Academic literature on the topic 'Thermal and Thermokinetic Characterization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal and Thermokinetic Characterization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal and Thermokinetic Characterization":

1

Erişkin, Selinay Y., Fatma Ç. Telli, Yeliz Yıldırım, and Yeşim Salman. "Synthesis, Characterization, and Thermokinetic Analysis of New Epoxy Sugar Derivative." Journal of Chemistry 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/737953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The synthesis of 5,6-O-isopropylidene-1,2-O-(R)-trichloroethylidene-α-D-glucofuranose (compound1) and 5,6-O-isopropylidene-1,2-O-(R)-trichloroethylidene-3-O-(2′,3′-epoxypropan-1′-yl)-α-D-glucofuranose (compound2) was carried out. The synthesized compounds1and2were characterized by nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TG). The FTIR and1H NMR spectra showed that the epoxy group in compound2was attached by means of a nucleophilic substitution reaction. The activation energies for thermal degradation of compounds1and2were calculated from their TG data by using the Kissinger-Akahira-Sunose (KAS) and Tang methods.
2

Al-Maydama, Hussein, Tajedin Yahya Al-Ansi, Yasmin M. S. Jamil, and A. H. Ali. "Biheterocyclic ligands: synthesis, characterization and coordinating properties of bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes with transition metal ions and their thermokinetic and biological studies." Ecletica Quimica 33, no. 3 (September 29, 2008): 29–42. http://dx.doi.org/10.26850/1678-4618eqj.v33.3.2008.p29-42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
3

Aversa, Raffaella, Laura Ricciotti, Valeria Perrotta, and Antonio Apicella. "Thermokinetic and Chemorheology of the Geopolymerization of an Alumina-Rich Alkaline-Activated Metakaolin in Isothermal and Dynamic Thermal Scans." Polymers 16, no. 2 (January 11, 2024): 211. http://dx.doi.org/10.3390/polym16020211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)3]]− and aluminate [Al(OH)4]− ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize into an irregular crosslinked aluminosilicate network. The novelty of the approach resides in the concurrent thermo-calorimetric (differential scanning calorimetry, DSC) and rheological (dynamic mechanical analysis, DMA) characterizations of the liquid slurry during the transformation into a gel and a structural glassy solid. Tests were run either in temperature scan (1 °C/min) or isothermal (20 °C, 30 °C, 40 °C) cure conditions. A Gaussian functions deconvolution method has been applied to the DSC multi-peak thermograms to separate the kinetic contributions of the oligomer’s concurrent reactions. DSC thermograms of all tested materials are well-fitted by a combination of three overlapping Gaussian curves that are associated with the initial linear low-molecular-weight (Mw) oligomers (P1) formation, oligomers branching into alumina-rich and silica-rich gels (P2), and inter- and intra-molecular crosslinking (P3). The loss factor has been used to define viscoelastic behavioral zones for each DMA rheo-thermogram operated in the same DSC thermal conditions. Macromolecular evolution and viscoelastic properties have been obtained by pairing the deconvoluted DSC thermograms with the viscoelastic behavioral zones of the DMA rheo-thermograms. Two main chemorheological behaviors have been identified relative to pre- and post-gelation separation of the viscoelastic liquid from the viscoelastic solid. Each comprises three behavioral zones, accounting for the concurrently occurring linear and branching oligomerization, aluminate-rich and silica-rich gel nucleations, crosslinking, and vitrification. A “rubbery plateau” in the loss factor path, observed for all the testing conditions, identifies a large behavioral transition zone dividing the incipient gelling liquid slurry from the material hard setting and vitrification.
4

Paglia, L., V. Genova, M. P. Bracciale, C. Bartuli, F. Marra, M. Natali, and G. Pulci. "Thermochemical characterization of polybenzimidazole with and without nano-ZrO2 for ablative materials application." Journal of Thermal Analysis and Calorimetry 142, no. 5 (October 28, 2020): 2149–61. http://dx.doi.org/10.1007/s10973-020-10343-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractDuring the ballistic atmospheric re-entry, a space vehicle has to withstand huge thermo-mechanical solicitations because of its high velocity and the friction with the atmosphere. According to the kind of the re-entry mission, the heat fluxes can be very high (in the order of some MW m−2) ;thus, an adequate thermal protection system is mandatory in order to preserve the structure of the vehicle, the payload and, for manned mission, the crew. Carbon phenolic ablators have been chosen for several missions because they are able to dissipate the incident heat flux very efficiently. Phenolic resin presents satisfying performance but also environmental drawbacks. Thus, a more environmental-friendly solution was conceived: a high-performance thermoplastic material, polybenzimidazole (PBI), was employed instead of phenolic resin. In this work PBI-ablative material samples were manufactured with and without the addition of nano-ZrO2 and tested with an oxyacetylene flame. For comparison, some carbon-phenolic ablators with the same density were manufactured and tested too. Thermogravimetric analysis on PBI samples was carried out at different heating rates, and the obtained TG data were elaborated to evaluate the activation energy of PBI and nano-filled PBI. The thermokinetics results for PBI show an improvement in thermal stability due to the addition of nano-ZrO2, while the oxyacetylene flame test enlightens how PBI ablators are able to overcome the carbon phenolic ablators performance, in particular when modified by the addition of nano-ZrO2.
5

Petrova-Burkina, O. A., V. V. Rubanik Jr., and V. V. Rubanik. "Thermokinetic EMF during a reverse phase transition in titanium nickelide as a way of information recording." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 66, no. 3 (October 12, 2021): 329–34. http://dx.doi.org/10.29235/1561-8358-2021-66-3-329-334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The external factors that influence on the thermokinetic EMF value in the Ti – 50 at.% Ni samples were determined. A method for setting thermokinetic EMF in certain sections of the TiNi wire was developed. The thermokinetic EMF value was measured directly using a digital millivoltmeter MNIPI V7-72. The sections of the Ti – 50 at.% Ni wire samples were subjected to tensile tests on a tensile machine IP 5158-5. On the basis of calorimetric studies, the kinetics of martensitic transformations was investigated. It was found that the direct phase transition affects the thermokinetic EMF value of the Ti – 50 at.% Ni during thermal cycling. Thermal cycling in the temperature range of the complete martensitic transformation causes the thermokinetic EMF value reduction by 0.16 mV by the 15th temperature cycle. The degradation of the thermokinetic EMF value by 0.04 mV took place during thermal cycling in the temperature range of the incomplete martensitic transformation by the 70th thermal cycle. The thermokinetic EMF value was restored to 0.22 mV with increasing temperature to 240 °С, as in the case of annealing at temperatures of 400÷800 °С. The thermokinetic EMF value is associated with a change in physical and mechanical properties of the alloy during thermal cycling. It is characterized by a change in stages of the phase transition and a shift of the characteristic temperatures. On the basis of the obtained experimental data, a method was proposed for a purposeful setting of extended TiNi wire sections with the thermokinetic EMF value from 0 to 0.6 mV, using different methods of influence on its value (thermal cycling, deformation, temperature change in heating zone). The proposed technical solution can be used as a method for information recording.
6

Petrova-Burkina, O. A., V. V. Rubanik, Jr., V. V. Rubanik, and T. V. Gamzeleva. "Influence of heat treatment on thermokinetic EMF during reverse phase transition in titanium nickelide." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, no. 4 (December 31, 2020): 413–21. http://dx.doi.org/10.29235/1561-8358-2020-65-4-413-421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The effect of duration and annealing temperature in the range of 400–800 °C on the thermokinetic EMF value in titanium nickelide, the composition of which is close to the equi-atomic one, at a reverse phase transition was investigated. Thermokinetic EMF was measured directly using a digital millivoltmeter MNIPI V7-72. The phase and elemental composition of the alloy and the kinetics of thermoelastic phase transformations have been checked by X-ray diffraction and calorimetric studies, and X-ray microanalysis. Annealing at temperatures of 500 and 800 °C leads to an increase in the thermokinetic EMF value from 0.22 to 0.25 mV. Removal of the oxide layer from the sample surface annealed at 700 °C for 0.5 h leads to an increase in the thermokinetic EMF value from 0.22 to 0.26 mV for the 1-st thermal cycle. It was found that thermal cycling causes a decrease in the thermokinetic EMF values down to 0.98 mV for the 20th thermal cycle for the samples without an oxide layer and to 0.3 mV for the samples with an oxide layer, respectively. With the increase in annealing time up to 20 h at 700 °C, the decrease in the thermokinetic emf value to 0.16 mV was observed. The thermokinetic EMF value after heat treatment is associated with changes in the physical and mechanical properties of the alloy and characterized by a shift of the characteristic temperatures of the phase transition. The research results are important for understanding the physics of thermoelectric phenomena in shape memory alloys during nonstationary heating and can be used both to control the homogeneity of their physical and mechanical properties and to design smart actuators and sensors, mechanisms of control systems.
7

Petrova-Burkina, O. A., V. V. Rubanik, Jr., V. V. Rubanik, and T. V. Gamzeleva. "Influence of heat treatment on thermokinetic EMF during reverse phase transition in titanium nickelide." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, no. 4 (December 31, 2020): 413–21. http://dx.doi.org/10.29235/1561-8358-2020-65-4-413-421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The effect of duration and annealing temperature in the range of 400–800 °C on the thermokinetic EMF value in titanium nickelide, the composition of which is close to the equi-atomic one, at a reverse phase transition was investigated. Thermokinetic EMF was measured directly using a digital millivoltmeter MNIPI V7-72. The phase and elemental composition of the alloy and the kinetics of thermoelastic phase transformations have been checked by X-ray diffraction and calorimetric studies, and X-ray microanalysis. Annealing at temperatures of 500 and 800 °C leads to an increase in the thermokinetic EMF value from 0.22 to 0.25 mV. Removal of the oxide layer from the sample surface annealed at 700 °C for 0.5 h leads to an increase in the thermokinetic EMF value from 0.22 to 0.26 mV for the 1-st thermal cycle. It was found that thermal cycling causes a decrease in the thermokinetic EMF values down to 0.98 mV for the 20th thermal cycle for the samples without an oxide layer and to 0.3 mV for the samples with an oxide layer, respectively. With the increase in annealing time up to 20 h at 700 °C, the decrease in the thermokinetic emf value to 0.16 mV was observed. The thermokinetic EMF value after heat treatment is associated with changes in the physical and mechanical properties of the alloy and characterized by a shift of the characteristic temperatures of the phase transition. The research results are important for understanding the physics of thermoelectric phenomena in shape memory alloys during nonstationary heating and can be used both to control the homogeneity of their physical and mechanical properties and to design smart actuators and sensors, mechanisms of control systems.
8

Strobel, Hans. "Thermokinetic compartment models of thermal decomposition reactions." Thermochimica Acta 112, no. 2 (March 1987): 179–86. http://dx.doi.org/10.1016/0040-6031(87)88275-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muravyev, Nikita V., Giorgio Luciano, Heitor Luiz Ornaghi, Roman Svoboda, and Sergey Vyazovkin. "Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo." Molecules 26, no. 12 (June 18, 2021): 3727. http://dx.doi.org/10.3390/molecules26123727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.
10

Delgado R, E. J. "A Thermal Engine Driven by a Thermokinetic Oscillator." Journal of Physical Chemistry 100, no. 26 (January 1996): 11144–47. http://dx.doi.org/10.1021/jp9514234.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal and Thermokinetic Characterization":

1

Flity, Hassan. "Modélisation de la dégradation et combustion du bois de construction." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'utilisation du bois dans la construction présente de nombreux avantages, mais aussi des risques en termes de sécurité incendie. La littérature regorge d'études, qu'elles soient expérimentales ou numériques, sur le comportement au feu du bois. Cependant, les résultats, divers et variés, ne permettent pas d'identifier un comportement intrinsèque au bois, et le cadre réglementaire doit se résoudre à de nombreuses hypothèses simplificatrices. L'objectif de ce travail de thèse est d'étudier la dégradation thermique du bois à l'échelle du cône calorimètre. L'originalité de l'étude repose sur l'adoption d'une démarche à complexité croissante, l'utilisation d'une métrologie méticuleuse et sur une caractérisation la plus complète possible des propriétés des échantillons de bois étudiés. La dégradation implique de nombreux processus qui interagissent entre eux, tels que le séchage, la pyrolyse et la combustion avec ou sans flamme, entraînant des transferts de chaleur et de masse. Vu la complexité d'étudier tous ces phénomènes simultanément, la stratégie adoptée a consisté à séparer autant que faire se peut les différents phénomènes par le biais de modèles et d'expériences spécifiques. Pour s'affranchir du problème du séchage et des transferts hydriques, l'ensemble du travail a été réalisé sur du bois anhydre. Dans un premier temps, des méthodes de caractérisation spécifiques ont été utilisées afin de déterminer les propriétés thermiques du bois et du charbon. Ces expériences ont permis d'établir des lois de comportement pour certaines de ces propriétés, facilitant ainsi leur intégration dans un modèle. Ensuite, une campagne expérimentale a été réalisée sur le bois à l'échelle matière en utilisant des techniques telles que l'analyse thermogravimétrique et la calorimétrie différentielle de balayage, sous atmosphère inerte. À cette échelle, le bois est thermiquement mince, ce qui a permis de développer un modèle cinétique capable de prédire la perte en masse, la vitesse de perte en masse et la chaleur absorbée ou générée par le bois lors de la pyrolyse, en fonction de la température. Ensuite, une campagne expérimentale a été réalisée sur des échantillons de bois à l'échelle du cône calorimètre sous atmosphère inerte afin de valider le modèle de pyrolyse 3D développé pour la prédiction de la pyrolyse du bois, en l'absence de combustion, lorsque celle-ci est principalement pilotée par les transferts thermiques dans le matériau. Des essais sous air ont enfin été réalisés en vue d'une modélisation globale de la combustion du bois anhydre, nécessitant une caractérisation précise de la combustion du charbon et de l'apport de chaleur associé et du flux de chaleur apporté par la flamme
The use of wood in construction offers numerous advantages, but also poses fire safety risks. Several studies available in the literature, whether experimental or numerical, have investigated the fire behavior of wood. However, the diverse and varied results do not allow the identification of the intrinsic behavior of wood, and regulatory frameworks have to rely on numerous simplifying assumptions. The objective of this thesis is to study the thermal degradation of wood at the cone calorimeter scale. The uniqueness of the study lies in the adoption of an increasingly complex approach, the use of meticulous metrology, and the most comprehensive characterization of the properties of the wood samples under investigation. Degradation involves numerous interacting processes such as drying, pyrolysis, and combustion with or without flames, resulting in heat and mass transfer. Given the complexity of studying all these phenomena simultaneously, the strategy adopted was to separate the different phenomena as much as possible through models and specific experiments. In order to overcome the problem of drying and hydric transfer, all the work was carried out on dry wood. First, specific characterization methods were used to determine the thermal properties of wood and charcoal. These experiments helped to establish behavioral laws for some of these properties, facilitating their integration into a model. Subsequently, an experimental campaign was conducted at the material scale of wood using techniques such as thermogravimetric analysis and differential scanning calorimetry under an inert atmosphere. At this scale, wood is thermally thin, which allowed the development of a kinetic model capable of predicting mass loss, mass loss rate, and heat absorbed or generated by wood during pyrolysis as a function of temperature. Next, an experimental campaign was carried out on wood samples at the scale of the cone calorimeter in an inert atmosphere to validate the 3D pyrolysis model developed to predict wood pyrolysis in the absence of combustion, driven primarily by heat transfer within the material. Finally, tests in an air environment were conducted for a comprehensive modeling of dry wood combustion, which requires a precise characterization of char combustion, the associated heat generated, and the heat flux supplied by the flame
2

De, Indrayush. "Thermal characterization of nanostructures using scanning thermal microscopy." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0563/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La caractérisation thermique est cruciale pour la conception et le développement d'applications critiques dans divers domaines. Elle trouve son utilisation dans la détection de défauts et de points chauds dans la fabrication de semi-conducteurs, l'imagerie sous-sol ainsi que la recherche de transport thermique et de charge à des longueurs inférieures à 100 nm. La capacité de comprendre et de contrôler les propriétés thermiques des nanostructures à un niveau de sous-micron est essentielle pour obtenir les performances souhaitées. Pour atteindre cet objectif, la microscopie thermique à balayage (SThM) est très bien adaptée pour cartographier la conductivité thermique à la surface des matériaux et des appareils à l'échelle nanométrique.SThM est une technique d'imagerie "champ proche". C'est une méthode de contact, la sondeétant en contact avec la surface à une force contrôlée. STHM utilise une structure cantilever identique à celle des sondes utilisées dans un Microscope à Force Atomique (AFM). La principale différence est le fait qu'un capteur thermique est intégré à la pointe de la sonde. En outre, ce capteur peut également être utilisé comme chauffage dans le cas d'éléments thermorésistants tels que Pt ou Pd. Par conséquent, le SThM est le résultat d'un AFM équipé d'une sonde thermique. Cet instrument fournit une résolution sous-micromètre dans la résolution spatiale, c'est-à-dire plus que la résolution des techniques optiques dans la gamme de longueurs d'onde visible. La résolution classique qui est réalisée de nos jours est de l'ordre de moins de 100nanomètres alors que celle obtenue avec la première sonde Wollaston était environ 10 fois plus élevée.Par conséquent, mesurer la température et les propriétés thermiques de la matière à la microscales ont deux objectifs difficiles qui ont monopolisé l'énergie et le temps de nombreux chercheurs partout dans le monde depuis plusieurs décennies. Ces deux objectifs ne sont pas similaires. Tout d'abord, la mesure d'une température dans un domaine dont la dimension caractéristique est inférieure au micromètre semble moins difficile que mesurer la conductivité thermique d'un matériau à cette échelle. [...]
The objective of this thesis is to master quantitative aspects when using nearfield thermal microscopy by using the scanning thermal microscopy technique (SThM). We start by taking an in-depth look into the work performed previously by other scientist and research organizations. From there, we understand the progress the SThM probes have made through the decades, understand the probe sensitivity to the range of conductivity of the materials under investigation, verify the resistances encountered when the probe comes in contact with the sampl and the applications of SThM.Then we look into the equipment necessary for performing tests to characterize material thermal properties. The SThM we use is based on atomic force microscope (AFM) with a thermal probe attached at the end. The AFM is described in this work along with the probes we have utilized.For the purpose of our work, we are only using thermoresistive probes that play the role of the heater and the thermometer. These probes allow us to obtain sample temperature and thermalconductivity. We use two different types of thermal probes – 2-point probe and 4-point probe with SiO2 or with Si3N4 cantilever. Both the probes are very similar when it comes to functioning with the major difference being that the 4-point probe doesn’t have current limiters. Then, we present the use of recent heat-resistive probes allowing to reach a spatial resolution of the orde rof 100 nm under atmosphere and of 30 nm under vacuum. These probes can be used in passive mode for measuring the temperature at the surface of a material or component and in activemode for the determination of the thermal properties of these systems. Using thermoresistive probes means that no specialized devices are necessary for operation. Using simple commercialsolutions like simple AC or DC current and Wheatstone bridge are sufficient to provide basic thermal images. In our case we have also utilized other industrial devices and a home madeSThM setup to further improve the quality of measurement and accuracy. All the elements of the experimental setup have been connected using GPIB and that have been remotely controlled from a computer using a code developed under Python language. This code allows to make the frequency dependent measurement as well as the probe calibration. [...]
3

Li, Yifan Li. "NANOSCALE THERMAL CHARACTERIZATION BY SCANNING THERMAL MICROSCOPY (STHM)." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron159057422807603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shope, David Allen 1958. "Thermal characterization of VLSI packaging." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With electronic packaging becoming more complex, simple hand methods to model the thermal performance of the package are insufficient. As computer aided modeling methods came into use, a test system was developed to verify the predictions produced by such modeling methods. The test system is evaluated for operation and performance. Further, the premise of this type of test (the accurate calibration of packaged temperature-sensitive-parameter devices can be done) is investigated using a series of comparative tests. From this information, causes of possible/probable errors in calibration are identified and related to the different methodologies and devices used. Finally, conclusions are presented regarding the further improvement of the test system and methodologies used in this type of testing.
5

Crain, Kevin Richard. "Mechanical characterization and thermal modeling of a MEMS thermal switch." Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Fall2005/k%5Fcrain%5F120905.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferrando, Villalba Pablo. "Thermal characterization of Si-based nanostructures." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La termoelectricitat és una tecnologia prometedora per recol·lectar energia a partir de diferències de temperatura ambientals. El desenvolupament de materials més eficients que converteixin calor en electricitat d’aquesta manera és necessari per obrir nous espais d’aplicació. S’ha demostrat que nanoestructurar un material és una bona manera d’augmentar la figura de mèrit termoelèctrica a materials cristal·lins per mitjà d’una reducció en la conductivitat tèrmica a causa d’un nombre major de col·lisions de fonons. Aquesta tesi té com a objectiu entendre millor processos que afecten el transport tèrmic a materials basats en silici. Al Capítol 1, una introducció general exposa la necessitat de reduir el consum de combustibles fòssils i en general de fer ús d’energies renovables. També, es raona el benefici de poder alterar les propietats tèrmiques d’un material per millorar l’administració de calor en certs sistemes. Al Capítol 2 es fa un resum de la teoria rere el transport tèrmic. Primer, es deriva l‘equació del calor a través del marc de la termodinàmica clàssica i s’introdueixen els fonons com a quasipartícules que transporten calor. L’aplicació de l’equació de transport de Boltzmann sobre electrons i fonons permet entendre l’efecte de diferents mecanismes de col·lisió a la figura de mèrit dels materials, la qual cosa permet raonar vàries estratègies per millorar-la. Al Capítol 3 es desenvolupen les eines necessàries per mesurar la conductivitat tèrmica de nanomaterials. Primer es preparen 2 criòstats i els seus sistemes de control i després s’explica el desenvolupament de 3 sensors. Les estructures suspeses permeten mesurar la conductivitat en membranes i nanofils. S’explica la seva fabricació i es fa un anàlisi exhaustiu de funcionament i d’incerteses. El mètode 3ω s’introdueix per mesurar la conductivitat a capes primes (en direcció perpendicular al pla) i a materials macroscòpics. Es demostra l’origen del voltatge 3ω i es relaciona amb aquestes conductivitats. Finalment es desenvolupa el sensor de 3ω-Völklein per caracteritzar la conductivitat en el pla de capes primes mentre s’estan creixent. Al Capítol 4 es mesura la conductivitat tèrmica de membranes de Si i es troba la reducció esperada pels efectes de mida, així com efectes de confinament a la membrana de 17.5 nm de gruix. A més s’optimitza la nanolitografia per FIB sobre les membranes amb un estudi sistemàtic, tot trobant una resolució de 200 nm amb una dosi de 50 μC/cm2. Al Capítol 5 s’estudia la conductivitat tèrmica de nanofils porosos de Si amb diferents porositats, longituds i mides. Es troba una tendència de la conductivitat amb el diàmetre dels fils que suggereix que el nucli dels fils és menys porós que la closca. La conductivitat del silici estructural resulta ser 50 vegades menor que la del Si macroscòpic, prometent una bona figura de mèrit. Al Capítol 6 es mesura la conductivitat tèrmica d’unes superxarxes de SiGe novedoses, les quals consten de períodes amb gradients de concentració. Mostren conductivitats molt reduïdes, per sota de la capa prima d’aliatge. La mesura de la superxarxa més gruixuda confirma l’absència d’efectes de coherència dels fonons. Al Capítol 7 es mesura la conductivitat tèrmica d’una membrana de nitrur de silici mentre es dipositen capes de TPD (vidre orgànic) i Indi. Els resultats mostren una reducció inicial en la conductància que no es pot explicar per la llei de Fourier, i que és deguda a l’augment de col·lisions difusives entre els fonons i les vores de la capa. Aquest efecte pot ser extrapolat a altres nanomaterials termoelèctrics, reduïnt la seva conductivitat. També es monitoritza la dinàmica de creixement d’ambdós materials a través de la seva senyal en conductància.
Thermoelectricity is a promising technology for scavenging energy from environmental temperature differences. The development of materials that transform heat into electricity in a more efficient way making use of this principle is necessary for opening new application niches. Nanostructuring a material has been demonstrated to increase the thermoelectric figure of merit of crystalline materials via a thermal conductivity reduction driven by enhanced phonon scattering. This thesis is committed to give a better insight into the processes that affect thermal transport in potential Si-based nanomaterials for thermoelectric generation. In Chapter 1, a general introduction exposes the need for reducing fossil fuel consumption and generally using renewable energies. Also, the benefit of tuning the thermal conductivity of materials for thermal management applications is discussed. Chapter 2 provides an overview of the theory behind thermal transport. First, the heat equation is derived from the classical irreversible thermodynamics framework. Then, phonons are introduced as heat carrying quasiparticles. The application of the Boltzmann Transport Equation to both phonons and electrons allows understanding the effect of different scattering mechanisms on the thermoelectric properties of materials. Finally, several strategies for enhancing the figure of merit of materials are reviewed. In Chapter 3, the necessary tools for measuring the thermal conductivity of nanomaterials are developed. Two cryostats are set up along with the temperature control systems that allow measuring at stable temperatures. Later, three sensors are developed for measuring the thermal conductivity of different materials. First, suspended structures intended for measuring the in-plane thermal conductivity of suspended membranes and nanowires are fabricated, and the errors and uncertainties produced in such measurements are characterized. Second, the 3ω method is introduced, allowing the measurement of the out-of-plane thermal conductivity in thin films. The emergence of the 3ω voltage is demonstrated, and the relation between this voltage and the thermal conductivity of the substrate and the thin-film is found. Finally, a sensor for the 3ω-Völklein method is developed, which allows characterizing the in-plane thermal conductivity of thin-films during the layer growth. In Chapter 4, the thermal conductivity of suspended Si membranes is measured, finding the expected reduction in thermal conductivity due to phonon surface scattering, as well as confinement effects in the 17.5 nm thick membrane. Moreover, the nanopatterning of these Si membranes with focused ion beam (FIB) is optimized through a systematic study of its amorphization finding an optimal spatial resolution of 200 nm when using 50 μC/cm2. In Chapter 5, the thermal conductivity of porous Si nanowires is studied for wires with different porosity, length and diameters, showing an unexpected dependence on its diameter that suggests that the wire core is generally less porous than the shell. The structural Si thermal conductivity is found to be one fiftieth of that of the bulk, promising a good thermoelectric figure of merit. In Chapter 6, the thermal conductivity of a novel SiGe graded superlattice is measured, showing a considerable reduction in its thermal conductivity, even below the thin-film alloy limit. The measurement of the thickest superlattice confirms the absence of coherent phonon effects. In Chapter 7, the thermal conductance of a suspended SiNx membrane is measured with a high precision while depositing on it organic (TPD) and metallic (Indium) materials. The results show an initial conductance reduction that cannot be explained with the Fourier law. This reduction is found to be related to an increased diffusive boundary scattering, which could be easily extrapolated to other thermoelectric nanomaterials, reducing their thermal conductivity. Also, the growth dynamics of both materials are characterized through their signal in the conductance.
7

Mutnuri, Bhyrav. "Thermal conductivity characterization of composite materials." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains vii, 62 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-62).
8

Wei, Xiaohao, and 魏晓浩. "Nanofluids: synthesis, characterization and thermal conductivity." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44765861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hanuska, Alexander Robert Jr. "Thermal Characterization of Complex Aerospace Structures." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Predicting the performance of complex structures exposed to harsh thermal environments is a crucial issue in many of today's aerospace and space designs. To predict the thermal stresses a structure might be exposed to, the thermal properties of the independent materials used in the design of the structure need to be known. Therefore, a noninvasive estimation procedure involving Genetic Algorithms was developed to determine the various thermal properties needed to adequately model the Outer Wing Subcomponent (OWS), a structure located at the trailing edge of the High Speed Civil Transport's (HSCT) wing tip. Due to the nature of the nonlinear least-squares estimation method used in this study, both theoretical and experimental temperature histories were required. Several one-dimensional and two-dimensional finite element models of the OWS were developed to compute the transient theoretical temperature histories. The experimental data were obtained from optimized experiments that were run at various surrounding temperature settings to investigate the temperature dependence of the estimated properties. An experimental optimization was performed to provide the most accurate estimates and reduce the confidence intervals. The simultaneous estimation of eight thermal properties, including the volumetric heat capacities and out-of-plane thermal conductivities of the facesheets, the honeycomb, the skins, and the torque tubes, was successfully completed with the one-dimensional model and the results used to evaluate the remaining in-plane thermal conductivities of the facesheets, the honeycomb, the skins, and the torque tubes with the two-dimensional model. Although experimental optimization did not eliminate all correlation between the parameters, the minimization procedure based on the Genetic Algorithm performed extremely well, despite the high degree of correlation and low sensitivity of many of the parameters.
Master of Science
10

VanDerheyden, Andrew Louis. "Characterization of thermal coupling in chip multiprocessors." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
For semiconductor processors temperature increases leakage current, which in turn in- creases the temperature of the processor. This increase in heat is seen by other parts of the processor since heat is diffusive across a processor die. In this way, cores are thermally coupled to one another such that when the temperature of one core increases, the temperatures of all cores on the same die can also increase. This increase in temperature and power consumption is not accompanied by any increase in performance. Cores on a chip can also be performance coupled to one another since cores can share data between them. These interactions between cores present new challenges to microarchitects who seek to optimize the energy consumption of a chip multiprocessor (CMP) comprised of multiple symmetric or asymmetric processing cores. This thesis seeks to understand and model the impact of thermal coupling effects between adjacent cores in a chip multiprocessor starting with measurements with a commercial multi-core processor. The hypothesis is that the thermal coupling of compute cores will be influenced by the adjacent core’s performance characteristics. Specifically, we expect thermal coupling is related to the nature of the workloads, e.g. compute intensive workloads will increase coupling over memory intensive workloads. However, we find that simpler parameters such as frequency of operation have more impact on coupling behaviors than the workload behaviors such as memory intensity or instruction retirement rates. A model is developed to capture thermal coupling effects and enable schemes to mitigate its impact.

Books on the topic "Thermal and Thermokinetic Characterization":

1

A, Turi Edith, ed. Thermal characterization of polymeric materials. 2nd ed. San Diego: Academic Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Turi Edith, ed. Thermal characterization of polymeric materials. 2nd ed. San Diego: Academic Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Watring D., and United States. National Aeronautics and Space Administration., eds. Thermal characterization of the universal multizone crystallizator. [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jacobs, Pieter A. Thermal infrared characterization of ground targets and backgrounds. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Center, Langley Research, ed. Thermal characterization and toughness of ethynyl containing blends. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacobs, Pieter A. Thermal infrared characterization of ground targets and backgrounds. 2nd ed. Bellingham, WA: SPIE, The International Society for Optical Engineering, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacobs, Pieter A. Thermal infrared characterization of ground targets and backgrounds. 2nd ed. Bellingham, Wash: SPIE Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

T, Riga Alan, and Judovits Lawrence 1955-, eds. Materials characterization by dynamic and modulated thermal analytical techniques. West Conshohocken, PA: ASTM, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

T, Riga Alan, Neag C. Michael, and ASTM Committee E-37 on Thermal Measurements., eds. Materials characterization by thermomechanical analysis. Philadelphia, PA: ASTM, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Riga, AT, and L. Judovits, eds. Materials Characterization by Dynamic and Modulated Thermal Analytical Techniques. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2001. http://dx.doi.org/10.1520/stp1402-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal and Thermokinetic Characterization":

1

Moura Neto, Francisco Duarte, and Antônio José da Silva Neto. "Thermal Characterization." In An Introduction to Inverse Problems with Applications, 129–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32557-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Auroux, A. "Thermal Methods: Calorimetry, Differential Thermal Analysis, and Thermogravimetry." In Catalyst Characterization, 611–50. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9589-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naranjo, Alberto, María del Pilar Noriega E., Tim A. Osswald, Alejandro Roldán-Alzate, and Juan Diego Sierra. "Thermal Properties." In Plastics Testing and Characterization, 75–126. München: Carl Hanser Verlag GmbH & Co. KG, 2008. http://dx.doi.org/10.3139/9783446418530.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Rui. "Thermal Analysis." In Analytical Methods for Polymer Characterization, 203–28. Boca Raton : CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351213158-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Priyadarshini, Rajashri. "Thermal Characterization of Composites." In Composite Materials, 149–54. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003080633-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bucur, Voichita. "Thermal Imaging." In Nondestructive Characterization and Imaging of Wood, 75–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08986-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vavilov, Vladimir, and Douglas Burleigh. "Defect Characterization." In Infrared Thermography and Thermal Nondestructive Testing, 181–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48002-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, J. G. "Thermal Imaging Characterization of Thermal Barrier Coatings." In Advanced Ceramic Coatings and Interfaces II, 53–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339510.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bertolotti, M., R. Li Voti, G. Liakhou, C. Sibilia, A. Montenero, and G. Gnappi. "Thermal Characterization of Low Thermal Diffusivity Glasses." In Photoacoustic and Photothermal Phenomena III, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47269-8_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hassan, Rubia, and Kantesh Balani. "Powder Characterization and Synthesis." In Fundamentals of Thermal Spraying, 131–63. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003321965-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal and Thermokinetic Characterization":

1

Carre, P., and D. Delaunay. "Simultaneous Measurement of the Thermal Properties of Phase-Change Material and Complex Liquids Using a Nonlinear Thermokinetic Model." In Advanced Course in Measurement Techniques in Heat and MassTransfer. Connecticut: Begellhouse, 1985. http://dx.doi.org/10.1615/ichmt.1985.advcoursemeastechheatmasstransf.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jonsmann, Jacques, and Siebe Bouwstra. "Thermal microactuator characterization." In Design, Test, and Microfabrication of MEMS/MOEMS, edited by Bernard Courtois, Selden B. Crary, Wolfgang Ehrfeld, Hiroyuki Fujita, Jean Michel Karam, and Karen W. Markus. SPIE, 1999. http://dx.doi.org/10.1117/12.341175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoffmann, F. M., and R. A. dePaola. "High Resolution Electron Energy Loss Spectroscopy of Molecular Bond Weakening on Potassium Promoted Ru(001)." In Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/msba.1985.mc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The adsorption of molecular nitrogen and carbon monoxide on potassium promoted Ru(001) has been investigated with vibrational spectroscopy, thermal desorption, LEED and work function measurements. For carbon monoxide, small precoverages of potassium result in anomalously weak C-O bonds which manifest themselves in large C-O stretch frequency shifts (600 to 1400 cm-1) and an increase in vibrational overtone anharmonicities[1]. Facile C-O bondbreaking was observed by isotopic scrambling in thermal desorption experiments. Both vibrational and thermokinetic data as well as analogies to metalcarbonyls[2] and molecularly adsorbed oxygen on Pt(111) [3] suggest a side-on bonding mode of the molecule with substantial weakening and lengthening of the C-O bond.
4

Fullem, T. Z., D. F. Rae, A. Sharma, J. A. Wolcott, and E. J. Cotts. "Thermal characterization of thermal interface material bondlines." In 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (I-THERM). IEEE, 2008. http://dx.doi.org/10.1109/itherm.2008.4544268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olson, Brandon, and Harikishin Bakhtiani. "Thermal Characterization of Emisshield." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarkany, Zoltan, Gabor Farkas, and Marta Rencz. "Thermal characterization of capacitors." In 2016 International Conference on Electronics Packaging (ICEP). IEEE, 2016. http://dx.doi.org/10.1109/icep.2016.7486811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meyendorf, N. "Acousto-Thermal Microstructure Characterization." In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION:Volume 22. AIP, 2003. http://dx.doi.org/10.1063/1.1570180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alysson, Silvestre, and Cícero da Rocha Souto. "Development and characterization of an experimental thermal cycling platform for thermal characterization." In XI Congresso Nacional de Engenharia Mecânica - CONEM 2022. ABCM, 2022. http://dx.doi.org/10.26678/abcm.conem2022.con22-0259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Shu, Yizhang Yang, Katayun Barmak, Yoed Rabin, and Mehdi Asheghi. "MEMS Based High Sensitivity Calorimetry." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The fundamental study of phase transformations continues to be a key for successful implementation of metals and alloys in micro- and nano-scale structures in integrated circuitry and magnetic recording devices and systems. The thermodynamic and thermokinetic properties of extremely thin layers can be altered due to the relative effect of boundaries and interfaces on the volume of the material. Calorimetry at the nano-scale requires measurement sensitivity on the order of 1 nJ or better, which requires improved thermal design, development of thermal modeling, and development of experimental measurement techniques. In this report, the specific heat of 144 nm thick CoFe layer is measured, using frequency-domain Joule heating and thermometry (3ω-technique), on Cu/SiO2 and Cu/SiO2/CoFe suspended bridges. Analyses of the heat transfer in suspended structures are performed to establish guidelines for design and fabrication of small-scale differential scanning calorimeters.
10

Singh, Y., N. Bajaj, and G. Subbarayan. "Simultaneous thermal/flow characterization of thermal interface materials." In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517707.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal and Thermokinetic Characterization":

1

Bennett, G., M. Thompson, T. Larkin, and J. Hedstrom. Rf transistor thermal/electrical characterization. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5413222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zemelka, Cole, Bartlomiej Benedikt, and Philip Schembri. SX358 Foam Characterization: Thermal Conductivity. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2217473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boswell, Robert. Thermal Characterization of Two Epoxy Systems. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada368621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toni Y. Gutknecht and Guy L. Fredrickson. Thermal Characterization of Molten Salt Systems. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1035899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Willis, Elisha Cade. Thermal characterization of commercial HDPE and UHMWPE. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1469514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feldman, M. R. Furnace characterization for horizontal shipping container thermal testing. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10156477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hemrick, James Gordon, Edgar Lara-Curzio, and James King. Characterization of Min-K TE-1400 Thermal Insulation. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klett, J. W. Characterization of ORNL's High Thermal Conductivity Graphite Foam. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/777659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez-Vasquez, Sylvia, Alexander L. Brown, Joshua A. Hubbard, Ciro J. Ramirez, and Amanda B. Dodd. Carbon fiber composite characterization in adverse thermal environments. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1029768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Howe, David J., and Brian Morgan. Thermal Characterization of Thin Films for MEMS Applications. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada478544.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography