Academic literature on the topic 'Thermal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal"

1

Lee, Seung-Rae. "Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles." Journal of the Korean Society of Civil Engineers 33, no. 6 (2013): 2381. http://dx.doi.org/10.12652/ksce.2013.33.6.2381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cowling, I. D., S. Willcox, Y. Patel, P. Smith, and M. Roberts. "Increasing persistence of UAVs and MAVs through thermal soaring." Aeronautical Journal 113, no. 1145 (July 2009): 479–89. http://dx.doi.org/10.1017/s0001924000003146.

Full text
Abstract:
Abstract This work looks to harness atmospheric energy through thermal soaring to optimise the flight persistence of Micro Air Vehicles (MAVs) and Unmanned Air Vehicles (UAVs). There are two key challenges when considering thermal soaring, the first being the locating of thermals and the second being the extraction of the maximum potential energy from the thermals. Thermal location is by no means an exact science with experienced glider pilots needing to consider many factors to improve the probability of encountering a thermal. As thermals are caused by the uneven heating of the Earth’s surface it is, however, possible to predict likely thermal locations. With the application of a suitable guidance algorithm which considers these ‘hot spots’ it is possible to increase the likelihood of encountering a thermal. Once a thermal is found it is important to attempt to extract the maximum energy from the thermal. To do this the vehicle needs to move quickly to the centre of the thermal. There are many potential techniques for thermal centring, some of which appear to be entirely contradictory to each other, the crucial factor determining the success of such a technique has been found to be the response time of the onboard sensors. This paper considers the many aspects of thermal soaring such as locating thermals, thermal detection and thermal centring. Five different thermal models are presented which are used to demonstrate the thermal centring techniques. Finally a commercial glider simulation package is used to demonstrate the control architecture and simulate a fully autonomous flight.
APA, Harvard, Vancouver, ISO, and other styles
3

Fitch, J. S., L. Monier, and H. Tamet. "Thermap: a thermal model for microprocessors." IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A 18, no. 3 (1995): 553–58. http://dx.doi.org/10.1109/95.465152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DAHAM, Sadoon R., Nebras H. GHAEB, and Faiz F. MUSTAFA. "Topographical thermal imaging for solid square shaft cooling." Journal of Thermal Engineering 7, no. 14 (December 30, 2021): 1970–79. http://dx.doi.org/10.18186/thermal.1051323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Morihito, and Hayato Mouri. "E-3 MONOSEMOUSNESS OF THERMAL PLASTIC STRAIN ON THERMAL FATIGUE LIFE IN FERRITE DUCTILE CAST IRON(Session: Thermal Fatique/Creep)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 95. http://dx.doi.org/10.1299/jsmeasmp.2006.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Graetsch, Heribert A. "Thermal expansion and thermally induced variations of the crystal structure of AlPO4 low cristobalite." Neues Jahrbuch für Mineralogie - Monatshefte 2003, no. 7 (July 15, 2003): 289–301. http://dx.doi.org/10.1127/0028-3649/2003/2003-0289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tolibjonovich, Tojiboyev Boburjon. "LIQUID COMPOSITE THERMAL INSULATION COATINGS AND METHODS FOR DETERMINING THEIR THERMAL CONDUCTIVITY." International Journal of Advance Scientific Research 02, no. 03 (March 1, 2022): 42–50. http://dx.doi.org/10.37547/ijasr-02-03-07.

Full text
Abstract:
The article describes the analysis of existing methods for determining the thermal conductivity of liquid composite thermal insulation coatings and the results of experimental studies on its improvement.
APA, Harvard, Vancouver, ISO, and other styles
8

Tarshish, Nathaniel, Nadir Jeevanjee, and Daniel Lecoanet. "Buoyant Motion of a Turbulent Thermal." Journal of the Atmospheric Sciences 75, no. 9 (August 28, 2018): 3233–44. http://dx.doi.org/10.1175/jas-d-17-0371.1.

Full text
Abstract:
Abstract By introducing an equivalence between magnetostatics and the equations governing buoyant motion, we derive analytical expressions for the acceleration of isolated density anomalies (thermals). In particular, we investigate buoyant acceleration, defined as the sum of the Archimedean buoyancy B and an associated perturbation pressure gradient. For the case of a uniform spherical thermal, the anomaly fluid accelerates at 2B/3, extending the textbook result for the induced mass of a solid sphere to the case of a fluid sphere. For a more general ellipsoidal thermal, we show that the buoyant acceleration is a simple analytical function of the ellipsoid’s aspect ratio. The relevance of these idealized uniform-density results to turbulent thermals is explored by analyzing direct numerical simulations of thermals at a Reynolds number (Re) of 6300. We find that our results fully characterize a thermal’s initial motion over a distance comparable to its length. Beyond this buoyancy-dominated regime, a thermal develops an ellipsoidal vortex circulation and begins to entrain environmental fluid. Our analytical expressions do not describe the total acceleration of this mature thermal, but they still accurately relate the buoyant acceleration to the thermal’s mean Archimedean buoyancy and aspect ratio. Thus, our analytical formulas provide a simple and direct means of estimating the buoyant acceleration of turbulent thermals.
APA, Harvard, Vancouver, ISO, and other styles
9

Sobamowo, M. G. "THERMAL PERFORMANCE ANALYSIS OF CONVECTIVE-RADIATIVE FIN WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY IN THE PRESENCE OF UNIFORM MAGNETIC FIELD USING PARTIAL NOETHER METHOD." Journal of Thermal Engineering 4, no. 5 (June 28, 2018): 2287–302. http://dx.doi.org/10.18186/thermal.438485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kishore, Abhishek, and Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion." International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (August 31, 2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal"

1

Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.

Full text
Abstract:
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Van-Tri. "Thermal and thermo-mechanical behavior of energy piles." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1160/document.

Full text
Abstract:
Le comportement thermique et thermo-mécanique des pieux énergétiques est étudié par plusieurs approches : mesures au laboratoire sur des éprouvettes de sol, modélisation physique en modèle réduit, expérimentations sur pieu en vraie grandeur, et calculs numériques/analytiques. D’abord, la conductivité thermique d’un loess à l’état non saturé est mesurée en fonction de la teneur en eau et de la succion. Les résultats montrent une relation univoque entre la conductivité thermique et la teneur en eau pendant un cycle d’humidification/séchage alors qu’une boucle d’hystérésis est observée pour la relation entre la conductivité thermique et la succion. Deuxièmement, des essais thermiques sont réalisés sur un pieu énergétique expérimental en vraie grandeur pour étudier le transfert thermique à l’échelle réelle. Troisièmement, une solution analytique est proposée pour simuler la conduction thermique d’un pieu énergétique vers le sol environnant pendant un chauffage. Les tâches mentionnées ci-dessus concernant le comportant thermique sont ensuite complétées par des études sur le comportement thermo-mécanique des pieux énergétiques. D’un côté, des expérimentations sont réalisées sur un modèle réduit de pieu installé dans un sable sec ou dans une argile saturée. Trente cycles thermiques, représentant trente cycles annuels, sont appliqués au pieu sous différentes charges axiales en tête. Les résultats montrent un tassement irréversible avec les cycles thermiques ; ce tassement est plus important sous une charge axiale plus grande. De plus, le tassement est plus marqué pendant les premiers cycles thermiques et devient négligeable pour les cycles suivants. De l’autre côté, les travaux expérimentaux sur le modèle réduit de pieu sont complétés par les calculs numériques utilisant la méthode des éléments finis. Cette approche est d’abord validée avec les résultats obtenus sur le pieu modèle avant d’être utilisée pour prédire les résultats des expérimentations en vraie grandeur
The thermal and thermo-mechanical behavior of energy piles is investigated by various approaches: laboratory measurement on small soil samples, physical modeling on small-scale pile, experiments on real-scale pile, and analytical/numerical calculations. First, the thermal conductivity of unsaturated loess is measured simultaneously with moisture content and suction. The results show a unique relationship between thermal conductivity and moisture content during a wetting/drying cycle while a clear hysteresis loop can be observed on the relationship between thermal conductivity and suction. Second, thermal tests are performed on a full-scale experimental energy pile to observe heat transfer at the real scale. Third, an analytical solution is proposed to simulate conductive heat transfer from an energy pile to the surrounding soil during heating. The above-mentioned tasks related to the thermal behavior are then completed by studies on the thermo-mechanical behavior of energy piles. On one hand, experiments are performed on a small-scale pile installed either in dry sand or in saturated clay. Thirty thermal cycles, representing thirty annual cycles, are applied to the pile under various constant pile head loads. The results show irreversible pile head settlement with thermal cycles; the settlement is higher at higher pile head load. In addition, the irreversible thermal settlement is the most significant during the first cycles; it becomes negligible at high number of cycles. On the other hand, the experimental work with small-scale pile is completed with numerical calculations by using the finite element method. This approach is first validated with the results on small-scale pile prior to be used to predict the results of full-scale experiments
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Hua. "Saline, thermal and thermal-saline buoyant jets." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21325.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shi, Jun. "On thermal mismatch and thermal gradients and the failure of thermal barrier coatings." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 2.35 Mb., 123 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3221078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aldubyan, Mohammad Hasan. "Thermo-Economic Study of Hybrid Photovoltaic-Thermal (PVT) Solar Collectors Combined with Borehole Thermal Energy Storage Systems." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493243575479443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dyer, Kristy Kathleen. "Thermal and Non-Thermal Emission in Supernova Remnants." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010806-162918.

Full text
Abstract:

Supernova remnants present an excellent opportunity to study the shockacceleration of relativistic particles. X-ray synchrotron emission fromrelativistic electrons should contain important information, butextracting it requires advances in models and observations. I present thefirst test of sophisticated synchrotron models against high resolutionobservations on SN 1006, the first and best example of synchrotron X-rayemission, which has been well observed at radio, X-ray and gamma-raywavelengths. Synchrotron emission can be limited at the highest energies by finite age,radiative losses or electron escape. Earlier calculations suggested thatSN 1006 was escape limited. I adapted an escape-limited synchrotron modelfor XSPEC, and demonstrated that it can account for the dominantlynonthermal integrated spectrum of SN 1006 observed by ASCA-GIS and RXTEwhile constraining the values of the maximum electron energy and otherparameters. Combined with TeV observations, the fits give a mean postshockmagnetic field strength of 9 microgauss and 0.7% of the supernova energyin relativistic electrons. Simultaneous thermal fits gave abundances farabove solar, as might be expected for ejecta but had not previously beenobserved. I created subsets of the escape-limited model to fit spatially resolvedASCA SIS observations. I found only small differences between thenortheast and southwest limbs. A limit of less than 9% was placed on theamount of nonthermal flux elsewhere in the remnant. Important findingsinclude the possibility that rolloff frequency may change across theremnant face, and ruling out cylindrical symmetry for SN 1006 along aNW/SE axis. These models have implications far beyond SN 1006. The only previousmodel available to describe X-ray synchrotron emission was a powerlaw.These new models are superior to powerlaws both for their robustconstraints and because they shed physical insight on the accelerationmechanism. As new instruments increase our spatial and spectral resolutionI predict many more remnants will be found with varying amounts of X-raysynchrotron emission, hidden along with thermal lines and continuum. Theability to separate thermal and nonthermal emission is essential tounderstanding both nonthermal emission as well as the thermal component.

APA, Harvard, Vancouver, ISO, and other styles
7

Rashidian, Mahla. "Thermal degradation study by continuous thermal stability rig." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22913.

Full text
Abstract:
This investigation was done at NTNU and together with Statoil research and development department in Rotvoll, Trondheim to facilitate a new semi dynamic amine thermal degradation rig.This study was an initial attempt to investigate semi dynamic thermal stability rig as an alternative to thermal degradation study. The major purposes are: (1) to study MEA and MDEA thermal degradation by thermal stability rig apparatus which is designed by Statoil. (2) to demonstrate the result differences between the new and conventional experimental method. MEA and MDEA were selected in this study due to have more available literature data in amine based absorption process. The loaded liquid was circulated through the pipe from the cold stream to the hot stream. There is no analytical method was connected to the rig therefore a regular sample was taken every week and sent to SINTEF analytical lab to identify degradation products.Residence time of solution in high temperature zone also was calculated as an important factor in thermal degradation investigation. Different authors have been provided to understand: the background, the experimental set up, the analytical method to describe the degradation products, data interpretation and the mechanism of the degradation.Based on analytical results, it seems that only small portion of MEA and MDEA were degraded. It showed that the elapsed time was not enough to observe degradation in a significant amount. Metal qualification tests showed low metal concentration in solutions and generally very little corrosiveness effect. However, few degradation products were reported in this study the most probably degradation mechanism is estimated similar to suggested degradation pathway by Davis (2009). More works are required in future to better interpret the new thermal stability rig.
APA, Harvard, Vancouver, ISO, and other styles
8

Šumić, Mersiha. "Thermal Performance of a Solarus CPC-Thermal Collector." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:du-14526.

Full text
Abstract:
The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013.
APA, Harvard, Vancouver, ISO, and other styles
9

Humpheson, Lee. "Thermal inactivation kinetics and thermal physiology of Salmonella." Thesis, University of Surrey, 1997. http://epubs.surrey.ac.uk/844197/.

Full text
Abstract:
Microbial thermal inactivation survivor curves (log10 numbers plotted against time) have long been described as maintaining a strictly linear rate of decline. However, much evidence exists which suggests deviation from log-linear kinetics does occur, and that this is not purely the result of experimental procedure as contended by some authors. Here, the shape of inactivation kinetics in Salmonella enteritidis was investigated. A heat challenge method was developed which, as far as could be ascertained, was free from methodological artefacts influencing the shape of survivor curves. High initial cell densities allied to sensitive enumeration resulted in biphasic survivor curves at 60°C. Tailing survivors accounted for approximately 1 in 105 of the initial population and possessed roughly four times the heat resistance. At temperatures 50 to 65°C, the presence of tailing prevented the use of D-values to accurately describe death rates. However, describing survivor curves using a log-logistic model increased data-fit at all temperatures investigated. The biphasic nature of survivor curves was studied closely between 49 and 60°C. It was observed that the extent of tailing was temperature-dependent; as temperature decreased, linearity increased such that at 51°C, survivor curves had no tailing. Studies using S. typhimurium and S. senftenberg 775W revealed similar kinetics. In these salmonellas, survivor curves demonstrated linearity at 54 and 57°C, respectively. The influences of culture age and growth rate on the shape of 60°C-inactivation curves were also investigated. Batch-cultured S. enteritidis cells of various maturities gave rise to survivor curves of differing heat sensitivities. Exponentially growing cells were shown to be the most heat sensitive, while late-stationary phase cells were the only populations to result in non-tailed survivor curves. Carbon-limited continuously cultivated cells demonstrated similar biphasic inactivation kinetics. Predictably, the slowest dilution rate corresponded to the greatest heat resistance. Starved cells produced linear inactivation kinetics that were virtually identical to those of late-stationary phase batch-cultured cells. That tailing in batch cultures was similar to chemostat populations, indicated that possible differences in growth rates in batch-cultured cells could not account for tailing. Furthermore, growth was necessary for tailing to be observed. Investigations into the cause of tailing revealed that these cells were not genetically distinct from the majority population. Instead, it is believed that tailing cells arise following the expression of heat-shock proteins during heating. Partial inhibition of de novo protein synthesis during heating resulted in much reduced levels of tailing. It is proposed that the temperature of inactivation determines the proportion of cells capable of expressing a heat-shock response, such that the temperature at which linearity is achieved corresponds to the point at which all cells are fully heat-shock protected.
APA, Harvard, Vancouver, ISO, and other styles
10

De, Indrayush. "Thermal characterization of nanostructures using scanning thermal microscopy." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0563/document.

Full text
Abstract:
La caractérisation thermique est cruciale pour la conception et le développement d'applications critiques dans divers domaines. Elle trouve son utilisation dans la détection de défauts et de points chauds dans la fabrication de semi-conducteurs, l'imagerie sous-sol ainsi que la recherche de transport thermique et de charge à des longueurs inférieures à 100 nm. La capacité de comprendre et de contrôler les propriétés thermiques des nanostructures à un niveau de sous-micron est essentielle pour obtenir les performances souhaitées. Pour atteindre cet objectif, la microscopie thermique à balayage (SThM) est très bien adaptée pour cartographier la conductivité thermique à la surface des matériaux et des appareils à l'échelle nanométrique.SThM est une technique d'imagerie "champ proche". C'est une méthode de contact, la sondeétant en contact avec la surface à une force contrôlée. STHM utilise une structure cantilever identique à celle des sondes utilisées dans un Microscope à Force Atomique (AFM). La principale différence est le fait qu'un capteur thermique est intégré à la pointe de la sonde. En outre, ce capteur peut également être utilisé comme chauffage dans le cas d'éléments thermorésistants tels que Pt ou Pd. Par conséquent, le SThM est le résultat d'un AFM équipé d'une sonde thermique. Cet instrument fournit une résolution sous-micromètre dans la résolution spatiale, c'est-à-dire plus que la résolution des techniques optiques dans la gamme de longueurs d'onde visible. La résolution classique qui est réalisée de nos jours est de l'ordre de moins de 100nanomètres alors que celle obtenue avec la première sonde Wollaston était environ 10 fois plus élevée.Par conséquent, mesurer la température et les propriétés thermiques de la matière à la microscales ont deux objectifs difficiles qui ont monopolisé l'énergie et le temps de nombreux chercheurs partout dans le monde depuis plusieurs décennies. Ces deux objectifs ne sont pas similaires. Tout d'abord, la mesure d'une température dans un domaine dont la dimension caractéristique est inférieure au micromètre semble moins difficile que mesurer la conductivité thermique d'un matériau à cette échelle. [...]
The objective of this thesis is to master quantitative aspects when using nearfield thermal microscopy by using the scanning thermal microscopy technique (SThM). We start by taking an in-depth look into the work performed previously by other scientist and research organizations. From there, we understand the progress the SThM probes have made through the decades, understand the probe sensitivity to the range of conductivity of the materials under investigation, verify the resistances encountered when the probe comes in contact with the sampl and the applications of SThM.Then we look into the equipment necessary for performing tests to characterize material thermal properties. The SThM we use is based on atomic force microscope (AFM) with a thermal probe attached at the end. The AFM is described in this work along with the probes we have utilized.For the purpose of our work, we are only using thermoresistive probes that play the role of the heater and the thermometer. These probes allow us to obtain sample temperature and thermalconductivity. We use two different types of thermal probes – 2-point probe and 4-point probe with SiO2 or with Si3N4 cantilever. Both the probes are very similar when it comes to functioning with the major difference being that the 4-point probe doesn’t have current limiters. Then, we present the use of recent heat-resistive probes allowing to reach a spatial resolution of the orde rof 100 nm under atmosphere and of 30 nm under vacuum. These probes can be used in passive mode for measuring the temperature at the surface of a material or component and in activemode for the determination of the thermal properties of these systems. Using thermoresistive probes means that no specialized devices are necessary for operation. Using simple commercialsolutions like simple AC or DC current and Wheatstone bridge are sufficient to provide basic thermal images. In our case we have also utilized other industrial devices and a home madeSThM setup to further improve the quality of measurement and accuracy. All the elements of the experimental setup have been connected using GPIB and that have been remotely controlled from a computer using a code developed under Python language. This code allows to make the frequency dependent measurement as well as the probe calibration. [...]
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermal"

1

Šesták, Jaroslav, Pavel Hubík, and Jiří J. Mareš, eds. Thermal Physics and Thermal Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45899-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zold, Andras. Thermal insulation. Brisbane, Qld: Passive and Low Energy International, in association with the Department of Architecture, University of Brisbane, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blatteis, Clark M., Nigel Taylor, and Duncan Mitchell, eds. Thermal Physiology. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-0716-2362-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jha, Chandra Mohan, ed. Thermal Sensors. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2581-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, William C., ed. Thermal Desorption. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-35350-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, HoSung. Thermal Design. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470949979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wunderlich, Bernhard. Thermal analysis. Boston: Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boulos, Maher I., Pierre Fauchais, and Emil Pfender. Thermal Plasmas. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1337-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sprackling, Michael. Thermal physics. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meskó, Csaba. Thermal baths. Budapest: City Hall, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal"

1

Andersson, Mats, Heinz Jacobs, Ricardo Carmona, Clifford S. Selvage, Pierre Wattiez, Antonio Cuadrado, Sevillana, T. van Steenberghe, John J. Kraabel, and F. Gaus. "Thermal Losses/Thermal Inertia." In The IEA/SSPS Solar Thermal Power Plants — Facts and Figures — Final Report of the International Test and Evaluation Team (ITET), 429–587. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82678-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meingast, Christoph. "Thermal Properties: Thermal Expansion." In Handbook of Superconductivity, 340–51. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003139638-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Behnia, Kamran. "Thermal Properties: Thermal Conductivity." In Handbook of Superconductivity, 333–39. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003139638-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bährle-Rapp, Marina. "thermal." In Springer Lexikon Kosmetik und Körperpflege, 553. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heinze, Tassilo, Hans-Joachim Koriath, and Alexander Pavlovich Kuznetsov. "Thermal Growth of Motor Spindle Units." In Lecture Notes in Production Engineering, 219–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_17.

Full text
Abstract:
AbstractThe paper deals with strategies for numerical compensation of thermo-mechanical deformation of machine tool spindles and the TCP, respectively. Methods for digital modelling and simulating the temperatures and thermo-elastic deformation are presented. This is done by considering the geometry, material data, drive signals and temperature values. The topic of compensating thermo-elastic effects in spindle units is an important topic in manufacturing. Analytical equation and function block methods for measuring and predicting thermal spindle growth are compared. The heat flow model converts variable spindle load, speed, coolant and ambient temperature into local temperatures followed by elastic deformations of the spindle unit. The simulation results were verified for different types of motor spindles by experiments on a spindle test rig at SPL GmbH. A thermal stiffness value [W/µm] is characterized by the energy losses of the spindle, which result in thermal growth. Different strategies for digital reduction of a thermal spindle growth were developed.
APA, Harvard, Vancouver, ISO, and other styles
6

Kobranova, V. N. "Thermal Conductivity, Thermal (or Heat) Capacity, Thermal Diffusivity." In Petrophysics / ПЕТРОФИЗИКА, 193–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-09244-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Liu-Jun, and Ji-Ping Huang. "Theory for Invisible Thermal Sensors: Bilayer Scheme." In Transformation Thermotics and Extended Theories, 133–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_10.

Full text
Abstract:
AbstractIn this chapter, we propose a bilayer scheme with isotropic materials to design invisible thermal sensors with detecting accuracy. Therefore, the original temperature fields in the sensor and matrix can keep unchanged. By solving the linear Laplace equation with a temperature-independent thermal conductivity, we derive two groups of thermal conductivities to realize invisible thermal sensors, even considering geometrically anisotropic cases. These results can be directly extended to thermally nonlinear cases with temperature-dependent thermal conductivity, as long as the ratio between the nonlinear thermal conductivities of the sensor and matrix is a temperature-independent constant. These explorations are beneficial to temperature detection and provide insights into thermal camouflage.
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Liu-Jun, and Ji-Ping Huang. "Theory for Invisible Thermal Sensors: Monolayer Scheme." In Transformation Thermotics and Extended Theories, 149–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_11.

Full text
Abstract:
AbstractIn this chapter, we propose an anisotropic monolayer scheme to prevent thermal sensors from distorting local and background temperature profiles, making them accurate and thermally invisible. We design metashells with anisotropic thermal conductivity and perform finite-element simulations in two or three dimensions for arbitrarily given thermal conductivity of sensors and backgrounds. We further experimentally fabricate a metashell with an anisotropic thermal conductivity based on the effective medium theory, which confirms the feasibility of our scheme. Our results are beneficial to improving the performance of thermal detection and may also guide other diffusive physical fields.
APA, Harvard, Vancouver, ISO, and other styles
9

Pobell, Frank. "Thermal Contact and Thermal Isolation." In Matter and Methods at Low Temperatures, 95–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46360-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pobell, Frank. "Thermal Contact and Thermal Isolation." In Matter and Methods at Low Temperatures, 64–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-08578-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal"

1

Song, Jiaxing, Yu-Min Lee, and Chia-Tung Ho. "ThermPL: Thermal-aware placement based on thermal contribution and locality." In 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2016. http://dx.doi.org/10.1109/vlsi-dat.2016.7482538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ababneh, Mohammed T., Frank M. Gerner, Pramod Chamarthy, Peter de Bock, Shakti Chauhan, and Tao Deng. "Thermo-Fluid Model for High Thermal Conductivity Thermal Ground Planes." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75185.

Full text
Abstract:
The thermal ground plane (TGP) is an advanced planar heat pipe designed for cooling microelectronics in high gravitational fields. A thermal resistance model is developed to predict the thermal performance of the TGP, including the effects of the presence of non-condensable gases (NCGs). Viscous laminar flow pressure losses are predicted to determine the maximum heat load when the capillary limit is reached. This paper shows that the axial effective thermal conductivity of the TGP decreases when the substrate and/or wick are thicker and/or with the presence of NCGs. Moreover, it was demonstrated that the thermo-fluid model may be utilized to optimize the performance of the TGP by estimating the limits of wick thickness and vapor space thickness for a recognized internal volume of the TGP. The wick porosity plays an important effect on maximum heat transport capability. A large adverse gravitational field strongly decreases the maximum heat transport capability of the TGP. Axial effective thermal conductivity is mostly unaffected by the gravitational field. The maximum length of the TGP before reaching the capillary limit is inversely proportional to input power.
APA, Harvard, Vancouver, ISO, and other styles
3

GOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK, and ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON, and MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SONG, ZHUORUI, TYSON WATKINS, and HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CASTIGLIONE, PAOLO, and GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

GARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK, and HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DEHN, SUSANNE, ERIK RASMUSSEN, and CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ILLKOVA, KSENIA, RADEK MUSALEK, and JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER, and ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal"

1

Johra, Hicham. Thermal properties of common building materials. Department of the Built Environment, Aalborg University, January 2019. http://dx.doi.org/10.54337/aau294603722.

Full text
Abstract:
The aim of this technical report is to provide a large collection of the main thermos-physical properties of various common construction materials and materials composing the elements inside the indoor environment of residential and office buildings. The Excel file enclosed with this document can be easily used to find thermal properties of materials for building energy and indoor environment simulation or to analyze experimental data. Note: A more recent version of that report and database are available at: https://vbn.aau.dk/en/publications/thermal-properties-of-building-materials-review-and-database
APA, Harvard, Vancouver, ISO, and other styles
2

Guidotti, R. A., and M. Moss. Thermal conductivity of thermal-battery insulations. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/102467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guidotti, Ronald Armand. Thermally-related safety issues associated with thermal batteries. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/889003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilkinson, A., and A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Catherino, Henry A. Thermal Runaway. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada460694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cullen, D. E. THERMAL: A routine designed to calculate neutron thermal scattering. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/64145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Glascoe, E. A., H. C. Turner, and A. E. gash. Thermal Analysis and Thermal Properties of ANPZ and DNDMP. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1182242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bentz, Dale P., Amanda Forster, Kirk Rice, and Michael Riley. Thermal properties and thermal modeling of ballistic clay box. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Gerald. Thermal / structural analysis of the HB 650 thermal shield. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Imhoff, Seth. Uranium Density, Thermal Conductivity, Specific Heat, and Thermal Diffusivity. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1768421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography