CrO2–Cr2O3 Core–Shell Nanorods: Implications for Thermal Memory Devices." ACS Applied Nano Materials 2, no. 12 (November 13, 2019): 8027–42. http://dx.doi.org/10.1021/acsanm.9b02084.
Full textLiu, Ning, and Lilin Jiang. "Effect of microstructural features on the thermal conducting behavior of carbon nanofiber–reinforced styrene-based shape memory polymer composites." Journal of Intelligent Material Systems and Structures 31, no. 14 (June 20, 2020): 1716–30. http://dx.doi.org/10.1177/1045389x20932216.
Full textHan, Jun Hyun, Tae Ahn, Hyun Kim, and Kwang Koo Jee. "Shape Memory Effect in Fe-Pd Magnetic Shape Memory Alloy Thin Films." Materials Science Forum 654-656 (June 2010): 2107–10. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2107.
Full textZhang, Yong-Ci, Tsung-Ming Tsai, Wen-Chung Chen, Yung-Fang Tan, Li-Chuan Sun, Chuan-Wei Kuo, and Chih-Chih Lin. "Thermal Field Effect in Resistive Random Access Memory With Sidewall Structures of Different Thermal Conductivity." IEEE Transactions on Electron Devices 69, no. 6 (June 2022): 3147–50. http://dx.doi.org/10.1109/ted.2022.3169116.
Full textSamal, Sneha, Jan Tomáštík, Radim Čtvrtlík, Lukáš Václavek, Orsolya Molnárová, and Petr Šittner. "Surface Deformation Recovery by Thermal Annealing of Thermal Plasma Sprayed Shape Memory NiTi Alloys." Coatings 13, no. 2 (February 15, 2023): 433. http://dx.doi.org/10.3390/coatings13020433.
Full textZheng, Zhiqiang, Ping Huang, and Fei Wang. "Shape memory effect based thermal cycling induced flexoelectricity for energy harvesting." Scripta Materialia 194 (March 2021): 113701. http://dx.doi.org/10.1016/j.scriptamat.2020.113701.
Full textZheng, Zhiqiang, Ping Huang, and Fei Wang. "Shape memory effect based thermal cycling induced flexoelectricity for energy harvesting." Scripta Materialia 194 (March 2021): 113701. http://dx.doi.org/10.1016/j.scriptamat.2020.113701.
Full textJean, Ren-Der, and Jing-Bang Duh. "The thermal cycling effect on Ti-Ni-Cu shape memory alloy." Scripta Metallurgica et Materialia 32, no. 6 (March 1995): 885–90. http://dx.doi.org/10.1016/0956-716x(95)93219-t.
Full textFLORES ZUNIGA, H., S. BELKAHLA, and G. GUÉNIN. "THE THERMAL AGING AND TWO WAY MEMORY EFFECT (TWME) IN Cu-Al-Be SHAPE MEMORY ALLOY." Le Journal de Physique IV 01, no. C4 (November 1991): C4–289—C5–294. http://dx.doi.org/10.1051/jp4:1991444.
Full textMin, Changchun, Wenjin Cui, Jianzhong Bei, and Shenguo Wang. "Effect of comonomer on thermal/mechanical and shape memory property ofL-lactide-based shape-memory copolymers." Polymers for Advanced Technologies 18, no. 4 (2007): 299–305. http://dx.doi.org/10.1002/pat.865.
Full textGu, J., M. Emerman, and S. Sandmeyer. "Small heat shock protein suppression of Vpr-induced cytoskeletal defects in budding yeast." Molecular and Cellular Biology 17, no. 7 (July 1997): 4033–42. http://dx.doi.org/10.1128/mcb.17.7.4033.
Full textSundara Raman, R. "Shape Memory Alloys and their Thermal Characteristics." Asian Review of Mechanical Engineering 8, no. 1 (May 5, 2019): 39–43. http://dx.doi.org/10.51983/arme-2019.8.1.2461.
Full textHattori, Yuki, Takahiro Taguchi, Hee Kim, and Shuichi Miyazaki. "Effect of Stoichiometry on Shape Memory Properties and Functional Stability of Ti–Ni–Pd Alloys." Materials 12, no. 5 (March 8, 2019): 798. http://dx.doi.org/10.3390/ma12050798.
Full textWang, Fei, Jin Sheng Liang, Qing Guo Tang, Na Wang, and Li Wei Li. "Preparation and Properties of Thermal Insulation Latex Paint for Exterior Wall Based on Defibred Sepiolite and Hollow Glass Microspheres." Advanced Materials Research 58 (October 2008): 103–8. http://dx.doi.org/10.4028/www.scientific.net/amr.58.103.
Full textXiao, Yao-Yu, Xiao-Lei Gong, Yang Kang, Zhi-Chao Jiang, Sheng Zhang, and Bang-Jing Li. "Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect." Chem. Commun. 52, no. 70 (2016): 10609–12. http://dx.doi.org/10.1039/c6cc03587f.
Full textWang, Tzu-Han, You-Huei Chen, Chun-Wei Chang, Kuan-Ming Li, Jau-Horng Chen, and Joseph Staudinger. "On the Thermal Memory Effect Reduction of Power Amplifiers Using Pulse Modulation." IEEE Microwave and Wireless Components Letters 29, no. 4 (April 2019): 285–87. http://dx.doi.org/10.1109/lmwc.2019.2900152.
Full textSugano, Ryo, Tomoya Tashiro, Tomohito Sekine, Kenjiro Fukuda, Daisuke Kumaki, and Shizuo Tokito. "Enhanced memory characteristics in organic ferroelectric field-effect transistors through thermal annealing." AIP Advances 5, no. 11 (November 2015): 117106. http://dx.doi.org/10.1063/1.4935342.
Full textCasati, Riccardo, Maurizio Vedani, and Ausonio Tuissi. "Thermal cycling of stress-induced martensite for high-performance shape memory effect." Scripta Materialia 80 (June 2014): 13–16. http://dx.doi.org/10.1016/j.scriptamat.2014.02.003.
Full textJiang, Daqiang, Lishan Cui, Yanjun Zheng, and Xiaohua Jiang. "Effects of Thermal Cycling on the Temperature Memory Effect of TiNiNb Alloy." Journal of Materials Engineering and Performance 19, no. 7 (October 28, 2009): 1022–24. http://dx.doi.org/10.1007/s11665-009-9563-y.
Full textFolcia, C. L., M. J. Tello, J. M. Pérez-Mato, and J. A. Zubillaga. "Thermal hysteresis and memory effect in the ferroelectric incommensurate tetramethylammonium tetrachloro cobaltate." Solid State Communications 60, no. 7 (November 1986): 581–85. http://dx.doi.org/10.1016/0038-1098(86)90274-7.
Full textAouadi, M., and A. Soufyane. "Decay of the timoshenko beam with thermal effect and memory boundary conditions." Journal of Dynamical and Control Systems 19, no. 1 (January 2013): 33–46. http://dx.doi.org/10.1007/s10883-013-9163-x.
Full textLeonés, Adrián, Agueda Sonseca, Daniel López, Stefano Fiori, and Laura Peponi. "Shape memory effect on electrospun PLA-based fibers tailoring their thermal response." European Polymer Journal 117 (August 2019): 217–26. http://dx.doi.org/10.1016/j.eurpolymj.2019.05.014.
Full textKizilaslan, Olcay. "Thermal hysteresis dependent magnetocaloric effect properties of Ni50-xCuxMn38Sn12B3 shape memory ribbons." Intermetallics 109 (June 2019): 135–38. http://dx.doi.org/10.1016/j.intermet.2019.03.016.
Full textBesseghini, S., E. Villa, and A. Tuissi. "NiTiHf shape memory alloy: effect of aging and thermal cycling." Materials Science and Engineering: A 273-275 (December 1999): 390–94. http://dx.doi.org/10.1016/s0921-5093(99)00304-4.
Full textVitel, Gigi, Bogdan Pricop, Marius-Gabriel Suru, Nicoleta Monica Lohan, and Leandru-Gheorghe Bujoreanu. "Study of Temperature Memory Effect During the Thermal Cycling in Hydraulic Systems." Journal of Testing and Evaluation 44, no. 4 (January 27, 2015): 20140138. http://dx.doi.org/10.1520/jte20140138.
Full textKim, Won-Ho, Yoonseuk Choi, and Jin-Hyuk Bae. "Thermal-Dependent Nonvolatile Memory Characteristics Based on Organic Ferroelectric Field-Effect Transistor." Journal of Nanoscience and Nanotechnology 13, no. 10 (October 1, 2013): 7080–82. http://dx.doi.org/10.1166/jnn.2013.7627.
Full textAraújo Mota, C. A., A. S. Cavalcanti Leal, C. J. Araújo, A. G. Barbosa de Lima, and K. B. Moura da Silva. "Thermal Behaviour of Polymer Composite Reinforced with NiTi Shape Memory Alloys." Diffusion Foundations 10 (June 2017): 39–54. http://dx.doi.org/10.4028/www.scientific.net/df.10.39.
Full textLin, Guo Min, and Yan Hua Li. "Research on Performance Features of Shape Memory Alloys." Advanced Materials Research 989-994 (July 2014): 652–55. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.652.
Full textTAKAHASHI, Y., R. ISHIKAWA, and K. HONJO. "Accurate Distortion Prediction for Thermal Memory Effect in Power Amplifier Using Multi-Stage Thermal RC-Ladder Network." IEICE Transactions on Electronics E90-C, no. 9 (September 1, 2007): 1658–63. http://dx.doi.org/10.1093/ietele/e90-c.9.1658.
Full textSampath, V. "Effect of Thermal Processing on Microstructure and Shape-Memory Characteristics of a Copper–Zinc–Aluminum Shape-Memory Alloy." Materials and Manufacturing Processes 22, no. 1 (January 2007): 9–14. http://dx.doi.org/10.1080/10407780601015808.
Full text