Academic literature on the topic 'Thermal analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal analysis"
MUKADDES, A. M. M., Masao OGINO, Hiroshi KANAYAMA, and Akio MIYOSHI. "Non-Steady Thermal Analysis Using ADVENTURE_Thermal." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 829–30. http://dx.doi.org/10.1299/jsmecmd.2004.17.829.
Full textPrice, Duncan M., Michael Reading, Azzedine Hammiche, and Hubert M. Pollock. "Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis." International Journal of Pharmaceutics 192, no. 1 (December 1999): 85–96. http://dx.doi.org/10.1016/s0378-5173(99)00275-6.
Full textS, Manavalan, Hulendra Kumar, Bharath Kumar, Raviteja M, and Israfil Ali. "Structural and Thermal Analysis of Disc Plate." International Journal of Psychosocial Rehabilitation 23, no. 4 (July 20, 2019): 408–18. http://dx.doi.org/10.37200/ijpr/v23i4/pr190200.
Full textMEDVEĎ, Dušan, and Ján PRESADA. "THERMAL ANALYSIS OF HIGH-CURRENT ELECTRIC CONTACT." Acta Electrotechnica et Informatica 21, no. 3 (December 20, 2021): 38–42. http://dx.doi.org/10.15546/aeei-2021-0018.
Full textVigneshwaran, V., V. K. Aravindraman, and K. Venkatachalam V. Raveendran. "Thermal Transport Properties Analysis of MWCNT-RT21Nanofluids." International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (February 28, 2019): 641–43. http://dx.doi.org/10.31142/ijtsrd21435.
Full textSUGIURA, Shigeki, and Rieko KANAZAWA. "Thermal Analysis." Journal of the Japan Society of Colour Material 64, no. 3 (1991): 178–90. http://dx.doi.org/10.4011/shikizai1937.64.178.
Full textTODOKI, Minoru. "Thermal Analysis." Journal of the Japan Society of Colour Material 79, no. 7 (2006): 296–311. http://dx.doi.org/10.4011/shikizai1937.79.296.
Full textVyazovkin, Sergey. "Thermal Analysis." Analytical Chemistry 82, no. 12 (June 15, 2010): 4936–49. http://dx.doi.org/10.1021/ac100859s.
Full textVyazovkin, Sergey. "Thermal Analysis." Analytical Chemistry 76, no. 12 (June 2004): 3299–312. http://dx.doi.org/10.1021/ac040054h.
Full textDollimore, David. "Thermal analysis." Analytical Chemistry 60, no. 12 (June 15, 1988): 274–79. http://dx.doi.org/10.1021/ac00163a019.
Full textDissertations / Theses on the topic "Thermal analysis"
Collins, Brian Harris. "Thermal imagery spectral analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA320553.
Full textThesis advisor(s): R.C. Olsen, David Cleary. "September 1996." Includes bibliographical references (p. 159-161). Also available online.
Smith, Travis R. "Thermal analysis of PANSAT." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA341788.
Full text"December 1997." Thesis advisor(s): Oscar Biblarz, Ashok Gopinath. Includes bibliographical references (p. 89-90). Also available online.
Samba, Ahmadou. "Battery electrical vehicles analysis of thermal modelling and thermal management." Caen, 2015. http://www.theses.fr/2015CAEN2003.
Full textAdvanced research on rechargeable Lithium-ion batteries has allowed for large format and high-energy batteries to be largely used in Battery Electric Vehicles (BEVs). For transportation applications, beside limitations of driving range, long charging time is still considered as an important barrier for a wide use of BEVs. The increase of the charging current amplitude may however subject the battery to stressful situations and can significantly increase the temperature of the battery. These phenomena reduce the battery’s lifetime and performances and in worst-case scenario, thermal runaway can occur. To avoid this, there is a need for an optimized thermal management in order to keep the battery in a safe and beneficial range of operating conditions. Firstly, in this PhD dissertation a two-dimensional electrical-thermal model has been developed to predict the cell temperature distribution over the surface of the battery. This model requires less input parameters and still has high accuracy. In addition, a novel estimation tool has been developed for estimation of the thermal model parameters. Furthermore, the thermal behavior of the proposed battery has been investigated at different environmental conditions as well as during the abuse conditions for assessment of thermal stability of the battery. Taking into account the harsh thermal distribution, an advanced three-dimensional electrochemical-thermal model has been developed in order to investigate the impact of the cell design on the thermal, voltage and current distributions in order to avoid high non-homogenous distribution. The developed model allows us to optimize the cell design, in order to achieve the longest lifetime and high performances of battery cell. Finally, different thermal management strategies such as liquid cooling and passive cooling using phase change material embedded in an aluminium-foam (liquid-solid phase change) have been investigated and compared in depth by applying real BEV drive cycles. The main objective of this study is to decrease the complexity, the weight, the volume and the cost and to maintain high safety according to the best strategy
Deshpande, Chinmay Vishwas. "Thermal analysis of vascular reactivity." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1342.
Full textBrauer, G., M. Jungmann, E. Altstadt, M. Werner, R. Krause-Rehberg, A. Rogov, and K. Noack. "Thermal Analysis of EPOS components." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27950.
Full textGuven, Oytun. "Thermal Analysis Of Power Cables." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609040/index.pdf.
Full textBernving, Niels. "Numerical thermal analysis of SEAM." Thesis, KTH, Rymd- och plasmafysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218037.
Full textDetta examensarbete handlar om numerisk termisk analys av SEAM (SmallExplorer for Advanced Missions) satellit. SEAM är en 3U CubeSat, som skaskickas upp i solsynkron bana kring jorden för att utföra magnetfältmätningar.Satelliten använder sig av en utfällbar bom för att separera magnetsensorer frånmagnetiska störningar från satellitens elektronik. Examensarbetet syftar tillatt studera termiska beteende av satelliten, specifikt temperaturområden i bananför interna komponenter samt termisk deformation av den utfällbara bomstrukturen.Numeriska simuleringar av strålningsöverföring av värme använderMonte-Carlo metod för att följa strålar. Experimentella resultat från termiskvakuum testning av satelliten har jämförts med termiska modellen för att valideraden. Examensarbetet utgör den slutliga termiska analysen av satelliten, föratt säkerställa att alla komponenter används inom deras specificerade temperaturområde.
Jarrell, Robert Perry. "Natural daylighting : a thermal analysis." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/22350.
Full textMusmar, Sa'ed Awni. "In-situ thermal analysis probe." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102686.
Full textThe comparison showed that the new technique has great potential over classical thermal analysis. The major advantages of the new method are that it conducts the analysis inside the melt (since it is no longer necessary for a physical sample to be removed from the melt itself), it consumes less time and the cooling rate can be precisely controlled during the solidification process. Moreover, it produces curves of greater detail and of better resolution than conventional techniques. In fact, the detail is of such resolution that, in some cases, the cooling curves may be used to infer the chemical composition of certain components of the melt, a fact which equates to a form of rapid chemical analysis. The peaks in the signal which refer to intermetallic formation are of better resolution and more identifiable when the new technique is used. The size of the peaks obtained using the new probe is about three times greater than that obtained by the classical method. With this new technique it becomes possible to correlate the area below the intermetallic peak to the concentration of iron or copper in the melt. This is a feature which makes the new thermal analysis probe act as a rapid chemical analyzer for selected constituents.
Goodman, J. S. "Thermal analysis of ramjet engines." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445768.
Full textBooks on the topic "Thermal analysis"
Wunderlich, Bernhard. Thermal analysis. Boston: Academic Press, 1990.
Find full textWunderlich, Bernhard. Thermal analysis. Boston: Academic Press, 1990.
Find full textŠesták, Jaroslav, Pavel Hubík, and Jiří J. Mareš, eds. Thermal Physics and Thermal Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45899-1.
Full textD, Menczel Joseph, and Prime R. Bruce, eds. Thermal analysis of polymers. Hoboken, N.J: John Wiley, 2008.
Find full textM, Craig Duncan Q., and Reading Mike, eds. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press/Taylor & Francis, 2007.
Find full textR, Harwalkar V., and Ma C. -Y, eds. Thermal analysis of foods. London: Elsevier Applied Science, 1990.
Find full textEhrenstein, Gottfried W., Gabriela Riedel, and Pia Trawiel. Thermal Analysis of Plastics. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446434141.
Full textJacobs, Anselm Peter Gerard. Methods of thermal analysis. Leicester: Leicester Polytechnic, 1986.
Find full textBrown, Michael E. Introduction to Thermal Analysis. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1219-9.
Full textHaines, P. J. Thermal Methods of Analysis. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1324-3.
Full textBook chapters on the topic "Thermal analysis"
Le, Xiaobin. "Thermal Analysis and Thermal Stress Analysis." In Synthesis Lectures on Mechanical Engineering, 273–93. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64132-9_6.
Full textNielsen, S. Suzanne. "Thermal Analysis." In Instructor’s Manual for Food Analysis: Second Edition, 131–34. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5439-4_36.
Full textHatakeyama, H. "Thermal Analysis." In Methods in Lignin Chemistry, 200–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_14.
Full textThomas, Leonard C., and Shelly J. Schmidt. "Thermal Analysis." In Food Science Texts Series, 555–71. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1478-1_31.
Full textWetton, R. E. "Thermal analysis." In Polymer Characterisation, 178–221. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2160-6_7.
Full textMalič, Barbara, Alja Kupec, and Marija Kosec†. "Thermal Analysis." In Chemical Solution Deposition of Functional Oxide Thin Films, 163–79. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-211-99311-8_7.
Full textGooch, Jan W. "Thermal Analysis." In Encyclopedic Dictionary of Polymers, 741. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11737.
Full textRobles Hernandez, Francisco C., Jose Martin Herrera Ramírez, and Robert Mackay. "Thermal Analysis." In Al-Si Alloys, 17–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58380-8_2.
Full textYang, Rui. "Thermal Analysis." In Analytical Methods for Polymer Characterization, 203–28. Boca Raton : CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351213158-6.
Full textYang, Z. "Thermal Analysis." In Multiphysics Modeling with Application to Biomedical Engineering, 39–48. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-6.
Full textConference papers on the topic "Thermal analysis"
Li Yuan, Catharina Biber, and Hengju Cheng. "Thunderbolt active cable thermal analysis." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458467.
Full textHundur, Yakup, and Burçin Danacı. "Thermal effects on nickel." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756532.
Full textKempitiya, Asantha, and Wibawa Chou. "Electro-thermal analysis for automotive high power MOSFETs." In 2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2017. http://dx.doi.org/10.1109/semi-therm.2017.7896945.
Full textFosnot, Phillip, and Jesse Galloway. "Localized TIM characterization using deconstructive analysis." In 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2015. http://dx.doi.org/10.1109/semi-therm.2015.7100169.
Full textKOENEN, ALAIN, and DAMIEN MARQUIS. "Walls Thermal Resistance Measurement with an Energy Room Method: Uncertainty and Analysis of Different Approaches." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30342.
Full textWelch, Mark J., and Tim Panczak. "Automating Thermal Analysis with Thermal Desktop™." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2156.
Full textRamalingam, A., F. Liu, S. R. Nassif, and D. Z. Pan. "Accurate thermal analysis considering nonlinear thermal conductivity." In Proceedings of the 2006 7th International Symposium on Quality Electronic Design. IEEE, 2006. http://dx.doi.org/10.1109/isqed.2006.20.
Full textSun, J. G., Donald O. Thompson, and Dale E. Chimenti. "THERMAL IMAGING ANALYSIS OF THERMAL BARRIER COATINGS." In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP, 2009. http://dx.doi.org/10.1063/1.3114295.
Full textKopčok, Michal, Jozefa Lukovičová, Jozef Kačur, and Gabriela Pavlendová. "Investigation of thermo-physical properties of thermal insulation coating." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4994500.
Full textPetroski, James. "Power over Ethernet thermal analysis with an engineering mechanics approach." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458445.
Full textReports on the topic "Thermal analysis"
Eyler, L. L., and R. E. Dodge. Cesium capsule thermal analysis. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/5272709.
Full textGlascoe, E. A., H. C. Turner, and A. E. gash. Thermal Analysis and Thermal Properties of ANPZ and DNDMP. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1182242.
Full textSmith, Gerald. Thermal / structural analysis of the HB 650 thermal shield. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763408.
Full textAcharya, R., and K. Sawa. HRB-22 preirradiation thermal analysis. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/81077.
Full textHodge, Ernest S., and Marvin R. Glickstein. Thermal System Analysis Tools (TSAT). Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada404721.
Full textHANG YANG. REPOSITORY THERMAL LOADING MANAGEMENT ANALYSIS. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/778811.
Full textFlorio, John, Henderson Jr., Test Jack B., and Frederick L. Thermal Analysis of Polymer Composites. Fort Belvoir, VA: Defense Technical Information Center, December 1989. http://dx.doi.org/10.21236/ada216947.
Full textGibson, J. (Thermal analysis of inorganic systems). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6819154.
Full textHardin, Ernest, Philip Jones, and Kyung Chang. DPC Disposal Thermal Scoping Analysis. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1805038.
Full textWang, Yong-Yi. PR-350-134500-M02 Girth Weld Thermal Analysis Tool. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2019. http://dx.doi.org/10.55274/r0011555.
Full text