Academic literature on the topic 'Thermal and mechanical stability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal and mechanical stability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal and mechanical stability"

1

Khan, Aamir, Muneer Baig, and Abdulhakim AlMajid. "Effect of Transition Metals on Thermal Stability and Mechanical Properties of Aluminum." International Journal of Materials, Mechanics and Manufacturing 6, no. 6 (December 2018): 369–72. http://dx.doi.org/10.18178/ijmmm.2018.6.6.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikitin, I., I. Altenberger, H. J. Maier, and B. Scholtes. "Mechanical and thermal stability of mechanically induced near-surface nanostructures." Materials Science and Engineering: A 403, no. 1-2 (August 2005): 318–27. http://dx.doi.org/10.1016/j.msea.2005.05.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fabrizi, A., Marcello Cabibbo, R. Cecchini, S. Spigarelli, C. Paternoster, Marie Haidopoulo, and P. V. Kiryukhantsev-Korneev. "Thermal Stability of Nanostructured Coatings." Materials Science Forum 653 (June 2010): 1–22. http://dx.doi.org/10.4028/www.scientific.net/msf.653.1.

Full text
Abstract:
This paper is a review of the thermal stability of nanostructured nitride coatings synthesised by reactive magnetron sputtering technique. In the last three decade, nitride based coatings have been widely applied as hard wear-protective coatings in mechanical components. More recently, a larger interest has been addressed to evaluate the thermal stability of such coatings, as their mechanical and tribological properties are deteriorated at high working temperatures. This study describes the microstructural, mechanical and compositional stability of nano-crystalline Cr-N and nano-composited Ti-N based coatings (Ti-Al-Si-B-N and Ti-Cr-B-N) after air and vacuum annealing. For Cr-N coatings annealing in vacuum induces phase transformation from CrN to Cr2N, while after annealing in air only Cr2O3 phase is present. For Ti-N based coatings, a well-definite multilayered structure was shown after air annealing. Degradation of mechanical properties was observed for all the nitride coatings after thermal annealing in air.
APA, Harvard, Vancouver, ISO, and other styles
4

Klinger, Leonid, and Eugen Rabkin. "Thermal and Mechanical Stability of Polycrystalline Nanowires." Defect and Diffusion Forum 264 (April 2007): 133–40. http://dx.doi.org/10.4028/www.scientific.net/ddf.264.133.

Full text
Abstract:
We considered a polycrystalline cylindrical nanowire with bamboo microstructure strained uniaxially by an external load. Our molecular dynamic computer simulations demonstrated that grain boundary grooving plays an important role in determining the morphological stability of nanowires. Also, an exceptionally high yield stress of nanowires emphasizes the importance of diffusion in their plastic deformation under applied load. We formulated a phenomenological diffusion-based model describing morphological stability and diffusion-controlled deformation behaviour of polycrystalline nanowires. The kinetics of the shape changes was calculated numerically.
APA, Harvard, Vancouver, ISO, and other styles
5

Shchavelev, O. S., K. O. Shchavelev, N. A. Yakobson, and Uk Kang. "Thermal stability and mechanical strength of glasses." Journal of Optical Technology 68, no. 11 (November 1, 2001): 836. http://dx.doi.org/10.1364/jot.68.000836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rudolphi, Mario, Mathias Christian Galetz, and Michael Schütze. "Mechanical Stability Diagrams for Thermal Barrier Coating Systems." Journal of Thermal Spray Technology 30, no. 3 (February 2021): 694–707. http://dx.doi.org/10.1007/s11666-021-01163-5.

Full text
Abstract:
AbstractLoss of mechanical integrity due to thermal aging and subsequent spallation of the ceramic top layer is one of the dominant failure mechanisms in thermal barrier coating systems. In order to predict and avoid such mechanical failure, a strain-based lifetime assessment model is presented for a novel double-layer thermal barrier system. The investigated ceramic system consists of a gadolinium zirconate layer on top of a layer of yttria-stabilized zirconia prepared by atmospheric plasma spraying. The mechanical stability diagrams generated by the model delineate areas of safe operation from areas where mechanical damage of the thermal barrier coating becomes imminent. Intensive ceramographic inspection is used to investigate the defect growth kinetics in the ceramic top coat after isothermal exposure. Four-point bending experiments with in situ acoustic emission measurement are utilized to determine the critical strain to failure. The results are then used to generate mechanical stability diagrams for the thermal barrier coatings. From these diagrams, it becomes evident that the gadolinium zirconate layer has significantly lower strain tolerance than the yttria-stabilized zirconia. However, the underlying yttria-stabilized zirconia layer will provide some thermal protection even when the gadolinium zirconate layer has failed.
APA, Harvard, Vancouver, ISO, and other styles
7

Guoxian, Liang, Li Zhichao, and Wang Erde. "Thermal stability and mechanical properties of mechanically alloyed Al-10Ti alloy." Journal of Materials Science 31, no. 4 (February 1996): 901–4. http://dx.doi.org/10.1007/bf00352888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Kang Hyeon, Sang Won Myoung, Min Sik Kim, Seoung Soo Lee, Eun Hee Kim, Yeon Gil Jung, and Ung Yu Paik. "Thermal and Mechanical Characteristics of Thermal Barrier Coatings in Cyclic Thermal Fatigue Systems." Applied Mechanics and Materials 260-261 (December 2012): 438–42. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.438.

Full text
Abstract:
In this study, the relationship between microstructural evolution and mechanical properties of thermal barrier coatings (TBCs) has been investigated through different thermal fatigue systems, electric thermal fatigue (ETF) and flame thermal fatigue (FTF), including the thermal stability through the interface between the bond and top coats. The TBC system with the thicknesses of 300 µm in both the top and bond coats was prepared with METCO 204 NS and AMDRY 962, respectively, with the air plasma spray (APS) system using 9MB gun. To observe the oxidation resistance and thermal stability of TBC, the thermal exposure tests were performed with both thermal fatigue tests at a surface temperature of 850 °C with a temperature difference of 200 °C between the surface and bottom of sample, for 12,000 EOH in designed apparatuses. The hardness values are slightly increased due to the densification of top coat with increasing the thermal exposure time in both thermal fatigue tests. The influence of thermal fatigue condition on the microstructural evolution and interfacial stability of TBC is discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Hailemariam, Henok, and Frank Wuttke. "Cyclic mechanical stability of thermal energy storage media." E3S Web of Conferences 205 (2020): 07008. http://dx.doi.org/10.1051/e3sconf/202020507008.

Full text
Abstract:
Closing the gap between supply and demand of energy is one of the biggest challenges of our era. In this aspect, thermal energy storage via borehole thermal energy storage (BTES) and sensible heat storage systems has recently emerged as a practical and encouraging alternative in satisfying the energy requirements of household and industrial applications. The majority of these heat energy storage systems are designed as part of the foundation or sub-structure of buildings with load bearing capabilities, hence their mechanical stability should be carefully studied prior to the design and operation phases of the heat storage system. In this study, the cyclic mechanical performance of a commercial cement-based porous heat storage material is analyzed under different amplitudes of cyclic loading and medium temperatures using a recently developed cyclic thermo-mechanical triaxial device. The results show a significant dependence of the cyclic mechanical behavior of the material, such as in the form of cyclic axial and accumulated plastic strains, on the different thermo-mechanical loading schemes.
APA, Harvard, Vancouver, ISO, and other styles
10

Krag, Susanne, Carl Christian Danielsen, and Troels T. Andreassen. "Thermal and mechanical stability of the lens capsule." Current Eye Research 17, no. 5 (January 1998): 470–77. http://dx.doi.org/10.1076/ceyr.17.5.470.5198.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal and mechanical stability"

1

Chen, Yu-Hsiang. "Mechanical and thermal stability of hard nitride coatings." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/665071.

Full text
Abstract:
Hard coating 's thermal stability is essential due to the high temperature environment of high-speed cutting applications, while the induced phase and microstructure evolution affects the mechanical properties. In this thesis, the mechanical stability of arc-evaporated hard nitride coatings annealed at high temperature is analyzed and connected to the phase evolution. In addition to hardness, fracture toughness is evaluated by surface and cross-sectional investigations by scanning/transmission electron microscopy of damage events by mechanical tests. The crack resistance of Ti1-xAixN with a range of Al content (x = 0.23-0.82) is studied by contact fatigue tests, where the difference in the microstructure plays a major role. Superior mechanical properties are found in annealed Ti0.63AI0.37N at 900 oC due to the spinodal decomposition. The mechanical and high-temperature properties of hard coatings can be enhanced by alloying or multi-layering. Quaternary Ti-Al-X-N (X = Cr, Nb and V) alloys are studied, and superior toughness is found in TiAI(Nb )N in both the as-deposited and annealed (1100 oC) states. The h-AIN formation in TixAI0.37Cr1-0.37-xN (x = 0.03 and 0.16) is analyzed by in-situ x-ray scattering during annealing. The kinetic energy for h-AIN formation is found to be dependent on the microstructure evolution during annealing, which varies with coating composition. High Al content h-ZrAIN/c-TiN and h-ZrAIN/c-ZrN multilayers are investigated through scratch tests followed by focused ion-beam analysis of the crack propagation. A c-Ti(Zr)N phase forms in h-ZrAIN/c-TiN multilayers at high temperatures and that contributes to enhanced hardness and fracture toughness by keeping the semi-coherency at the sub-interfaces. Finally, an in-situ analysis of coatings by x-ray scattering during a turning process is carried out. lt demonstrates the possibility of observation of stress evolution and thermal expansion of the coatings or the work piece material during machining. This experiment provides real-time information on the coating behavior during cutting.
La estabilidad térmica del recubrimiento es esencial debido a que estos recubrimientos durante su aplicación son utilizados a elevada temperatura y a alta velocidad. Durante dicho proceso, la evolución microestructural afecta a las propiedades mecánicas. En dicha tesis, la estabilidad mecánica de los recubimientos duros base nitruro producidos mediante arco y recocidos a elevada temperatura son analizados y se correlacionado con su transformación de fase. La dureza, la resistencia a la fractura son evaluados mediante la observación tanto superficial como transversal mediante microscopia electrónica de barrido. La resistencia a la propagación de grieta de Ti1−xAlxN con un contenido en Al que fluctúa entre 0.23-0.82 se estudia mediante ensayos de fatiga por contacto, donde la diferencia microstructural juega un papel importante. Las mejores propiedades mecánicas se encentran en las muestras con un 0.63 de Ti donde se ha realizado un proceso de recocido a 900o C debido a la descomposición espinoidal. Las características mecánicas y de alta temperatura de recubrimientos duros pueden ser mejoradas si tenemos un recubrimiento multicapa. Aleaciones cuaternarias de Ti-Al-X-N (X = Cr, Nb y V) son estudiada, y una mejor tenacidad de fractura se encuentra para la muestra TiAl(Nb)N sin tratamiento de recocido como recocida a 1000ºC. La formación del AlN con una estructura hexagonal en la muestra TixAl0.37Cr1−0.37−xN (x = 0.03 y 0.16) son analizadas mediante ensayos in-situ de difracción de rayos X durante el proceso de recocido. Cabe mencionar que la energía cinética para la formación de la AlN con una estructura hexagonal depende del proceso de recocido, la cual hace variar la composición química del recubrimiento. Multicapas de h (hexagonal)-ZrAlN/c (cúbica)-TiN con un elevado contenido de Al son estudiadas mediante ensayos de rayado y la generación de daño es observado mediante la técnica del haz de iones focalizados. Las formas de la fase de c-Ti(Zr)N en las multicapas de (h)-ZrAlN/c-TiN formadas a elevadas temperaturas contribuyen a mejorar la dureza y la tenacidad de fractura manteniendo la semicoherencia en las intercaras entre cada capa. Finalmente, se realiza un análisis in-situ de los diferentes recubrimientos me diante dispersión de rayos X durante un proceso de torneado. En este caso, se demuestra la posibilidad de observar la evolución de las tensiones residuales y de la expansión térmica durante el proceso de conformado. Dicho experimentos proporciona información en tiempo real sobre el comportamiento del recubrimiento en condiciones de servicio.
Hårda skikts högtemperaturstabilitet är viktig på grund av den höga temperaturskikten utsätts för under skärande bearbetning, och den utveckling av faser och mikrostruktur som då sker påverkar skiktets mekaniska egenskaper. I den här avhandlingen har den mekaniska stabiliteten hos arcförångade, hårda metallnitridskikt som värmebehandlats vid höga temperaturer studerats. Förutom hårdhet har även skiktens seghet utvärderats genom yt- och tvärsnittsstudier av den sprickbildning som uppstår vid mekanisk provning med hjälp av svep- och transmissionselektronmikroskopi. Segheten hos Ti1−xAlxN skikt med varierande Al-halt (x = 0.23-0.82) studerades genom utmattningsprovning och resultaten visar att förändringar i mikrostrukturen spelar en stor roll. Ti0.63Al0.37N skikten hade överlägsna mekaniska egenskaper; på grund av en fördelaktig kornstorlek i de obehandlade skikten och efter värmebehandling som ett resultat av det spinodala sönderfall som skett. De mekaniska egenskaperna och högtemperaturegenskaperna hos hårda skikt kan förbättras genom legering eller genom multilagring. I den här avhandlingen har kvarternära Ti-Al-X-N (X = Cr, Nb eller V) skikt studerats och TiAl(Nb)N skikten hade en överlägsen seghet i både obehandlat och värmebehandlat (1100oC) tillstånd. Bildandet av h-AlN i TixAl0.37Cr1−0.37−xN (x = 0.03 and 0.16) skikt studerades genom in situ röntgenspridning under värmebehandling. Den energi som krävs för att bilda h-AlN beror av mikrostrukturutvecklingen under värmebehandling vilken i sin tur beror av skiktens kemiska sammansättning. h-ZrAlN/c-TiN och h-ZrAlN/c-ZrN multilager med hög Al-halt undersöktes genom reptester följda av tvärsnittsstudier av sprickbildningen genom en analys med en fokuserad jonstråle (FIB). En c-Ti(Zr)N fas bildas vid höga temperaturer i h-ZrAlN/c-TiN multilagren och det bidrar till förhöjd hårdhet och förbättrad seghet på grund av en bibehållen koherens mellan lagren. Slutligen har in situ röntgenspridningsstudier av ytskikt utförts vid svarvning. Studien visar på möjligheten att observera spänning och värmeutvidgning av skikten eller arbetsmaterialet under bearbetning. Experimenten ger information om skiktens beteende under bearbetning i realtid.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Heon Ju 1977. "Thermal stability of nano-structured selective emitters for thermophotovoltaic systems." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78173.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 97-103).
A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective emitters for thermophotovoltaic (TPV) systems which are anticipated to enhance the conversion efficiency. Selective emitters, 2-D photonic crystals, are periodic micro/nano-scale structures that are designed to affect the motion of photons at certain wavelengths. The structured patterns, however, lose their structural integrity at high temperatures, which disrupt the tight tolerances required for spectral control of the thermal emitters. Through analytical studies and experimental observations, the failure modes of tungsten 2-D photonic crystal are indentified. There were four major mechanisms of thermal degradation by which micro/nano-scale structures change their geometry when heated: grain growth and recrystallization, oxidation, surface diffusion, and evaporation. A novel idea of flat surface tungsten photonic crystal (FSTPC) was proposed and was validated by theoretical modeling and by experiments. Pre-annealing or using single crystalline tungsten will prevent the grain growth. A thin layer of diffusion barrier will prevent oxidation and/or evaporation and maintain the optical performance. By filling in the micro/nano-scale cavities with a damascened IR transparent ceramic, the surface of the emitter will have negligible second derivative of the curvature, and thus eliminates the surface diffusion even at high temperatures. Accelerated tests on silicon-based 2-D photonic crystal show that the micro/nano-scale structures on the silicon surface survive for at least 100 hours at 400 °C, homologous temperature of 0.4, which is equivalent temperature of 1200 °C for tungsten. Based on a scale-accelerated failure model, the life time of the Flat Surface Tungsten Photonic Crystal (FSTPC) is estimated to be at least 40 years at 800 °C.
by Heon Ju Lee.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Cerezo, Frances Therese, and francestherese_cerezo@hotmail com. "Thermal stability and mechanical property of polymer layered graphite oxide composites." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080627.161157.

Full text
Abstract:
Polymer composites formed from layered fillers with high surface volume ratio show enhanced reinforcement. Graphite oxide is a high modulus material that can be separated into thin layers with high surface area. The aim of this study is to prepare polymer layered graphite oxide composites using functionalised polyolefin to enhance compatibility with various forms of layered graphite oxide in varying concentration. Functionalised polyolefins reinforced with layered graphite oxides and expanded graphite oxides were prepared using solution blending and melt blending methods. Three different mixing methods with varying shear intensity were employed to prepare polymer layered graphite oxide composites. The crystalline structure, thermal and mechanical properties of the prepared polymer layered graphite oxide composites was studied. Oxidised graphite prepared from the Staudenmaier method and its exfoliated form were dispersed in poly(ethylene-co-methyl acrylate-co-acrylic acid) (EMAA) via solution blending to prepare EMAA layered composites. The thermal stability was determined using thermogravimetric analysis. The EMAA layered composites showed higher thermal stability in comparison with pure EMAA. The mechanical properties of these EMAA layered composites were determined through dynamic mechanical analysis. Shear modulus, yield stress and storage modulus of EMAA in the presence of graphite oxide fillers decreased. A solution blending method was used to prepare poly(propylene-grafted-maleic anhydride) layered expanded graphite oxide composites (PPMA-EGO). Two types of PPMA-EGO were prepared using different mixing methods - low and high shear were employed. The effects of preparative mixing methods on the PPMA-EGO properties were investigated. The mechanical properties of PPMA-EGO obtained from dynamic mechanical analysis indicated that EGO had a reinforcing effect on the elastic behaviour of PPMA-EGO. This is due to strong interfacial adhesion between PPMA and EGO as a result of hydrogen bonding. The elastic behaviour of PPMA-EGO was affected by the surface area of graphite flakes. Low sheared PPMA-EGO elastic behaviour was found to be higher compared with that of high sheared PPMA-EGO. A melt blending method was used to prepare PPMA-EGO with varying EGO concentration. The interconnected network structure of EGO in the PPMA-EGO was not observed as shown by its scanning electron microscopy images. Thermogravimetric analysis of PPMA-EGO indicates increased decomposition temperature of the PPMA matrix. Dynamic mechanical analysis showed enhanced storage modulus of PPMA-EGO. The maximum elastic modulus of PPMA-EGO was observed at 3 %wt of EGO. The electrical conductivity of PPMA-EGO was measured only for EGO concentrations above 2 %wt. The EGO concentration was found to be the most critical factor in the enhancement of the electrical conductivity of PPMA-EGO. Wide angle X-ray diffraction analysis of all polymer layered graphite oxide composites revealed no change in interlayer spacing of graphite layers, indicating the absence of EMAA intercalation in the graphite layers. The crystallisation temperature and crystallinity of all polymer layered graphite oxide composites were determined using differential scanning calorimetry. The results indicated that graphite oxide and expanded graphite oxides acted as nucleating agents in inducing the crystallisation of functionalised polyolefin in the layered composites. However, the degree of crystallinity of functionalised polyolefin decreased in the layered composites.
APA, Harvard, Vancouver, ISO, and other styles
4

Gargarella, Piter. "Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133969.

Full text
Abstract:
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears
Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe
APA, Harvard, Vancouver, ISO, and other styles
5

Ghazinezami, Ali. "Fire retardancy, thermal stability and mechanical properties of polymeric based nanocomposites." Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/10631.

Full text
Abstract:
Polymeric materials have a wide variety of applications in many manufacturing industries. However, because of the molecular structures and chemical compositions of polymeric materials, they have considerably low resistances against fire or heat. Although these materials are highly flammable, their flame retardancy can be improved significantly by incorporating the flame retardant nanomaterials. Nanoclay, nanotalc and graphene are some of the examples of the flame retardant nanomaterials. These are highly cost effective and environmentally friendly for these applications. These inclusions have a great potential to improve thermal, electrical, and mechanical properties of the new materials. This study is mainly focused on the effects of nanoparticle additions in the polyvinyl chloride (PVC) in terms of the flame retardancy. Five sets of nanocomposite materials were prepared using the solvent casting method at different weight percentages of the nanomaterials. The flame retardancy values of the resultant nanocomposite samples were determined using the ASTM UL 94 standard tests. The results of the experiment were also supported by the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Surface characterization of the resultant materials was carried out using scanning electron microscopy (SEM), while mechanical properties were determined through a tensile test method. Test results showed that the flame retardancy values of the new nanostructured materials were significantly enhanced in the presence of nanoscale inclusions, which may be useful for various industrial applications. This study may open up new possibilities of using many nanoscale inclusions in various polymers as flame retardant materials for different industrial applications.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
6

Karimzadeh, F., V. Rastar, and M. H. Enayati. "Thermal Stability and Mechanical Properties of Al-Al2O3 Nanocomposite Produced by Mechanical Milling and Hot-Pressing." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34932.

Full text
Abstract:
In this study, Al-Al2O3 nanocomposite powders containing 5, 10 and 15 Wt% of nanopowder were produced by mechanical alloying. For comparing, Al-Al2O3 composite powder containing 5Wt% of micrometric Al2O3 was also produced. The powder was then hot-pressed in a mold to produce bulked parts. The effect of Al2O3 content on grain growth, density, hardness and bending strength of bulked composite was discussed and microstructures were investigated by optical, scanning and transmission electron microscopy. The results revealed that when nanometric particles were used instead of micrometric particles the grain growth was reduced, while the increase of particle weight percentage did not affect the grain growth. The results also showed that when weight percentage of nanometric particles was increased, although hardness of bulked parts was increased but relative density and bending strength was reduced severely. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/34932
APA, Harvard, Vancouver, ISO, and other styles
7

Pakiela, Z., L. Jarosz, K. Nowak, and L. Olejnik. "Thermal Stability and Mechanical Properties of 5483 Al Alloy Processed by ECAP." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35435.

Full text
Abstract:
Equal Channel Angular Pressing (ECAP) is one of the methods which allows to obtain ultrafine-grained and nanocrystalline metallic materials. It is well known that microstructure of materials pro-cessed by ECAP in not very stable. There were published many experimental and theoretical evidences of this fact obtained by various methods such as microstructure observations, properties measurement and computer modeling. The aim of presented paper was to investigate the thermal stability of microstructure and mechanical properties of the Al 5483 alloy processed by ECAP. As a result of performed investigations it was concluded that accumulated plastic deformation has no influence on the thermal stability of Al 5483 alloy processed by ECAP. It was also found that properly chosen parameters of ECAP and subsequent annealing allows to produce materials with high strength and plasticity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35435
APA, Harvard, Vancouver, ISO, and other styles
8

Sperling, Evan Andrew. "Processing, mechanical properties, and thermal stability of nickel-aluminide multilayered thin films." The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1409231969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garcia, de la Cruz Lucia. "Ultrafine grained nickel processed by powder metallurgy : microstructure, mechanical properties and thermal stability." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC224.

Full text
Abstract:
La synthèse par métallurgie des poudres de nickel à grains ultrafins (UFG) a été effectuée, et l’effet de l’affinement de la microstructure sur le comportement mécanique et les propriétés physiques a été étudié. La possibilité de coupler le broyage et le frittage flash est étudiée avec des résultats prometteurs. Des échantillons de haute densité avec des tailles de grains d = 0.65 – 4 µm, caractérisés par une fraction élevée des joints de grains Σ3 et un faible niveau de contrainte ont été synthétisés. Les propriétés mécaniques des échantillons UFG montrent une bonne combinaison ductilité-résistance mécanique, avec un impact mineur des porosités présentes. L’étude de l’influence de la taille de grain dans le régime UFG sur les propriétés mécaniques montre une limite d’élasticité supérieure à celle attendue et une capacité d’écrouissage plus faible. Ces observations sont cohérentes avec la microstructure déformée à rupture, étudiée par diffraction d’électrons rétrodiffusés et microscopie électronique en transmission. Une haute diffusivité, mesurée par des expériences de traceurs radioactifs, montrent des profils de pénétration très différents liés aux structures de porosités diverses présents dans les échantillons. Ces différentes structures sont aussi responsables de la densification rétrograde observée, uniquement pour les échantillons frittés à partir de poudres broyées
The present manuscript concerns the synthesis of ultrafine grained (UFG) Ni by powder metallurgy, and the study of the influence of UFG microstructures on the mechanical behavior and physical properties. The possibilities of coupling ball milling and Spark Plasma Sintering are presented showing promising results. Highly dense homogeneous specimens are obtained, with average grain sizes d = 0.65 - 4 µm, and microstructures highlighted by a high fraction of Σ3 grain boundaries dependent on grain size. The mechanical properties in tensile testing for UFG samples are evaluated showing a good combination of strength and ductility, with little impact from porosities, the major drawback of powder metallurgy. The influence of grain size in the UFG regime on the mechanical properties is investigated, showing strength values that deviate from the expected behavior for grain refinement. Likewise, a reduced strain hardening capacity is depicted which correlates to the microstructural observations performed on the deformed state. High diffusivity measured by means of radiotracer experiments is observed in the sintered samples, displaying different penetration profiles that relate to diverse porosity structures. Such structures are also responsible for retrograde sintering observed exclusively in samples processed from BM powders
APA, Harvard, Vancouver, ISO, and other styles
10

Stahl, Brian James. "Thermal Stability and Performance of Foil Thrust Bearings." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333722754.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermal and mechanical stability"

1

Kazantzis, Antonios Vasileiou. Thermal stability, mechanical properties and deformation microstructures of the laves phase Cr[inferior two]Nb. Birmingham: University of Birmingham, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sabik, Agnieszka. Analiza stateczności powłok warstwowych obciążonych termicznie: Stability analysis of thermally loaded multilayered shells. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kirklin, PW, and P. David, eds. Aviation Fuel: Thermal Stability Requirements. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1138-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nevell, Roger Thomas. Scaling the thermal stability test. Portsmouth: University of Portsmouth, School of Pharmacy, Biomedical and Physical Sciences, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Desplat, Louise. Thermal Stability of Metastable Magnetic Skyrmions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66026-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thermal convection: Patterns, evolution and stability. Chichester, UK: Wiley, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stoecker, W. F. Microcomputercontrol of thermal and mechanical systems. New York: Van Nostrand Reinhold, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Mailybaev Alexei, ed. Multiparameter stability theory with mechanical applications. Singapore: World Scientific, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slivker, V. I. (Vladimir Isaevich), ed. Handbook of mechanical stability in engineering. Singapore: World Scientific Pub., 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Z, Gumargalieva K., and Zaikov Gennadiĭ Efremovich, eds. Thermal stability of engineering heterochain thermoresistant polymers. Utrecht: VSP, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal and mechanical stability"

1

Klinger, Leonid M., and Eugen Rabkin. "Thermal and Mechanical Stability of Polycrystalline Nanowires." In Defect and Diffusion Forum, 133–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-41-8.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuriakose, Merlyn, and A. N. Aryadevi. "Thermal Frequency Stability Test for Multiple ICs." In Lecture Notes in Mechanical Engineering, 447–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3938-9_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shorr, Boris F. "Elastic and Inelastic Thermal Stability." In Foundations of Engineering Mechanics, 305–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46968-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Takahiro, Kazuyuki Watanabe, and Eduardo R. Hernández. "Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes." In Topics in Applied Physics, 165–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72865-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohd Ramli, Najmuddin, Mohd Sabri Mahmud, Mohd Khairul Nizam Mohd Zuhan, Musfafikri Musa, and Mohd Najib Razali. "Evaluation of Oxidative and Thermal Stability of Base Oil for Automotive Application." In Lecture Notes in Mechanical Engineering, 553–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2890-1_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shram, V. G., Yu N. Bezborodov, and A. V. Lysyannikov. "Study of Dependence of Kinematic Viscosity and Thermal-Oxidative Stability of Motor Oils." In Lecture Notes in Mechanical Engineering, 1155–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rathmann, Dominic, Killang Pratama, Andrea Bachmaier, Michael Marx, and Christian Motz. "Thermal and Mechanical Stability of Nano-Crystalline and Nano-Structured Metals." In Structural Integrity, 345–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lahoti, Mukund, En-Hua Yang, and Kang Hai Tan. "Thermal Performance of Metakaolin-Based Geopolymers: Volume Stability and Residual Mechanical Properties." In Developments in Strategic Ceramic Materials II, 35–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119321811.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oanh, N. T. H., Pyuck Pa Choi, Ji Soon Kim, Dae Hwan Kwon, and Young Soon Kwon. "Thermal Stability of Amorphous Ti- Cu- Ni- Sn Prepared by Mechanical Alloying." In Progress in Powder Metallurgy, 233–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bakthavatchalam, Balaji, Khairul Habib, Pugazhandhi Bakthavatchalam, B. Keerthana, Sundarajoo Thulasiraman, and R. K. Pongiannan. "Stability and Thermal Conductivity Evaluation of Less Concentration Surfactant Wrapped Functionalized Graphene Dispersed in Ethylene Glycol." In Lecture Notes in Mechanical Engineering, 318–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3641-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal and mechanical stability"

1

Boston, Lauren, Andrew Yu, and Michael Gaynes. "Using electrical capacitance and mechanically representative hardware to evaluate the thermal mechanical stability of thermal interface materials." In 2018 34th Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2018. http://dx.doi.org/10.1109/semi-therm.2018.8357372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carleton, Nathaniel P. "Considerations of thermal and mechanical stability for IOTA." In Astronomy '90, Tucson AZ, 11-16 Feb 90, edited by James B. Breckinridge. SPIE, 1990. http://dx.doi.org/10.1117/12.19288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jensen, Scott M., J. Clair Batty, and David McLain. "Fiber support technology for thermal isolation and mechanical stability." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Lawrence G. Burriesci and James B. Heaney. SPIE, 1996. http://dx.doi.org/10.1117/12.254142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lima Magalhães, Thierry Caique, Gabriel Romualdo de Azevedo, Ivanilto Andreolli, and Jorge Luis Baliño. "Influence of thermal effects in stability analysis for severe slugging." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-0357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhai, zongyu, and Ahmed S. Abou-Sayed. "Fully Coupled Chemical-Thermal-Poro-Mechanical Effect on Borehole Stability." In Brasil Offshore. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/140946-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Ran Y., Allan S. Crasto, and Gregory A. Schoeppner. "Dimensional Stability of Composite in a Space Thermal Environment." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1169.

Full text
Abstract:
Abstract Composites are steadily replacing metals in weight-critical space structures primarily because of their high specific moduli. Many space structures require not only high stiffness but precision alignment and dimensional stability as well. These parameters are sensitive to thermal strains caused by the mismatch in coefficients of thermal expansion (CTE) of the constituents, anisotropy in ply CTE, and variations in service temperature. The CTE of a laminate can change in service as a result of mechanically or thermally induced microcracking and this may result in undesirable distortion of the composite structure. In this work, changes in the CTE of a representative space structural material-XN-70/RS3 graphite/cyanate-ester were studied using strain gages. The longitudinal and transverse CTEs of unidirectional and crossply ([0/90]2s) laminates were initially determined over the temperature range of −157°C to 121°C. Specimens were then subjected to thermal cycles from −150°F to 250°F to induce microcracking. The specimen CTE was again measured in the same location after 25, 50, 100, 200, 500 and 1000 cycles, and the corresponding crack density (in the vicinity of the strain gage) was determined by microscopic examination of a polished specimen edge. Predictions of CTE variation with crack density were made using the axisymmetric formulation of a large-radius, hollow, layered-cylinder model, which is equivalent to the flat laminate formulation. The experimental results compared fairly well with the predictions for a [0/90]2s cross-ply laminate. This paper also includes a discussion of the statistical variation of the measured CTEs.
APA, Harvard, Vancouver, ISO, and other styles
7

Everhart, Camille L. M., Kirsten E. Kaplan, Martin M. Winterkorn, Heungdong Kwon, J. Provine, Mehdi Asheghi, Kenneth E. Goodson, Fritz B. Prinz, and Thomas W. Kenny. "High stability thermal accelerometer based on ultrathin platinum ALD nanostructures." In 2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018. http://dx.doi.org/10.1109/memsys.2018.8346721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manokhin, S. S., and M. B. Ivanov. "Investigations of the thermal stability of the submicrocrystalline titanium." In 2015 International Conference on Structural, Mechanical and Material Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icsmme-15.2015.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katariya, P. V., and S. K. Panda. "Thermo-Mechanical Stability Analysis of Composite Cylindrical Panels." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3651.

Full text
Abstract:
In this article, stability behavior of laminated composite curved panels under thermo-mechanical loading is analyzed. A generalized panel model is developed based on higher order shear deformation theory by taking the nonlinearity in Green-Lagrange sense for thermal distortion. The critical buckling load (mechanical/thermal) parameters are obtained by using the developed finite element model validated for both ANSYS and homemade computer code. The model has been discretized in ANSYS using an eight-noded serendipity shell element (shell281) and a nine noded isoparametric element for the computer code. The convergence test has been carried out and the results are compared with those available published literature. In this analysis, a uniform temperature distribution through the thickness is taken and the material properties for the composites are assumed to be temperature invariant. We note substantial effect of different parameters (support conditions, number of layers, thickness ratio and modular ratio) on thermo-mechanical stability behavior of laminated structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Abeykoon, Chamil. "Investigation of Thermal Stability of Non-Newtonian Melt Flows." In The 4th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2018. http://dx.doi.org/10.11159/htff18.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal and mechanical stability"

1

Gurtin, Morton E. Stability and Thermal Influences in Nonlinear Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada246450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eric Wachsman and Keith L. Duncan. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/908258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurtin, Morton E., and H. M. Soner. Some Remarks on the Stefan Problem with Surface Structure. Stability and Thermal Influences in Nonlinear Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada244289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krahn, E. O., A. S. Hebden, G. F. Vandegrift, P. Chung, and N. L. Wang. Mechanical Stability Study. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1091500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brimhall, J. L. Mechanical strength and stability of lithium aluminate. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10153156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brimhall, J. L. Mechanical strength and stability of lithium aluminate. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/5210985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5568036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5454598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sides, Scott W. Thermal-Mechanical Stress in Semiconductor Devices. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Murphy, Andrew, and Michael Stender. Mechanical-Thermal Workflow User?s Guide. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1884887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography