Academic literature on the topic 'Thermal analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal analysis"

1

MUKADDES, A. M. M., Masao OGINO, Hiroshi KANAYAMA, and Akio MIYOSHI. "Non-Steady Thermal Analysis Using ADVENTURE_Thermal." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 829–30. http://dx.doi.org/10.1299/jsmecmd.2004.17.829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Price, Duncan M., Michael Reading, Azzedine Hammiche, and Hubert M. Pollock. "Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis." International Journal of Pharmaceutics 192, no. 1 (December 1999): 85–96. http://dx.doi.org/10.1016/s0378-5173(99)00275-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Manavalan, Hulendra Kumar, Bharath Kumar, Raviteja M, and Israfil Ali. "Structural and Thermal Analysis of Disc Plate." International Journal of Psychosocial Rehabilitation 23, no. 4 (July 20, 2019): 408–18. http://dx.doi.org/10.37200/ijpr/v23i4/pr190200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MEDVEĎ, Dušan, and Ján PRESADA. "THERMAL ANALYSIS OF HIGH-CURRENT ELECTRIC CONTACT." Acta Electrotechnica et Informatica 21, no. 3 (December 20, 2021): 38–42. http://dx.doi.org/10.15546/aeei-2021-0018.

Full text
Abstract:
This paper deals with mathematical modelling of the temperature distribution in the vicinity of a direct electrical high-current contact under the action of a nominal current of 3000 A. High-current electrical contacts belong among the elements by which a large number of electrical devices are connected. They play an important role especially in the transmission and distribution system, where they have to withstand adverse weather conditions that have a significant impact on their degradation.
APA, Harvard, Vancouver, ISO, and other styles
5

Vigneshwaran, V., V. K. Aravindraman, and K. Venkatachalam V. Raveendran. "Thermal Transport Properties Analysis of MWCNT-RT21Nanofluids." International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (February 28, 2019): 641–43. http://dx.doi.org/10.31142/ijtsrd21435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SUGIURA, Shigeki, and Rieko KANAZAWA. "Thermal Analysis." Journal of the Japan Society of Colour Material 64, no. 3 (1991): 178–90. http://dx.doi.org/10.4011/shikizai1937.64.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

TODOKI, Minoru. "Thermal Analysis." Journal of the Japan Society of Colour Material 79, no. 7 (2006): 296–311. http://dx.doi.org/10.4011/shikizai1937.79.296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vyazovkin, Sergey. "Thermal Analysis." Analytical Chemistry 82, no. 12 (June 15, 2010): 4936–49. http://dx.doi.org/10.1021/ac100859s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vyazovkin, Sergey. "Thermal Analysis." Analytical Chemistry 76, no. 12 (June 2004): 3299–312. http://dx.doi.org/10.1021/ac040054h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dollimore, David. "Thermal analysis." Analytical Chemistry 60, no. 12 (June 15, 1988): 274–79. http://dx.doi.org/10.1021/ac00163a019.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal analysis"

1

Collins, Brian Harris. "Thermal imagery spectral analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA320553.

Full text
Abstract:
Thesis (M.S. in Systems Technology (Space Systems Operations)) Naval Postgraduate School, September 1996.
Thesis advisor(s): R.C. Olsen, David Cleary. "September 1996." Includes bibliographical references (p. 159-161). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Travis R. "Thermal analysis of PANSAT." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA341788.

Full text
Abstract:
Thesis (M.S. in Astronautical Engineering) Naval Postgraduate School, December 1997.
"December 1997." Thesis advisor(s): Oscar Biblarz, Ashok Gopinath. Includes bibliographical references (p. 89-90). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
3

Samba, Ahmadou. "Battery electrical vehicles analysis of thermal modelling and thermal management." Caen, 2015. http://www.theses.fr/2015CAEN2003.

Full text
Abstract:
L’avancée de la recherche sur les batteries a conduit à une utilisation massive des batteries Lithium-ion de grande capacité dans les véhicules électriques. De tels designs, en grand format, ont l'avantage de réduire le nombre de cellules interconnectées dans les packs de batteries. Dans les applications de transport, le temps de recharge des batteries constitue un frein au développement des véhicules électriques. L'augmentation du courant de charge peut soumettre à la batterie à des situations très critiques et peut ainsi entrainer une augmentation considérable de sa température. En long terme, ces phénomènes peuvent conduire à la réduction de sa durée de vie ainsi que ses performances et dans certains cas à l’emballement thermique. Afin d’éviter de telles situations, il est nécessaire d’optimiser la gestion thermique de manière à maintenir la batterie dans une gamme de températures de fonctionnement sûre. Ceci passe par la mise en place d’un modèle thermique capable de prédire la température d’une cellule et d’un pack de batterie à différentes conditions de fonctionnement et ensuite proposer différentes stratégies de refroidissements. Compte tenu de la forme et des dimensions du type de batterie utilisé (batterie « pouch ») un modèle électro-thermique est développé afin de prédire la distribution de température de la cellule, ce modèle nécessite moins de paramètres d'entrée et possède une grande précision. En outre, un nouvel outil d'estimation des paramètres thermiques a été développé. Le comportement thermique de la batterie, soumise à des conditions de fonctionnements extrêmes, a été étudié avec ce modèle. De ces résultats, on remarque que la cellule de batterie présente une distribution thermique non-uniforme lorsque celle-ci est parcourue par des courants de grandes amplitudes. Ce constat nous amène à étudier le design des batteries de type « pouch » afin d’élire celle qui présente une distribution thermique et électrique plus uniformes. Pour se faire un modèle 3D électrochimique-thermique a été développé. Enfin, différentes stratégies de gestion thermique des batteries telles que: le refroidissement actif par liquide et passif utilisant un matériau à changement de phase (liquide-solide à changement de phase) incorporé dans une mousse d'aluminium, ont été étudiées puis comparés en appliquant un cycle de conduite, provenant d’un véhicule tout électrique de la gamme Peugeot. L'objectif principal est de réduire la complexité, le poids, le volume, le coût et également de maintenir à un haut niveau de sureté de fonctionnement du module de batterie
Advanced research on rechargeable Lithium-ion batteries has allowed for large format and high-energy batteries to be largely used in Battery Electric Vehicles (BEVs). For transportation applications, beside limitations of driving range, long charging time is still considered as an important barrier for a wide use of BEVs. The increase of the charging current amplitude may however subject the battery to stressful situations and can significantly increase the temperature of the battery. These phenomena reduce the battery’s lifetime and performances and in worst-case scenario, thermal runaway can occur. To avoid this, there is a need for an optimized thermal management in order to keep the battery in a safe and beneficial range of operating conditions. Firstly, in this PhD dissertation a two-dimensional electrical-thermal model has been developed to predict the cell temperature distribution over the surface of the battery. This model requires less input parameters and still has high accuracy. In addition, a novel estimation tool has been developed for estimation of the thermal model parameters. Furthermore, the thermal behavior of the proposed battery has been investigated at different environmental conditions as well as during the abuse conditions for assessment of thermal stability of the battery. Taking into account the harsh thermal distribution, an advanced three-dimensional electrochemical-thermal model has been developed in order to investigate the impact of the cell design on the thermal, voltage and current distributions in order to avoid high non-homogenous distribution. The developed model allows us to optimize the cell design, in order to achieve the longest lifetime and high performances of battery cell. Finally, different thermal management strategies such as liquid cooling and passive cooling using phase change material embedded in an aluminium-foam (liquid-solid phase change) have been investigated and compared in depth by applying real BEV drive cycles. The main objective of this study is to decrease the complexity, the weight, the volume and the cost and to maintain high safety according to the best strategy
APA, Harvard, Vancouver, ISO, and other styles
4

Deshpande, Chinmay Vishwas. "Thermal analysis of vascular reactivity." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brauer, G., M. Jungmann, E. Altstadt, M. Werner, R. Krause-Rehberg, A. Rogov, and K. Noack. "Thermal Analysis of EPOS components." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27950.

Full text
Abstract:
We present a simulation study of the thermal behaviour of essential parts of the electron-positron converter of the positron source EPOS at the Research Center Dresden-Rossendorf. The positron moderator foil and the upper tube element of the electrostatic extraction einzellens are directly exposed to the primary electron beam (40 MeV, 40 kW). Thus, it was necessary to prove by sophisticated simulations that the construction can stand the evolving temperatures. It was found that thin moderator foils (< 20...40 µm) will not show a too strong heating. Moreover, the temperature can be varied in a wide range by choosing an appropriate thickness. Thus, the radiation-induced lattice defects can at least partly be annealed during operation. The wall of the extraction lens which is made from a stainless steel tube must be distinctly thinned to avoid damage temperatures. The simulations were performed time dependent. We found that the critical parts reach their final temperature after less than a minute.
APA, Harvard, Vancouver, ISO, and other styles
6

Guven, Oytun. "Thermal Analysis Of Power Cables." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609040/index.pdf.

Full text
Abstract:
This thesis investigates temperature distribution and hence heat dissipation of buried power cables. Heat dissipation analysis of a simple practical application and the parameters that affect the heat dissipation are discussed. In analyzing temperature distribution in the surrounding medium , a computer program is developed which is based on gauss-seidel iteration technique. This method is applied to a sample test system and heat dissipation curves for several parameters are obtained. Also, current carrying capacities of various types of cables are determined using dissipated heat values.
APA, Harvard, Vancouver, ISO, and other styles
7

Bernving, Niels. "Numerical thermal analysis of SEAM." Thesis, KTH, Rymd- och plasmafysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218037.

Full text
Abstract:
This thesis is on the topic of numerical thermal analysis, specically of the SmallExplorer for Advanced Missions SEAM. SEAM is a 3 unit Cubesat, which isgoing to be launched in a sun-synchronous orbit to measure the magnetic sphere.It makes use of a boom deployment system to remove the sensors from themagnetic eld inuences of the body. The goal of this thesis is to study thethermal behaviour of the satellite, specically the internal components and thethermal deformation of the boom structure. The numerical simulations makeuse of the Monte Carlo Ray-tracing method. Furthermore thermal vacuumcycle tests have been compared to the thermal model as a form of validation.Additionally the thesis also serves as a nal thermal analysis of the satellite, tocheck if all components operate within their specied thermal operating range.
Detta examensarbete handlar om numerisk termisk analys av SEAM (SmallExplorer for Advanced Missions) satellit. SEAM är en 3U CubeSat, som skaskickas upp i solsynkron bana kring jorden för att utföra magnetfältmätningar.Satelliten använder sig av en utfällbar bom för att separera magnetsensorer frånmagnetiska störningar från satellitens elektronik. Examensarbetet syftar tillatt studera termiska beteende av satelliten, specifikt temperaturområden i bananför interna komponenter samt termisk deformation av den utfällbara bomstrukturen.Numeriska simuleringar av strålningsöverföring av värme använderMonte-Carlo metod för att följa strålar. Experimentella resultat från termiskvakuum testning av satelliten har jämförts med termiska modellen för att valideraden. Examensarbetet utgör den slutliga termiska analysen av satelliten, föratt säkerställa att alla komponenter används inom deras specificerade temperaturområde.
APA, Harvard, Vancouver, ISO, and other styles
8

Jarrell, Robert Perry. "Natural daylighting : a thermal analysis." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/22350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Musmar, Sa'ed Awni. "In-situ thermal analysis probe." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102686.

Full text
Abstract:
A new thermal analysis technique was developed and tested. It makes use of the improvements in heat transfer characteristics associated with recent advances in heat pipe technology. Heat is extracted from a liquid sample of a melt taken in-situ from within a vessel or furnace. The rate of heat extraction is such as to cause the sample to solidify. The technique was tested both in the laboratory and on an industrial scale (Grenville Castings, Perth, Ontario). Aluminum alloys including 356, 319, Al-xSi, Al-Si-Cu-xMg, and 6063 were subjected to various melt treatments and were used to carry out the tests. Classical thermal analysis was also carried out simultaneously under the same melt conditions using a preheated graphite cup.
The comparison showed that the new technique has great potential over classical thermal analysis. The major advantages of the new method are that it conducts the analysis inside the melt (since it is no longer necessary for a physical sample to be removed from the melt itself), it consumes less time and the cooling rate can be precisely controlled during the solidification process. Moreover, it produces curves of greater detail and of better resolution than conventional techniques. In fact, the detail is of such resolution that, in some cases, the cooling curves may be used to infer the chemical composition of certain components of the melt, a fact which equates to a form of rapid chemical analysis. The peaks in the signal which refer to intermetallic formation are of better resolution and more identifiable when the new technique is used. The size of the peaks obtained using the new probe is about three times greater than that obtained by the classical method. With this new technique it becomes possible to correlate the area below the intermetallic peak to the concentration of iron or copper in the melt. This is a feature which makes the new thermal analysis probe act as a rapid chemical analyzer for selected constituents.
APA, Harvard, Vancouver, ISO, and other styles
10

Goodman, J. S. "Thermal analysis of ramjet engines." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445768.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermal analysis"

1

Wunderlich, Bernhard. Thermal analysis. Boston: Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wunderlich, Bernhard. Thermal analysis. Boston: Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Šesták, Jaroslav, Pavel Hubík, and Jiří J. Mareš, eds. Thermal Physics and Thermal Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45899-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

D, Menczel Joseph, and Prime R. Bruce, eds. Thermal analysis of polymers. Hoboken, N.J: John Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Craig Duncan Q., and Reading Mike, eds. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press/Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Harwalkar V., and Ma C. -Y, eds. Thermal analysis of foods. London: Elsevier Applied Science, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ehrenstein, Gottfried W., Gabriela Riedel, and Pia Trawiel. Thermal Analysis of Plastics. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446434141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jacobs, Anselm Peter Gerard. Methods of thermal analysis. Leicester: Leicester Polytechnic, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brown, Michael E. Introduction to Thermal Analysis. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1219-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haines, P. J. Thermal Methods of Analysis. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1324-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal analysis"

1

Nielsen, S. Suzanne. "Thermal Analysis." In Instructor’s Manual for Food Analysis: Second Edition, 131–34. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5439-4_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hatakeyama, H. "Thermal Analysis." In Methods in Lignin Chemistry, 200–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thomas, Leonard C., and Shelly J. Schmidt. "Thermal Analysis." In Food Science Texts Series, 555–71. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1478-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wetton, R. E. "Thermal analysis." In Polymer Characterisation, 178–221. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2160-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malič, Barbara, Alja Kupec, and Marija Kosec†. "Thermal Analysis." In Chemical Solution Deposition of Functional Oxide Thin Films, 163–79. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-211-99311-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gooch, Jan W. "Thermal Analysis." In Encyclopedic Dictionary of Polymers, 741. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robles Hernandez, Francisco C., Jose Martin Herrera Ramírez, and Robert Mackay. "Thermal Analysis." In Al-Si Alloys, 17–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58380-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Rui. "Thermal Analysis." In Analytical Methods for Polymer Characterization, 203–28. Boca Raton : CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351213158-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Z. "Thermal Analysis." In Multiphysics Modeling with Application to Biomedical Engineering, 39–48. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wampfler, Bruno, Samuel Affolter, Axel Ritter, and Manfred Schmid. "Thermal Analysis." In Measurement Uncertainty in Analysis of Plastics, 53–81. München: Carl Hanser Verlag GmbH & Co. KG, 2022. http://dx.doi.org/10.3139/9781569908136.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal analysis"

1

Li Yuan, Catharina Biber, and Hengju Cheng. "Thunderbolt active cable thermal analysis." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hundur, Yakup, and Burçin Danacı. "Thermal effects on nickel." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kempitiya, Asantha, and Wibawa Chou. "Electro-thermal analysis for automotive high power MOSFETs." In 2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2017. http://dx.doi.org/10.1109/semi-therm.2017.7896945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fosnot, Phillip, and Jesse Galloway. "Localized TIM characterization using deconstructive analysis." In 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2015. http://dx.doi.org/10.1109/semi-therm.2015.7100169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KOENEN, ALAIN, and DAMIEN MARQUIS. "Walls Thermal Resistance Measurement with an Energy Room Method: Uncertainty and Analysis of Different Approaches." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Welch, Mark J., and Tim Panczak. "Automating Thermal Analysis with Thermal Desktop™." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramalingam, A., F. Liu, S. R. Nassif, and D. Z. Pan. "Accurate thermal analysis considering nonlinear thermal conductivity." In Proceedings of the 2006 7th International Symposium on Quality Electronic Design. IEEE, 2006. http://dx.doi.org/10.1109/isqed.2006.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, J. G., Donald O. Thompson, and Dale E. Chimenti. "THERMAL IMAGING ANALYSIS OF THERMAL BARRIER COATINGS." In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP, 2009. http://dx.doi.org/10.1063/1.3114295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kopčok, Michal, Jozefa Lukovičová, Jozef Kačur, and Gabriela Pavlendová. "Investigation of thermo-physical properties of thermal insulation coating." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4994500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petroski, James. "Power over Ethernet thermal analysis with an engineering mechanics approach." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458445.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal analysis"

1

Eyler, L. L., and R. E. Dodge. Cesium capsule thermal analysis. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/5272709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glascoe, E. A., H. C. Turner, and A. E. gash. Thermal Analysis and Thermal Properties of ANPZ and DNDMP. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1182242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Gerald. Thermal / structural analysis of the HB 650 thermal shield. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Acharya, R., and K. Sawa. HRB-22 preirradiation thermal analysis. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/81077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hodge, Ernest S., and Marvin R. Glickstein. Thermal System Analysis Tools (TSAT). Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada404721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HANG YANG. REPOSITORY THERMAL LOADING MANAGEMENT ANALYSIS. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/778811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Florio, John, Henderson Jr., Test Jack B., and Frederick L. Thermal Analysis of Polymer Composites. Fort Belvoir, VA: Defense Technical Information Center, December 1989. http://dx.doi.org/10.21236/ada216947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gibson, J. (Thermal analysis of inorganic systems). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6819154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hardin, Ernest, Philip Jones, and Kyung Chang. DPC Disposal Thermal Scoping Analysis. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1805038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yong-Yi. PR-350-134500-M02 Girth Weld Thermal Analysis Tool. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2019. http://dx.doi.org/10.55274/r0011555.

Full text
Abstract:
This girth weld thermal analysis tool (GWTAT) uses welding parameters, pass sequence, weld joint geometry and pipe dimensions to predict per-pass thermal histories in the weld metal and HAZ for single- and dual-torch pulsed-gas meal arc welds (GMAW-P) in pipeline girth welds. The predicted thermal history is represented in two ways: (1) complete heating and cooling cycles and (2) cooling times from 800 �C to 500 �C (T85), 800 �C to 400 �C (T84), and 800 �C to 300 �C (T83). This tool is an integral part of the essential welding variables methodology (EWVM) that has been used to facilitate and accelerate welding procedure development by using welding thermal cycles in conjunction with material response to thermal cycles to predict the weld properties achievable under various welding conditions
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography