Academic literature on the topic 'Thermal and optical stress'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal and optical stress.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal and optical stress"
Shiue, Sham-Tsong, and Wen-Hao Lee. "Thermal stresses in carbon-coated optical fibers at low temperature." Journal of Materials Research 12, no. 9 (September 1997): 2493–98. http://dx.doi.org/10.1557/jmr.1997.0329.
Full textHIGUCHI, Masaya, and Koji SHIMIZU. "Evaluation of thermal stress by optical interferometric method." Proceedings of Autumn Conference of Tohoku Branch 2004.40 (2004): 49–50. http://dx.doi.org/10.1299/jsmetohoku.2004.40.49.
Full textEvans, K. E. "Thermal stress mechanisms in optical storage thin films." Journal of Applied Physics 63, no. 10 (May 15, 1988): 4946–50. http://dx.doi.org/10.1063/1.340438.
Full textHuang, Cai Hua, Xiao Hua Sun, Yi Hua Sun, and Jun Zou. "Thermal Effects Caused by Inclusions in Optical Films Irradiated by CW Laser." Advanced Materials Research 634-638 (January 2013): 2609–12. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2609.
Full textHu, Fu Kai, De Jian Zhou, and Lei Cheng. "Research and Design of Optical-Fiber-Embedded Structure in Optical Printed Circuit Board under Thermal Shock." Advanced Materials Research 763 (September 2013): 238–41. http://dx.doi.org/10.4028/www.scientific.net/amr.763.238.
Full textLiu, Yueai, B. M. A. Rahman, and K. T. V. Grattan. "Thermal-stress-induced birefringence in bow-tie optical fibers." Applied Optics 33, no. 24 (August 20, 1994): 5611. http://dx.doi.org/10.1364/ao.33.005611.
Full textWong, D. "Thermal stability of intrinsic stress birefringence in optical fibers." Journal of Lightwave Technology 8, no. 11 (1990): 1757–61. http://dx.doi.org/10.1109/50.60576.
Full textGao, You Tang, Shuo Liu, and Yuan Xu. "Analysis of Thermal Shock and Stress with Infrared Optical Domes." Applied Mechanics and Materials 325-326 (June 2013): 332–35. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.332.
Full textLee, Kyoungho, and Joong Seok Lee. "Optimal Design of the Flexure Mount for Optical Mirror Using Topology Optimization Considering Thermal Stress Constraint." Journal of the Korea Institute of Military Science and Technology 25, no. 6 (December 5, 2022): 561–71. http://dx.doi.org/10.9766/kimst.2022.25.6.561.
Full textChen, Tei-Chen, Ching-Jiung Chu, Chang-Hsien Ho, Chung-Chen Wu, and Cheng-Chung Lee. "Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material." Journal of Applied Physics 101, no. 4 (February 15, 2007): 043513. http://dx.doi.org/10.1063/1.2435796.
Full textDissertations / Theses on the topic "Thermal and optical stress"
Kylner, Carina. "Light scattering for analysis of thermal stress induced deformation in thin metal films." Doctoral thesis, KTH, Fysik, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2547.
Full textNR 20140805
Amazirh, Abdelhakim. "Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30101.
Full textOptimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm
Schulze, Christopher A. [Verfasser]. "Minimizing Thermal Stress in Glass Production Processes : Model Reduction and Optimal Control / Christopher A Schulze." Aachen : Shaker, 2007. http://d-nb.info/1166509206/34.
Full textÅberg, Jonas. "On the Experimental Determination of Damping of Metals and Calculation of Thermal Stresses in Solidifying Shells." Doctoral thesis, KTH, Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4038.
Full textQC 20100929
Lankford, Maggie E. "Measurement of Thermo-Mechanical Properties of Co-Sputtered SiO2-Ta2O5 Thin Films." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1627653071556618.
Full textKravchenko, Grygoriy A. "Crack patterns in thin films and X-ray optics thermal deformations." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002770.
Full textYi, Duo. "Intégration de capteurs à fibre optique par projection thermique pour des applications de contrôle de structures intelligentes." Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0285/document.
Full textThis paper presents the modeling, simulation, experimentation and design of a smart composite structrure for high temperature measurements (up to 300 °C). In order to achieve this goal, a high temperature resistant metal coated optical fiber was considered and integrated into alumina coating. The smart composite structure consists of a substrate, a coating and an intensity modulated optical fiber temperature sensor. Firstly, an estimation of heat flux based on a experimental thermogram was firstly carried out in order to feed a numerical modeling. Then, different modelings were built to evaluate the surface temperature levels as well as the composite stress levels. The simulation showed that the composite (substrate and coating) could be considered as a thermally thin medium, the heat propagation within the composite was fast and could be estimated at a scale of millisecond. The stresses remained relatively uniform during the heating process but intensified during the cooling process. The modeling also showed that the stresses are not symmetrical in the fiber and depend on the position of the fiber relative to the substrate. After a modeling evaluation of the thermal levels as well as the stresses that may be achieved in the composite, an experimental step integrating a optical fiber into a thermal coating was carried out. Microscopic observation of surface and cross section were conducted in order to analyze the characteristics of the integrated fiber. The mechanical strength of the integrated fiber was then measured and the optical attenuation during the integration process as well as the thermal behavior of the integrated fiber during the thermal cycling were evaluated. Finally, an intensity modulated optical fiber temperature sensor was designed and integrated into ceramic coating by thermal spraying. A temperature measuring system was designed and the first tests of the thermal response as well as thermal cycling of temperature sensor were carried out. This study demonstrates the feasibility of designing a high temperature resistant smart composite structure by integrating an intensity modulated optical fiber temperature sensor in a ceramic coating elaborated by thermal spraying
Zhang, Bufa. "Optical methods of thermal diffusivity measurement." Thesis, London South Bank University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336374.
Full textVuppala, Archana. "Thermal and thermal stress analyses of the state-changing tooling." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1460787.
Full textSun, Mengyue SUN. "Optical sensor for normal stress distribution." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525432600494617.
Full textBooks on the topic "Thermal and optical stress"
Walid, Qaqish, and Lewis Research Center, eds. Optical strain measurement system development: Final report. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Find full textWalid, Qaqish, and Lewis Research Center, eds. Optical strain measurement system development: Phase I. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Find full textSaravanos, D. A. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation. [Washington, D.C.]: NASA, 1990.
Find full textWelch, Ashley J., and Martin J. C. van Gemert, eds. Optical-Thermal Response of Laser-Irradiated Tissue. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8831-4.
Full textWelch, Ashley J., and Martin J. C. Van Gemert, eds. Optical-Thermal Response of Laser-Irradiated Tissue. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-6092-7.
Full textGemert, Martin J. C. van and SpringerLink (Online service), eds. Optical-Thermal Response of Laser-Irradiated Tissue. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textLammel, Gerhard. Optical microscanners and microspectrometers using thermal bimorph actuators. Boston: Kluwer Academic, 2002.
Find full textLanin, Anatoly, and Ivan Fedik. Thermal Stress Resistance of Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71400-2.
Full textHarry, Gregory, Timothy P. Bodiya, and Riccardo DeSalvo, eds. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511762314.
Full textLammel, Gerhard, Sandra Schweizer, and Philippe Renaud. Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6083-5.
Full textBook chapters on the topic "Thermal and optical stress"
Das, Animesh Chandra, Ryozo Noguchi, and Tofael Ahamed. "An Assessment of Drought Stress in Tea Plantation Areas in Bangladesh Using Optical and Thermal Remote Sensing: A Climate Change Perspective." In New Frontiers in Regional Science: Asian Perspectives, 23–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1188-8_2.
Full textObata, Yoshihiro. "Optimal Design of Functionally Graded Materials." In Encyclopedia of Thermal Stresses, 3508–19. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_232.
Full textZohuri, Bahman, and Nima Fathi. "Thermal Stress." In Thermal-Hydraulic Analysis of Nuclear Reactors, 413–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_15.
Full textZohuri, Bahman. "Thermal Stress." In Thermal-Hydraulic Analysis of Nuclear Reactors, 501–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53829-7_15.
Full textGeilfus, Christoph-Martin. "Thermal Stress." In Controlled Environment Horticulture, 99–111. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23197-2_9.
Full textFinucane, Edward W. "Thermal Stress." In Concise Guide to Environmental Definitions, Conversions, and Formulae, 77–82. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003420002-5.
Full textRogalski, Antoni, and Zbigniew Bielecki. "Thermal Detectors." In Detection of Optical Signals, 157–200. New York: CRC Press, 2022. http://dx.doi.org/10.1201/b22787-5.
Full textStieglitz, Robert, and Werner Platzer. "Optical Conversion." In Solar Thermal Energy Systems, 121–242. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43173-9_3.
Full textGooch, Jan W. "Thermal Stress Cracking." In Encyclopedic Dictionary of Polymers, 743. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11767.
Full textChanda, Pradip, and Suparna Mukhopaddhyay. "Managing Thermal Stress." In Energy Systems in Electrical Engineering, 51–58. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2722-9_5.
Full textConference papers on the topic "Thermal and optical stress"
Firth, Austin, and Uma Srinivasan. "Laser Induced Thermal Stress in Optical Thin Films." In Optical Interference Coatings. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oic.2019.thb.8.
Full textCôté, Patrice, and Nichola Desnoyers. "Thermal stress failure criteria for a structural epoxy." In SPIE Optical Engineering + Applications, edited by Alson E. Hatheway. SPIE, 2011. http://dx.doi.org/10.1117/12.893832.
Full textRyaboy, Vyacheslav M. "Analysis of thermal stress and deformation in elastically bonded optics." In Optical Engineering + Applications, edited by Alson E. Hatheway. SPIE, 2007. http://dx.doi.org/10.1117/12.732217.
Full textKlein, Claude A. "Thermal stress modeling for diamond-coated optical windows." In Boulder - DL tentative, edited by Harold E. Bennett, Lloyd L. Chase, Arthur H. Guenther, Brian E. Newnam, and M. J. Soileau. SPIE, 1991. http://dx.doi.org/10.1117/12.57227.
Full textGrossman, K. R., R. Kelly Frazer, R. Bamberger, and Joseph A. Miragliotta. "Optical technique to sense thermal stress in sapphire." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Randal W. Tustison. SPIE, 2001. http://dx.doi.org/10.1117/12.439182.
Full textThielsch, Roland, Joerg Heber, Torsten Feigl, and Norbert Kaiser. "Stress, microstructure and thermal-elastic properties of evaporated thin MgF_2 - films." In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.the6.
Full textFang, Weidong, Qianbo Lu, Jian Bai, Peiwen Chen, and Dandan Han. "Thermal stress of MOEMS accelerometers based on grating interferometric cavity." In Optical Design and Testing VIII, edited by Yongtian Wang, Kimio Tatsuno, and Tina E. Kidger. SPIE, 2018. http://dx.doi.org/10.1117/12.2502273.
Full textHsu, M. Y., W. C. Lin, M. Y. Yang, C. Y. Chan, Y. C. Lin, S. T. Chang, C. F. Ho, and T. M. Huang. "The Cassegrain Telescope primary mirror isostatic mount design for thermal stress." In SPIE Optical Engineering + Applications, edited by Philip E. Ardanuy and Jeffery J. Puschell. SPIE, 2010. http://dx.doi.org/10.1117/12.860018.
Full textShuying, Shao, Shao Jianda, and Fan Zhengxiu. "Effects of different thermal histories on the residual stress of ZrO_2 thin films." In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.mf5.
Full textOffermann, S., C. Bissieux, and J. L. Beaudoin. "Optical and thermal restoration applied to thermo-elastic stress analysis by IR thermography." In 1998 Quantitative InfraRed Thermography. QIRT Council, 1998. http://dx.doi.org/10.21611/qirt.1998.019.
Full textReports on the topic "Thermal and optical stress"
Barnard, Casey Anderson. Thermal-stress modeling of an optical microphone at high temperature. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1005061.
Full textPikin A., A. Kponou, and L. Snydstrup. Optical, Thermal and Stress Simulations of a 300-kwatt Electron Collector. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/1061837.
Full textYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Full textP.E. Klingsporn. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1054754.
Full textSides, Scott W. Thermal-Mechanical Stress in Semiconductor Devices. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471421.
Full textChochoms, Michael. Thermal Stress Awareness, Self-Study #18649. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1333117.
Full textDai, Steve Xunhu, and Robert Chambers. Thermal mechanical stress modeling of GCtM seals. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1222660.
Full textWemple, R. P., and D. B. Longcope. Thermal stress fracturing of magma simulant materials. Office of Scientific and Technical Information (OSTI), October 1986. http://dx.doi.org/10.2172/7049178.
Full textJohnson, G. L., W. Stein, S. C. Lu, and R. A. Riddle. SLAC divertor channel entrance thermal stress analysis. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5381884.
Full textLewis, James K. Configuration of PIPS for Thermal Stress Calculations. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626105.
Full text