Dissertations / Theses on the topic 'Thermal and thermomechanical simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Thermal and thermomechanical simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nogales, Tenorio Sergio. "Numerical simulation of the thermal and thermomechanical behaviour of metal matrix composites /." Düsseldorf : VDI-Verl, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017035682&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textJia, Yabo. "Numerical simulation of steady states associated with thermomechanical processes." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEE007.
Full textIn the numerous thermomechanical manufacturing processes such as rolling, welding, or even machining involve either moving loads with respect to the fixed material or moving material with respect to fixed loads. In all cases, after a transient regime which is generally quite short, the thermal, metallurgical, and mechanical fields associated with these processes reach a steady state. The search for these stationary states using the classical finite element method requires the implementation of complex and expensive models where the loads move with respect to the material (or vice versa). The steady-state simulation in one increment has been the subject of much researches over the past thirty years. Methods are now available and some are integrated into calculation codes commercial. Thus, a so-called Moving Reference Frame method proposed by various authors is available in the SYSWELD software. This method makes it possible to calculate the steady-state of thermal, metallurgical, and mechanical states associated with a welding process, by solving a thermal diffusion-convection problem in thermal-metallurgy and by integrating, in mechanics, the constitutive equations of the material along the streamline. Moreover, this method has been used successfully in many applications, it nevertheless has some limitations. Thus the mesh must be structured and the convergence of computations is generally quite slow. In this thesis, we propose to solve the mechanical problem in a frame linked to the solicitations, by relying on a finite element calculation method based on nodal integration and the SCNI (Stabilized Conforming Numerical Integration) technique. This method allows the use of tetrahedron meshes (or 2D triangles) without encountering a locking problem resulting from the plastic incompressibility associated with the von Mises plasticity criterion. Rather than directly calculating the steady-state, the general idea here is to construct the steady-state from a transient analysis by bringing material step by step upstream and by making it exit downstream of a fixed mesh related to the solicitations and of the limited mesh size. The steady-state is therefore only achieved after certain steps of analysis. Apart from a general introduction (Chapter 1) and a state of the art on the existing methods (Chapter 2), we present an approach of simulation of the movement of material within the framework of the classical finite element method on a welding problem (Chapter 3). We also provide relevant thermal boundary conditions for directly calculating the steady-state of temperature distribution. The finite element method based on the nodal integration technique is then described in Chapter 4. The advantages and disadvantages of the method are discussed. The nodal-integration-based finite element is validated by comparing its simulation results with classical finite element methods in large elastoplastic strains, a bending problem, and a thermomechanical simulation of welding. The nodal-integration-based finite element is then developed and applied to simulate material motion (Chapter 5). Three types of movement are considered: translational, circular, and helical. Different methods of field transport are approached and discussed as well as thermomechanical coupling. Perspectives for this work are presented in Chapter 6. The envisaged perspectives aim, on the one hand, to improve the proposed method and on the other hand, to develop the method to simulate other processes. A first application of the material motion method to the simulation of the orthogonal cut is presented there
Pimenta, Paulo Vicente de Cassia Lima. "Thermomechanical simulation of continuous casting process using element based finite-volume method." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13684.
Full textThe continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations
A tÃcnica de lingotamento contÃnuo nas Ãltimas quatro dÃcadas à cada vez mais utilizada na produÃÃo de aÃo semiacabado. A transferÃncia de calor à o principal mecanismo dominante e ocorre em todas as etapas do processo. A qualidade do aÃo no lingotamento està diretamente relacionada à forma que ocorrem as trocas de calor pois as variaÃÃes tÃrmicas produzem carregamentos mecÃnicos assim como as forÃas de contato as quais sÃo geradas por intermÃdio dos rolos e da oscilaÃÃo do molde. Tais fatores podem causar defeitos como fraturas ou trincas no produto final caso as tensÃes e deformaÃÃes resultantes excedam valores crÃticos. O aprimoramento da tÃcnica tem a finalidade de evitar o surgimento de defeitos e reduzir o tempo de produÃÃo. Para isso à fundamental uma boa compreensÃo dos fenÃmenos fÃsicos envolvidos ao longo do processo de solidificaÃÃo. O foco deste trabalho à aplicar a abordagem do EbFVM (Element based Finite-Volume Method) no estudo dos efeitos das tensÃes lineares acopladas unidirecionalmente com a temperatura aplicado ao lingotamento contÃnuo do aÃo 1013D (0,3% de carbono) Nas simulaÃÃes adotou-se algumas simplificaÃÃes com o estado plano de tensÃes e isotropia do material. Descartando-se as forÃas de corpo o contato com os rolos a pressÃo do aÃo lÃquido nas paredes do lingote (pressÃo ferrostÃtica) e o efeito convectivo. Contudo apesar das simplificaÃÃes adotadas este trabalho traz informaÃÃes quantitativas quanto a formaÃÃo do acÃmulo das tensÃes lineares que apontam para regiÃes de possÃveis formaÃÃes de trincas
Rombo, Oskar. "Software Benchmark and Material Selection in an Exhaust Manifold : Thermo-mechanical fatigue simulation of an exhaust manifold in AVL Fire M." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-68662.
Full textSahli, Mehdi. "Simulation and modelling of thermal and mechanical behaviour of silicon photovoltaic panels under nominal and real-time conditions." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD036.
Full textThe work presented in this thesis deals with the development of a numerical multi-physics model, designed to study the optical, electrical and thermal behaviour of a photovoltaic module. The optical behaviour was evaluated using stochastic modelling based on Markov chains, whereas the electrical behaviour was drawn specifically for Silicon based photovoltaic panels using numerical optimization methods. The thermal behaviour was developed in 1D over the thickness of the module, and the multi-physics module was weakly coupled in MATLAB. The behaviour of commercial panels under nominal operation conditions was validated using data declared by the manufacturers. This model was used to perform a parametric study on the effect of solar irradiances in steady state. It was also validated for real use conditions by comparing it to experimental temperature and electrical power output. A thermomechanical study in 2D in ABAQUS/CAE based in the multi-physics model was carried out in nominal operating conditions, as well as in fatigue thermal cycling according to the IEC 61215 Standard to predict the stresses that are imposed on the panel
Feng, Wei. "Caractérisation expérimentale et simulation physique des mécanismes de dégradation des interconnexions sans plomb dans les technologies d’assemblage a trés forte densite d’intégration « boitier sur boitier »." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14014/document.
Full textThe assemblies PoP (Package on Package) can greatly increase the integration density of microelectronic circuits and systems, by vertically combining discrete semiconductor elements. The interconnections of these systems suffer the stresses never reached before. We were able to identify, characterize, model and simulate the potential failure mechanisms of these assemblies and their evolution: • The warpage in the assembly phase and thermomechanical stress of "PoP" are more serious than the individual components. An original analytical model has been built and put online for pre-estimating this warpage. • The hygroscopic and hygromechanical behaviors are simulated and measured by an original method. The assembly "PoP" absorbs more moisture than the sum of the individual components, but its hygromechanical warpage and stress are smaller. • Two types of accelerated aging tests are performed to study the reliability of "PoP" at the board level: the thermal cycling and the testing under current and temperature. In both types of tests, assembly a component "top" on another component "bottom" to form a “PoP” increases the risk of failure. • The microstructure evolution depending on the type of aging is compared by the physical and physico-chemical analysis. The cracks are always located in the interface substrate/balls, which corresponds to the critical areas predicted by the simulations
Guzman, Maldonado Eduardo. "Modélisation et simulation de la mise en forme des composites préimprégnés à matrice thermoplastiques et fibres continues." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI015/document.
Full textPre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, impact resistance and fatigue strength all at lower density than other common materials. In recent years, the automotive industry has shown increasing interest in the manufacturing processes of thermoplastic-matrix composites materials, especially in thermoforming techniques for their rapid cycle times and the possible use of pre-existing equipment. An important step in the prediction of the mechanical properties and technical feasibility of parts with complex geometry is the use of modelling and numerical simulations of these forming processes which can also be capitalized to optimize manufacturing practices.This work offers an approach to the simulation of thermoplastic prepreg composites forming. The proposed model is based on convolution integrals defined under the principles of irreversible thermodynamics and within a hyperelastic framework. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach
Mostallino, Roberto. "Développement de diodes laser émettant à 975nm de très forte puissance, rendement à la prise élevé et stabilisées en longueur d’onde pour pompage de fibres dopées et réalisation de lasers à fibre." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0132/document.
Full textThis PhD addresses the development of high-power laser diodes emitting at 975nm withhigh efficiency and wavelength stabilized using a Bragg grating. This thesis was conducted in the framework of a close partnership between IMS Laboratory, the GIE III-V lab, who is themain French founder of III-V semiconductor devices for electronic and photonic applications,and THALES Research & Technology in Palaiseau. An in-depth characterization and analysiswork has addressed thermal aspects that contribute, in particular, to limit the optical outputpower of a laser diode. In such a context, we have carried out a set of complementary characterizations both at III-V lab and IMS allowing us to provide some corrective solutionsfor technological optimization concerning the etching depth of the grooves that defines the emitting stripe of the laser diode and the nature of the submount acting as a thermocompensator.These solutions have been proposed from optical modelling implemented with a dedicated simulator, property of III-V lab, and thermal and thermomechanical (multiphysics approach) finite element simulations of the overall microassembled structure. All this work has resulted in the fabrication as well as electro-optical and thermal characterizations of three vertical structures namely LOC (Large Optical Cavity), SLOC (Super Large Optical Cavity)and AOC (Asymmetrical Optical Cavity). The LOC and SLOC vertical structures have been processed with a Fabry-Perot cavity and also including a Bragg grating (DFB architecture) while the AOC one was only fabricated with a Fabry-Perot cavity. State-of-the-art results aredemonstrated since in particular an optical power of 8W with an efficiency of 60% has been obtained that can be compared to those recently published by the Ferdinand-Braun Institute.The originality of the work carried out in this PhD has allowed us to receive a grant from the European Laserlab Cluster (The Integrated Initiative of the European Laser Research Infrastructures), to conduct dedicated experiments at the Max-Born Institute (Berlin) in thegroup of Dr. J.W. Tomm. The work aimed to characterize mechanical strain of the laser diode induced by the soldering process. Two vertical structures (SLOC and AOC) were investigated using complementary techniques (microphotoluminescence, time-resolved photoluminescence,photocurrent spectroscopy and pulsed L-I measurements), allowing to quantify the level of residual stress provided by the laser diode mounting process as well as the kinetics of the catastrophic degradation process (COD)
Barth, Nicolas. "Sur la modélisation et la simulation du comportement mécanique endommageable de verres borosilicatés sous sollicitation thermique." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD016/document.
Full textWe study the thermomechanical behavior of vitrified waste packages by multiphysics modeling. The packages are manufactured by the cast of borosilicate glass into stainless steel canisters. The finite element method is used for the thermal computations.In the glass, the finite element analysis is also used to compute the specific volume evolution and the viscoelastic behavior, due to the structural relaxation of glass, as well as the simulation of the damage behavior. These consecutive behavior laws model theinfluence of the initial thermal response. Glass structural relaxation is computed using the TNM-KAHRmodel, which allows us to take into account fundamental phenomena of the glass transition, depending on the results of experimental and simulated thermal treatments. For the solid glass within this relaxation process, the stress may locally increase beyond critical values. The viscoelastic structure simulation is then coupled with continuum damage mechanics where stresses and stiffness are updated in mode I and mode II. We apply this simulation protocol after adopting conditions relative to the case of these manufactured bulky solidifying glass casts. The models then allow us to quantify the cracking surfaces inside the glass fromthe energy dissipated within the damagemodel
Salmon, Fabien. "Simulation aéro-thermo-mécanique des effets du feu sur les parois d'un milieu confiné : application à l'étude des thermo-altérations de la grotte Chauvet-Pont d'Arc." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0041/document.
Full textIn 1994, the discovery of the Chauvet-Pont d'Arc cave (Ardèche, France) revealed singularanthropogenic thermal marks on walls. They are the witnesses of high intensity prehistorical firescarried out deep in the cavity. The thermoluminescence evaluation of the heating ages is consistentwith the earlier period of human occupation between 37,000 and 33,500 years ago. The archaeologistsidentified two kinds of thermo-alterations : colour changes and spallings. The colour changes resultfrom high-temperature chemical reactions in limestone, turning rock red or grey. Ex situ tests showedthat red colour happens after heating at 250oC for ten minutes while at least 350oC is necessary forgrey. Spalling stems from high stresses in rock due to restrained thermal expansion and thermohydricprocesses. In addition, part of the walls near thermo-altérations is still covered with soot. From theseclues, this investigation aims to characterize the fires of the Megaloceros Gallery which is located inthe deep part of the cave. Estimating the amounts of wood, the fires number and the ability tosupply the hearths could help make assumptions about the function of these fires.For the sake of conservation, only simulation can reproduce fires in the cave geometry withoutrequiring any reconstruction. This study is to set up a numerical modelling of fires in confinedgeometries and the induced thermal impacts on walls. A fluid-structure coupling is then developedfrom two free open source codes : OpenFOAM and Cast3m. The former manages the simulation offire scenarios through the FireFOAM tool. The latter handles the thermo-mechanical calculations inthe rock mass. To extend the initial scope of FireFOAM, some numerical models have beenimplemented in the code. This relates to soot deposit, danger assessment, thermocouple correctionand a thermal boundary condition. In addition, some modelling requirements improving the qualityof the results are detailed in the manuscript. The advanced model is then validated on experimentalfires in a former limestone quarry which has dimensions close to the Megaloceros Gallery ones. Thesame fuel (pinus sylvestris) as the one identified in the cave is burnt. The combustion led to similarthermo-alterations as those observed in the Chauvet-Pont d'Arc cave. Spallings and colour changesoccurred on the ceiling and walls of the quarry. The comparison with simulation is carried out thanksto the measurement of temperatures, velocities, soot deposits, gases and particles concentrations.The numerical model is then applied to the simulation of fires in the Megaloceros Gallery geometry.All the impacted areas of this gallery are considered and the scenarios that may have occurred arespecified. This investigation then provides an overview of the fires locations and intensities in thispart of the cave. Moreover, the compatibility with living conditions is indicated for the most powerfulfires. These information could help for archaeologists in the understanding of the functions of these fires
Sardo, Lucas. "Modélisation et simulation numérique de la thermomécanique des écoulements dans les co-malaxeurs." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM044/document.
Full textThe aim of this study was to model molten polymers flow in BUSS type co-kneaders. The BUSS co-kneader is a particular single-screw extruder. It is composed of a rotating screw like standard single screw extruders, but with interrupted flights and mixing pins fixed to the barrel. The screw has also an axial reciprocal movement. It has been used for decades in industry for its mixing capacities, specifically for PVC gelification or polymer compounding with fibres, additives or carbon black. This work is therefore answering to nowadays industrial needs, as developing new products is expensive and time consuming.A 2D time-dependent thermomechanical model based on Hele Shaw approximations was developed and the co-kneader domain was discretized by finite elements. The numerical problem was solved by finite elements and SUPG stabilized finite elements. This model provides, at every point of the calculation domain, the pressure, throughput vectors, shear rates, viscosity as well as temperature.Simulation results provide pressure and temperature orders of magnitude, as well as information on polymer mixing depending on process parameters. A comparison between the model and experimental trials shows a satisfactory agreement in the filled zones
Kakou, Luc Arnaud N'Doua. "Mesures et modélisations multi-physiques des dispositifs GaN pour la co-intégration SiP en technologie FOWLP." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0123.
Full textThe aim of this thesis, which is linked to the SMART3 project of the nano 2022 plan, is to evaluate and develop new 2D and 3D packaging technologies to address the heterogeneous integration of different semiconductor technologies (GaN, GaAs, Si, ...) in order to design fully integrated systems known as ‘System in Package’. The technology used is FO-WLP (Fan Out Wafer Level Packaging). The challenges with this technology require a multiphysics approach and, very often, the co-design of the circuits with the package to combine performance and reliability. My work focused on the thermal and thermomechanical aspects of some test vehicles of the project and on their comparison with thermal and thermomechanical measurements. Multi-scale aspects were also addressed, as we carried out the thermal analysis of a device starting from the transistor, passing through the SiP and the SiP mounted on a PCB. From a thermomechanical point of view, we were interested in the calculation of warpage deformation in SiP. We have successfully compared measurement and simulation on the RIC 4x4 test vehicle
Rodovalho, Francielle da Silva. "Simulação numérica de blocos e prismas de alvenaria em situação de incêndio." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27082018-123952/.
Full textThe structural masonry is a very old building system in which the walls have structural and partition function. The use of this building system is widely spread in Brazil, however, few research programs were carried out on their behavior under fire situation and the country has not yet developed standard normative methods for designing structural masonry subject to fire. Thus the purpose of this research was to verify the performance of concrete blockwork structural masonry submitted to high temperatures through the simulation of prisms. In the Abaqus software the behavior of block and prism subjected to compression at room temperature and of the prism under fire situation with different boundary conditions were simulated. The compression of the block and prism at room temperature was validated until ultimate loads. The temperature rises of the non-exposed faces were well represented through thermal simulations. The material\'s resistance loss was adopted according to the technical literature in the thermomechanical simulations. Based on the analyzed examples it was observed that the prisms behave well regarding the thermal insulation under fire situation, mainly when having mortar coating on both sides. Regarding the mechanical resistance criterion, the numeric results were not validated with experimental ones, however, it was possible to represent the thermal deterioration of the materials.
Thompson, Joseph Andrew. "Thermomechanical behaviour of plasma-sprayed thermal barrier coatings." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621757.
Full textTheodore, Fred. "Préformage de monocristaux de saphir optique : optimisation de la croissance hors fissuration par simulation numérique du problème thermomécanique." Grenoble INPG, 1998. http://www.theses.fr/1998INPG0100.
Full textDu, Yong. "Thermomechanical stress studies for advanced copper metallization and integration." Access restricted to users with UT Austin EID Full text (PDF) UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3031046.
Full textNeumann, Rudolf [Verfasser]. "Two-Scale Thermomechanical Simulation of Hot Stamping / Rudolf Neumann." Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.
Full textSharma, Bed P. "Effect of sonication on thermal, mechanical, and thermomechanical properties of epoxy resin /." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1966551531&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textSharma, Bed Prasad. "Effect of sonication on thermal, mechanical, and thermomechanical properties of epoxy resin." OpenSIUC, 2009. https://opensiuc.lib.siu.edu/theses/113.
Full textTrojanowski, Albin S. "Thermomechanical properties of polymers at high rates of strain." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a2c20a83-094d-4293-8c5f-665640c1ce5a.
Full textCowan, Richard Scott. "Development of tribological design strategies based on a thermomechanical wear transition model." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17976.
Full textGoupee, Andrew. "Methodology for the Thermomechanical Simulation and Optimization of Functionally Graded Materials." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/GoupeeA2005.pdf.
Full textBalboa, lópez Hector. "Simulation of thermomechanical properties of U-PuO2 nuclear fuel under irradiation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX108/document.
Full textThe objective of this doctoral research is to use a numerical approach to study the impact of irradiation damage on the microstructure of the mixed uranium-plutonium oxide fuel (MOX). This numerical approach comprises mainly the use of Molecular Dynamics (MD) using empirical potential. Several empirical potentials for $(U,Pu)O_2$ can be found in the literature. The results of these potentials can exhibit significant differences. For this reason an extensive assessment of the main empirical potential found in the literature had to be performed.Five empirical interatomic potentials were assessed in the approximation of rigid ions and pair interactions for the $(U_{1-y},Pu_y)O_2$ solid solution. Simulations were carried out on the structural, thermodynamics and mechanical properties over the full range of plutonium composition, meaning from pure $UO_2$ to pure $PuO_2$ and for temperatures ranging from 300 K up to the melting point. The best results are obtained by potentials referred as Cooper and Potashnikov. The first one reproduces more accurately recommendations for the thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack propagation, whereas the second one gives brittle behaviour at low temperature.From our results from the empirical potentials assessment, we can move to the radiation damage using only two potentials (Cooper and Potashnikov). In order to know the main source of defect during irradiation, MD displacement cascades were simulated. This revealed the damage created due to varying projectile energies. In addition, the Frenkel pair accumulation method was chosen to investigate the dose effect. This method circumvents the highly computing time demanding accumulation of displacement cascade by directly creating their final states, i.e. mainly point defects. Overall, results obtained with both potentials show the same trend. However, kinetics of point defect recombination are significantly slower with Cooper potential implying creation of small disordered region with high energy displacement cascades. The evolution of the primary damage with increasing dose follows the same steps as those found previously in pure $UO_2$. First, point defects are created. Subsequently, they cluster and form small Frank loops, which in turn transform and grow into unfaulted loops. We demonstrate also that increasing temperatures accelerate the production of dislocations shifting their creation to lower doses. The effect of the plutonium content is also evidenced, especially with Cooper potential. It shows that the dislocation density decreases when the plutonium content increases.Although, MD has been described as a molecular microscope due to its ability to discribe accuratily systems of atoms, it has a large drawback that is the short time steps of the order of femto-seconds needed to resolve the atomic vibrations. This limits the time typically few microsecond. In order to invetigate processess, such as, cation diffusion and rare-event annihilation of defects after cascaces, another computational tool is required. Atomistic or object kinetic Monte Carlo (KMC) techniques can run for longer timescales than MD. However, for KMC to work accurately, all of the possible inter-state transition mechanisms and their associated rates need to be known a priori. For this reason, the adaptive kinetic Monte Carlo (AKMC) is chosen to overcome these limitations. This method determines the available transition states during simulation. In this way, it takes the system into unforeseen states via complex mechanisms. The power and range of this tool proved to be efficient to discover cation Frenkel pair recombination over a longer periods of time than MD
Arqam, Mohammad. "Thermomechanical analysis of compact high-performance electric swashplate compressor." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/410159.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Meinshausen, Lutz [Verfasser]. "Modeling the SAC microstructure evolution under thermal, thermomechanical and electrical constraints / Lutz Meinshausen." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1067587780/34.
Full textShayed, M. A., R. D. Hund, and Ch Cherif. "Effect of thermal-resistant polymeric coatings on thermomechanical and topographical properties of glass fiber." Sage, 2015. https://tud.qucosa.de/id/qucosa%3A35611.
Full textCalcaterra, Jeffrey Ronald. "Life prediction evaluation and damage mechanism identification for SCS-6/Timetal 21S composites subjected to thermomechanical fatigue." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12548.
Full textAgarwal, Anshul. "Thermal adaptive implicit reservoir simulation /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textNallathambi, Ashok Kumar [Verfasser], Eckehard [Akademischer Betreuer] Specht, and Albrecht [Akademischer Betreuer] Bertram. "Thermomechanical simulation of direct chill casting / Ashok Kumar Nallathambi ; Eckehard Specht, Albrecht Bertram." Magdeburg : Universitätsbibliothek, 2010. http://d-nb.info/1151571539/34.
Full textAhmer, Zeeshan. "An investigation on thermomechanical behaviour of a tool steel X38CrMoV5." Paris, ENMP, 2011. http://www.theses.fr/2011ENMP0075.
Full textHot work tool steel X38CrMoV5-47HRC is mainly used in industrial manufacturing processes such as high pressure die casting, hot Forging, stamping and rolling etc. The tools should comprise high fatigue strength as well as high toughness to defy thermal and mechanical shocks. The tool's Surface is principally ruined by the cyclic and progressive process under ephemeral temperature i. E. The process of non-isothermal fatigue. The appropriate constitutive laws are therefore required to predict the behaviour of material under non-isothermal conditions. This thesis depicts a contribution to predict the mechanical behaviour of X38CrMoV5-47HRC by numerical simulations using constitutive behaviour models. Assessment of the robustness and limitations of a Chaboche type thermoelastoviscoplastic model is carried out under several different test conditions starting from several uniaxial tests (LCF and TMF) to complex loading conditions with variable transient temperature range and variable amplitude of mechanical strain. After characterization of the model under the said conditions, its parameters have been re-identified in order to update the model to work under complex loading conditions. Keeping in view the model's limitations, further directions are also discussed in order to improve the model in terms of its application under severe loading conditions
Hegde, Shashikant. "Enhance thermomechanical reliability of microsystems packaging through new base substrate and dielectric materials." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17141.
Full textGennick, Kendall. "Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites." Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8410.
Full textDuring the consolidation phase, reinforcement particles of Metal Matrix Composites (MMC's) tend to be non uniformly distributed. The result is that the material properties of the composite materials are not as good as those originally desired. Through large amounts of straining, homogeneity can be achieved. Finite element models of MMC's undergoing different thermomechanical processes (TMP's) to true strains of approximately 1.2 were generated. The models consist of particle clusters within the particle-depleted matrix. The particle clusters were modeled by either a smeared model in which the particles refine the grains in the cluster, or a discrete model of the particles within clusters. The smeared and discrete models qualitatively agreed with each other. The results suggest that the best TMP to reach a state of reinforcement particle homogeneity was a hot worked, low strain rate TMP
Rolseth, Anton, and Anton Gustafsson. "Implementation of thermomechanical laser welding simulation : Predicting displacements of fusing A AISI304 T-JOINT." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19946.
Full textMouiya, Mossaab. "Thermomechanical properties of refractory materials, influence of the diffuse microcracking." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0066.
Full textRefractory materials are widely used in high-temperature applications but are not always prone to resist severe thermal shock. To address this problem, microstructure incorporating pre-existing microcracks are already well known to improve thermal shock resistance. Nevertheless, such damaged microstructure needs a better understanding to optimize their design without compromising material integrity. In such context, Aluminum Titanate (Al₂TiO₅, AT) exhibiting a great thermal expansion anisotropy, constitutes an ideal model system for creating a tailored microcracks network in order to improve flexibility and fracture behavior. This thesis investigates the thermomechanical properties of developed AT-based refractory materials, including polycrystalline AT and alumina/AT composites, with emphasis on the relationship between microstructure and macroscopic properties. In both materials, pre-existing microcracks play a key role on Young's modulus, thermal expansion behavior, tensile stress-strain response, fracture energy, and thus thermal shock resistance. A significant hysteretic effect on Young's modulus and thermal expansion as a function of temperature indicates microcracks closure-reopening mechanisms. Uniaxial tensile tests revealed nonlinear stress-strain laws, impacting fracture energy and thermal shock resistance. In particular, incremental tensile tests at 850 °C showed contrasting behaviors during heating and cooling, attributed to thermal history. Composite materials with AT inclusions (0 - 10 wt.%) embedded in an alumina matrix exhibit diffuse microcracking due to thermal expansion mismatch. These composites exhibited reduced Young's modulus, highly nonlinear stress-strain laws, and higher strain to rupture at room temperature. Thermal shock tests performed by the innovative ATHORNA device for all studied AT-based materials confirmed their resilience under high thermal gradients. These findings provide valuable insights for the design of future advanced refractory materials with improved thermal shock resistance
Streiff, Matthias Streiff Matthias. "Opto-electro-thermal VCSEL device simulation /." [S.l.] : [s.n.], 2004. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15464.
Full textB, M. Shiva Kumar, and kathiravan Ramanujam. "Thermal Simulation of Hybrid Drive System." Thesis, Linköpings universitet, Fluida och mekatroniska system, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71695.
Full textFux, Volker. "Thermal simulation of ventilated PV-facades." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/7852.
Full textWang, Zhimao. "Experimental Study and Modelling of Thermomechanical Features and Heterogeneity of the Cr203-NiCr Systems." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0020.
Full textResidual stresses have been determined both in metal and oxide in different oxide/metal systems. Measurements and analyses of stress in the oxide layer have been especially performed in-situ during thermal loadings at high temperature thanks to synchrotron X-ray diffraction in reflexion mode. By comparing the stresses as a function of time with the numerical solution, in the least squares sense, the creep parameter for the oxide (Jox) and the growth stress parameter for the oxide (Dox) were optimized. Stress measurements in the substrate at room temperature were performed by synchrotron X-ray diffraction in transmission mode. Most of the stress distribution is between 0 MPa and 500 MPa and it shows a gradient distribution, which is in the area near the interface. For this “full” thermomechanical model, it has been also proposed to perform simulations with a numerical approach using ABAQUS. The result of these simulations is compared to the experimental observations, which shows a good agreement for the stresses especially as a function of time for the oxide layer
Luo, Haoming. "High frequency thermomechanical study of heterogeneous materials with interfaces." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI130.
Full textHeat transfer is actually intimately related to the sound propagation (acoustic transfer) in materials, as in insulators and semi-conductors the main heat carriers are acoustic phonons. The concept of the presence of interfaces has been largely exploited for efficiently manipulating phonons from long-wavelength to nanometric wavelengths, i.e., frequencies in THz regime, responsible for thermal transport at room temperature. In this thesis, the finite element method is used to perform transient analysis of wavepacket propagation in different mediums. I started with a parametric study of attenuation of acoustic wave-packets in a 2D semi-infinite elastic system with periodic circular interfaces. Three key parameters are investigated, including rigidity contrast, interface density and phonon wavelength. Different energy transfer regimes (propagative, diffusive, and localized) are identified allowing to understand the phonon contribution to thermal transport. Besides the circular interfaces, mechanical response and acoustic attenuation for different types of interfaces are also investigated, such as Eshelby’s inclusion, dendritic shape inclusion and porous materials with ordered/disordered holes. In order to extend the study to amorphous materials, I also considered a heterogeneous medium with random rigidities distributed in space according to a Gaussian distribution based on the theory of heterogeneous shear elasticity of glasses. Finally yet importantly, viscoelastic constitutive laws are proposed to take into account the frequency-dependent intrinsic phonon attenuation in glasses, with the aim of reproducing such intrinsic attenuation using a homogeneous viscous medium. Finite element simulation confirms that a continuum model may strictly follow the atomistic attenuation (G) for a well-calibrated macroscopic linear viscoelastic constitutive law. Compared with the experimental data in a-SiO2, our second constitutive law reproduces qualitatively and quantitatively the three regimes of acoustic attenuation versus frequency : successively Γ∝ω^2,ω^4,ω^2
Li, Zhenhua. "Modeling and Simulation of Autonomous Thermal Soaring with Horizon Simulation Framework." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/442.
Full textBajracharya, Susan. "Computer simulation of thermal behavior of atriums." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq20864.pdf.
Full textGeorges, Cédric. "Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processes." Université catholique de Louvain, 2008. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-08232008-100716/.
Full textMenezes, Alexandre Jorge Rocha. "Analysis of the behavior of concrete thermomechanical of low resistance in low ages." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16161.
Full textGreat works of infrastructure such as hydroelectric plants require, in it building, large concrete volumes classified as mass concrete structures. These works of power generation are strategic and fundamental for the development of a nation. However, during construction and throughout its life they may have pathological manifestations that compromise its stability. One of the most common problems in this type of structure is cracking caused by heat generated due to the exothermic reaction of cement hydration. Therefore, we had to analyze the thermal behavior of concrete, concrete with similar consistency and resistance like the concrete utilized in construction dam, and analyze how the type of cement utilized and its contents affects these parameters. In addition, we studied the evolution of compressive strength and dynamic modulus of elasticity as the cement hydrates. Finally, we compared the thermal performance of concretes produced with the results obtained from a commercial software. To carry out the experiment, concrete blocks were produced of 1,5m with cements CP II E 32 RS and CP IV 32 with consumption 241,2 kg/m and 330,0 kg/m for thermal analysis, besides cylindrical specimens for the remaining analyzes. The results showed that the thermal behavior of concrete has a small dependence on the type of cement, however the cement content affects too much this behavior, and the cement CP IV 32 showed higher thermal variations. It was also observed that the development of compressive strength is strongly dependent on the cement content, but it has low dependency on the type of cement. Computer modeling presented satisfactory results when it was compared to results of the thermal evolution blocks.
As grandes obras de infraestrutura como as centrais hidroelÃtricas requerem na sua construÃÃo grandes volumes de concreto, sendo classificadas como estruturas de concreto massa. Essas obras de geraÃÃo de energia sÃo estratÃgicas e fundamentais para o desenvolvimento de uma naÃÃo. Entretanto, durante sua construÃÃo e ao longo de sua vida Ãtil estas podem apresentar manifestaÃÃes patolÃgicas que comprometem sua estabilidade. Um dos problemas mais comuns nesse tipo de estrutura à a fissuraÃÃo causada pela energia tÃrmica gerada devido à reaÃÃo exotÃrmica de hidrataÃÃo do cimento. Diante disso, buscou-se analisar como se dà o comportamento tÃrmico de concretos utilizados para a construÃÃo de corpo de barragem, alÃm de analisar como o tipo de cimento utilizado e o seu teor afetam a variaÃÃo de temperatura da massa de concreto e os problemas causados por essa variaÃÃo. Buscou-se ainda analisar a evoluÃÃo da resistÃncia à compressÃo e do mÃdulo de elasticidade dinÃmico à medida que o cimento se hidratava. Por fim, comparou-se o comportamento tÃrmico dos concretos produzidos com os resultados obtidos por meio de um software comercial. Para a realizaÃÃo da parte experimental produziu-se blocos de concretos de 1,5 metros cÃbicos com cimentos CP II-E 32 RS e CP IV 32 com consumo de 241,2 kg/m e 330,0 kg/m para anÃlise tÃrmica, alÃm da moldagem de corpos de prova cilÃndricos para as demais anÃlises. Os resultados apontaram que o comportamento tÃrmico do concreto apresenta uma pequena dependÃncia do tipo de cimento. Entretanto, o teor de cimento afeta fortemente esse comportamento, sendo o cimento CP IV 32 o que apresentou maiores variaÃÃes tÃrmicas. Observou-se tambÃm que a evoluÃÃo da resistÃncia à compressÃo à fortemente dependente da quantidade de cimento, mas apresenta baixa dependÃncia do tipo de cimento. A modelagem computacional apresentou resultados satisfatÃrios quando comparado aos resultados da evoluÃÃo tÃrmica dos blocos produzidos.
Somarathne, Shini. "Dynamic thermal modelling using CFD." Thesis, Brunel University, 2003. http://bura.brunel.ac.uk/handle/2438/5523.
Full textWilliams, Sharlene Renee. "Influence of Electrostatic Interactions and Hydrogen Bonding on the Thermal and Mechanical Properties of Step-Growth Polymers." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/29397.
Full textPh. D.
Samadov, Hidayat. "Analyzing Reservoir Thermal Behavior By Using Thermal Simulation Model (sector Model In Stars)." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613336/index.pdf.
Full texthowever no significant changes were observed due to iteration number differences and refined grids. These latter cases showed clearly that variations of temperature don&rsquo
t occur only due to geothermal gradient, but also pressure and saturation changes. On the whole, BHT can be used to get data ranging from daily gas-oil ratios to interwell connection if analyzed correctly.
Tao, Jiyue, and Asnaf Aziz. "Simulation of thermal stresses in a disc brake." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Produktutveckling - Simulering och optimering, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-19163.
Full textGu, Xiaozheng. "Computer simulation of microvascular exchange after thermal injury." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26703.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Yeandel, Stephen. "Atomistic simulation of thermal transport in oxide nanomaterials." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687351.
Full textReichl, John Vincent. "Inverter Dynamic Electro-Thermal Simulation with Experimental Verification." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/36100.
Full textMaster of Science