Academic literature on the topic 'Thermal Arrest Memory Effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal Arrest Memory Effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal Arrest Memory Effect"
Madangopal, K., S. Banerjee, and S. Lele. "Thermal arrest memory effect." Acta Metallurgica et Materialia 42, no. 6 (June 1994): 1875–85. http://dx.doi.org/10.1016/0956-7151(94)90012-4.
Full textRudajevova, A. "Thermal Arrest Memory Effect in Ni-Mn-Ga Alloys." Advances in Materials Science and Engineering 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/659145.
Full textKrishnan, Madangopal. "New observations on the thermal arrest memory effect in Ni–Ti alloys." Scripta Materialia 53, no. 7 (October 2005): 875–79. http://dx.doi.org/10.1016/j.scriptamat.2005.05.031.
Full textWada, Kiyohide, and Yong Liu. "Two-Way Memory Effect in NiTi Shape Memory Alloys." Advances in Science and Technology 59 (September 2008): 77–85. http://dx.doi.org/10.4028/www.scientific.net/ast.59.77.
Full textJiang, J., L. S. Cui, Y. J. Zheng, D. Q. Jiang, Z. Y. Liu, and K. Zhao. "Negative thermal expansion arrest point memory effect in TiNi shape memory alloy and NbTi/TiNi composite." Materials Science and Engineering: A 549 (July 2012): 114–17. http://dx.doi.org/10.1016/j.msea.2012.04.013.
Full textMeng, Qinglin, Hong Yang, Yinong Liu, Tae-hyun Nam, and F. Chen. "Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys." Journal of Materials Research 26, no. 10 (May 19, 2011): 1243–52. http://dx.doi.org/10.1557/jmr.2011.54.
Full textArizmendi, C. M., and Fereydoon Family. "Memory correlation effect on thermal ratchets." Physica A: Statistical Mechanics and its Applications 251, no. 3-4 (March 1998): 368–81. http://dx.doi.org/10.1016/s0378-4371(97)00662-6.
Full textGorina, I. I., S. S. Yakovenko, and M. Yu Baranovich. "New Thermal Memory Effect in CLC." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 192, no. 1 (January 1, 1990): 263–71. http://dx.doi.org/10.1080/00268949008035639.
Full textMinakawa, Kazunari, Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura. "Thermal Memory Effect in Polymer Optical Fibers." IEEE Photonics Technology Letters 27, no. 13 (July 1, 2015): 1394–97. http://dx.doi.org/10.1109/lpt.2015.2421950.
Full textDe, K., S. Majumdar, and S. Giri. "Memory effect and inverse thermal hysteresis in La0.87Mn0.98Fe0.02Ox." Journal of Applied Physics 101, no. 10 (May 15, 2007): 103909. http://dx.doi.org/10.1063/1.2714645.
Full textDissertations / Theses on the topic "Thermal Arrest Memory Effect"
Jardine, A. P. "Shape memory effect thermodynamics and thermal efficiencies of NiTi." Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381385.
Full textKalnitsky, Alexander Carleton University Dissertation Engineering Electrical. "Memory effect and enhanced conductivity in thermal Si0 [subscript 2] implanted with Si." Ottawa, 1989.
Find full textDai, Wenhua. "Large signal electro-thermal LDMOSFET modeling and the thermal memory effects in RF power amplifiers." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1078935135.
Full textTitle from first page of PDF file. Document formatted into pages; contains xix, 156 p.; also includes graphics (some col.). Includes bibliographical references (p. 152-156).
Amalraj, Julian Joyce. "Effect of variable material properties on purely thermal phase transformations in shape memory alloy wires, modeling and experiments." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/MQ47001.pdf.
Full textKrishnan, Vinu Bala. "DESIGN, FABRICATION AND TESTING OF A SHAPE MEMORY ALLOY BASED CRYOGENIC THERMAL CONDUCTION SWITCH." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4404.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical, Materials and Aerospace Engineering
Terzak, John Charles. "Modeling of Microvascular Shape Memory Composites." Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389719238.
Full textEsham, Kathryn V. "The Effect of Nanoscale Precipitates on the Templating of Martensite Twin Microstructure in NiTiHf High Temperature Shape Memory Alloys." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494251602171757.
Full textNiraula, Dipesh. "Physics and applications of conductive filaments in electronic structures: from metal whiskers to solid state memory." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1561471348406944.
Full textDufour, Hugo. "Etude des effets multicaloriques induits lors de la transformation de phase structurale dans les composés de type Heusler." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY024.
Full textThis manuscript is devoted to the study of the multicaloric properties, and in particular magnetocaloric and elastocaloric properties possibly coupled between them, of Ni-Mn-X type Heusler alloys (X= In, Co-In,...). This preliminary research can quickly lead to the development of new cooling devices or new functionalities, hence the interest shown by certain players in the socio-economic world. To achieve this, we studied the structural and magnetic transformation that occurs in temperature between the high-temperature cubic phase known as « austenite » and the low-temperature phase known as « martensite ». The application of a magnetic field or a uniaxial strain shifts the transformation temperatures respectively towards low temperatures or high temperatures and also makes it possible to induce the transformation from one phase to the other. The multicaloric properties result from the near-transformation-temperature-entropy-variation due to the application of those external perturbations.A particular effort has been made to determine the non-consensual martensitic structure. However, martensite is responsible for shape memory properties and a knowledge of the structure led to the understanding of the martensitic transformation at the basis of elastocaloric properties.The originality of the study wad both on the study of elastocaloric properties and on a combination of theoretical and experimental approaches. Indeed, neutron diffraction studies have led to a better understanding of the crystallographic structures. They were coupled with experimental measurements to determine the entropy variations. Those measurements were based on the implementation of versatile measurement systems generally combining the application of uniaxial strains, temperature scanning (77K - 400K), fine temperature or transport measurements and the possible application of a magnetic field. This experimental versatility has made it possible to fully understand the elastocaloric effect of shape memory ferromagnetic alloys
Guidetti, Giulia. "Cellulose photonics : designing functionality and optical appearance of natural materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277918.
Full textBooks on the topic "Thermal Arrest Memory Effect"
National Aeronautics and Space Administration (NASA) Staff. Low Temperature Creep of Hot-Extruded near-Stoichiometric Niti Shape Memory Alloy. Part 2; Effect of Thermal Cycling. Independently Published, 2019.
Find full textBook chapters on the topic "Thermal Arrest Memory Effect"
Făciu, Cristian. "Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach." In Encyclopedia of Thermal Stresses, 4064–76. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_891.
Full textPan, Fengqun, Xiangjun Jiang, Chong Ni, and Jingli Du. "Experimental Study on Thermal Ratcheting Effect of NiTi Shape Memory Alloy." In Lecture Notes in Electrical Engineering, 326–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9441-7_33.
Full textXu, Liu-Jun, and Ji-Ping Huang. "Theory for Thermal Bi/Multistability: Nonlinear Thermal Conductivity." In Transformation Thermotics and Extended Theories, 247–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_18.
Full textNam, Nguyen Duong, Vu Anh Tuan, and Pham Mai Khanh. "Influence of Thermal-Mechanical Process on the Shape Memory Effect of CuAl9Fe4Ni2 Alloys." In Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), 78–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69610-8_10.
Full textSakon, T., H. Nagashio, K. Sasaki, S. Susuga, D. Numakura, M. Abe, K. Endo, S. Yamashita, H. Nojiri, and T. Kanomat. "Thermal Strain and Magnetization Studies of the Ferromagnetic Heusler Shape Memory Alloys Ni2MnGa and the Effect of Selective Substitution in 3d Elements on the Structural and Magnetic Phase." In Shape Memory Alloys - Processing, Characterization and Applications. InTech, 2013. http://dx.doi.org/10.5772/47808.
Full textShahinpoor, Mohsen. "Review of Magnetic Shape Memory Smart Materials." In Fundamentals of Smart Materials, 151–59. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00151.
Full textShahinpoor, Mohsen. "Review of Shape Memory Alloys (SMAs) as Smart Materials." In Fundamentals of Smart Materials, 136–50. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00136.
Full textShahinpoor, Mohsen. "Shape Memory Polymers (SMPs) as Smart Materials." In Fundamentals of Smart Materials, 160–69. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00160.
Full textR. Knick, Cory. "Fabrication and Characterization of Nanoscale Shape Memory Alloy MEMS Actuators." In Advanced Functional Materials. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92762.
Full textAbdelsabour Fahmy, Mohamed. "A Novel MDD-Based BEM Model for Transient 3T Nonlinear Thermal Stresses in FGA Smart Structures." In Advanced Functional Materials. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92829.
Full textConference papers on the topic "Thermal Arrest Memory Effect"
Yuzer, A. H., S. A. Bassam, F. M. Ghannouchi, and S. Demir. "Memory polynomial with shaped memory delay profile and modeling the thermal memory effect." In 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2013. http://dx.doi.org/10.1109/icecs.2013.6815482.
Full textda Rocha Souto, Cicero, Rosiane Agapito da Silva, Alexandre Cesar de Castro, Alexsandro Jose Virginio dos Santos, and Rebeca Casimiro de Souza. "Thermal cycling effect on a shape memory and piezoelectric heterostructure." In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860759.
Full textLee, Suk-hui, Ki-Jin Kim, Sanghoon Park, K. H. Ahn, and Sung-il Bang. "Thermal memory effect modeling and compensation for GaN Doherty amplifier." In 2014 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2014. http://dx.doi.org/10.1109/ictc.2014.6983320.
Full textMinakawa, Kazunari, Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura. "Experimental study on thermal memory effect in plastic optical fibers." In 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340147.
Full textRodrigez, P., and G. Guénin. "Thermal and Thermomechanical Stability of Cu-Al-Ni Shape Memory Effect." In ESOMAT 1989 - Ist European Symposium on Martensitic Transformations in Science and Technology. Les Ulis, France: EDP Sciences, 1989. http://dx.doi.org/10.1051/esomat/198903004.
Full textZhe Chen, Peng Huang, Haitong Li, Bing Chen, Yi Hou, Feifei Zhang, Bin Gao, Lifeng Liu, Xiaoyan Liu, and Jinfeng Kang. "Optimization of uniformity in resistive switching memory by reducing thermal effect." In 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021321.
Full textKamaya, Masayuki. "Crack Growth Under Thermal Fatigue Loading (Effect of Stress Gradient and Relaxation)." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77547.
Full textYukio Takahashi, Ryo Ishikawa, and Kazuhiko Honjo. "Precise modeling of thermal memory effect for power amplifier using multi-stage thermal RC-ladder network." In 2006 Asia-Pacific Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmc.2006.4429424.
Full textDeak, J. G., A. V. Pohm, and J. M. Daughton. "Effect of Memory Element Resistance-Area-Product and Thermal Environment on Writing of Magneto-Thermal MRAM." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376119.
Full textNavarro y de Sosa, I., A. Bucht, T. Junker, K. Pagel, and W. G. Drossel. "Thermo-mechanical self-adaptive ball screw drive using thermal shape memory effect." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Nakhiah C. Goulbourne and Hani E. Naguib. SPIE, 2013. http://dx.doi.org/10.1117/12.2009599.
Full textReports on the topic "Thermal Arrest Memory Effect"
Yahav, Shlomo, John Brake, and Noam Meiri. Development of Strategic Pre-Natal Cycling Thermal Treatments to Improve Livability and Productivity of Heavy Broilers. United States Department of Agriculture, December 2013. http://dx.doi.org/10.32747/2013.7593395.bard.
Full textMeiri, Noam, Michael D. Denbow, and Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Full text