Academic literature on the topic 'Therapeutic enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Therapeutic enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Therapeutic enzymes"
Städler, Brigitte, and Alexander N. Zelikin. "Enzyme prodrug therapies and therapeutic enzymes." Advanced Drug Delivery Reviews 118 (September 2017): 1. http://dx.doi.org/10.1016/j.addr.2017.10.006.
Full textBax, Bridget E. "Erythrocytes as Carriers of Therapeutic Enzymes." Pharmaceutics 12, no. 5 (May 8, 2020): 435. http://dx.doi.org/10.3390/pharmaceutics12050435.
Full textNoten, J. B. G. M., W. M. A. Verhoeven, S. Tuinier, and D. Touw. "Therapeutic drug monitoring." Acta Neuropsychiatrica 11, no. 1 (March 1999): 15–16. http://dx.doi.org/10.1017/s0924270800036309.
Full textWiederschain, G. Ya, and M. Baldry. "Directory of therapeutic enzymes." Biochemistry (Moscow) 71, no. 11 (November 2006): 1289–90. http://dx.doi.org/10.1134/s0006297906110162.
Full textAlisi, Anna, Sara Tomaselli, Clara Balsano, and Angela Gallo. "Hepatitis C virus therapeutics: Editing enzymes promising therapeutic targets?" Hepatology 54, no. 2 (July 25, 2011): 742. http://dx.doi.org/10.1002/hep.24409.
Full textSioud, Mouldy, and Marianne Leirdal. "Therapeutic RNA and DNA enzymes." Biochemical Pharmacology 60, no. 8 (October 2000): 1023–26. http://dx.doi.org/10.1016/s0006-2952(00)00395-6.
Full textMaximov, V., V. Reukov, and A. A. Vertegel. "Targeted delivery of therapeutic enzymes." Journal of Drug Delivery Science and Technology 19, no. 5 (2009): 311–20. http://dx.doi.org/10.1016/s1773-2247(09)50066-4.
Full textKokotos, George. "Lipolytic enzymes as therapeutic targets." European Journal of Lipid Science and Technology 110, no. 12 (December 2008): 1081–83. http://dx.doi.org/10.1002/ejlt.200800249.
Full textAzmi, Wamik, and Shabnam Chaudhary. "ARTHROBACTER AS BIOFACTORY OF THERAPEUTIC ENZYMES." International Journal of Pharmacy and Pharmaceutical Sciences 10, no. 11 (November 1, 2018): 1. http://dx.doi.org/10.22159/ijpps.2018v10i11.25933.
Full textKaplan, Jeffrey B. "Therapeutic Potential of Biofilm-Dispersing Enzymes." International Journal of Artificial Organs 32, no. 9 (September 2009): 545–54. http://dx.doi.org/10.1177/039139880903200903.
Full textDissertations / Theses on the topic "Therapeutic enzymes"
Gordon, Nathaniel Charles. "Protease engineering for therapeutic applications." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648185.
Full textVigne, Aurélie. "Microfluidic tools for the engineering of enzymes of therapeutic interest." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0391/document.
Full textThis thesis deals with the development of microfluidic tools for the engineering ofenzymes of therapeutic interest. Droplet microfluidics has enormous potential in the field ofquantitative biology. We are developing microfluidic tools based on the directed evolutionof the enzyme L-asparaginase, an enzyme used to treat acute lymphoblastic leukemia. Thistreatment is based on an enzyme of bacterial origin, which leads to immune reactions thatresult in the interruption of treatment, often fatal for the patient. However, a human version ofthe enzyme L-asparaginase, which is less immunogenic, is currently not sufficiently active to beused. The main objective of this thesis is to analyze and screen enzyme mutant libraries usingstandard mutagenesis methods and to analyze each mutant individually through microfluidics.For this, several microfluidic systems have been developed and optimized for different selectioncriteria for the analysis and selection of the enzyme L-asparaginase. The bacterial versionserving as a positive control for the optimization of microfluidic workflows to analyze andscreen mutant libraries of the human version of the enzyme L-asparaginase
Lovering, Andrew Lee. "X-ray crystallographic studies of therapeutic enzymes : nitroreductase and AKR1C3." Thesis, University of Birmingham, 2003. http://etheses.bham.ac.uk//id/eprint/3588/.
Full textGuiney, Daniel. "Design and synthesis of inhibitors of enzymes in the folate biosynthesis pathway." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273387.
Full textHart, R. J. "Developing protein conjugation techniques to enhance cell delivery of therapeutic enzymes." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18996/.
Full textMaheshwari, Sweta. "Caractérisation biochimique et cellulaire des enzymes clés du métabolisme des phospholipides chez Plasmodium falciparum." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20004.
Full textPhospholipids are essential for the growth and development of Plasmodium falciparum malaria parasite. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are its major structural phospholipids. This study focused on CTP: phosphoethanolamine cytidylyltransferase (ECT) and CTP: phosphocholine cytidylyltransferase (CCT) that catalyzes the rate-limiting steps of the de novo Kennedy pathways for PE and PC biosynthesis respectively. Both ECT and CCT are essential in the rodent malaria parasite P. berghei and constitute potential chemotherapeutic targets to fight against malaria. PfCCT consists of two very similar cytidylyltransferase (CT) domains whereas the human enzyme consists of only one CT domain. The presence of two CT domains in ECT seems to be widespread in all the organisms. Sequence and structural analysis showed that the C-terminal CT domain of ECT lacks key residues in the substrate binding motif. This study aimed at unravelling the enzymatic properties and cellular characteristics of PfECT and PfCCT enzymes. In addition, these studies addressed the key question if C-terminal CT domain of PfECT is catalytically active. Kinetic parameters of the enzymes were evaluated in vitro on native proteins as well as on recombinant proteins, the latter being produced in bacterial system. Cellular characterisation studies using polyclonal antisera showed that PfECT and PfCCT are expressed throughout the intra-erythrocytic life cycle of the parasite. PfECT is found mainly in soluble form in the parasite while PfCCT is present in soluble as well as insoluble forms in the parasite. Furthermore, immunofluorescence studies for PfECT revealed that it is mainly cytosolic. To assess the contribution of each CT domain to overall PfECT enzyme activity, recombinant PfECT mutants were generated by site-directed mutagenesis. Kinetic studies on these mutants indicated that the N-terminal CT domain was the only active domain of PfECT. Collectively, these results bring new insights into the kinetic and cellular properties of the enzymes and will pave the way in developing a future pharmacological approach
Mao, Wei. "Etude biochimique et sélection d'inhibiteurs spécifiques d'une cible thérapeutique leishmanienne : la GDP-Mannose-Pyrophosphorylase." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS481.
Full textLeishmaniases are Neglected Tropical Disease (NTD)caused by a protozoan parasite of the genus Leishmania and transmitted by an insect vector, the phlebotomine sandfly. Leishmaniases threaten 310 millions people in 98 countries around the world. Current antileishmanial treatments are limited and present major issues of toxicity and drug resistance emergence. In this context, it is necessary to develop new specific antileishmanial drugs specifically directed against a therapeutic target in the parasite.The GDP-Mannose Pyrophosphorylase (GDP-MP) is a therapeutic target which has been described to be essential for parasite survival both in vitro and in vivo. Several differences have been identified in the active site of leishmanial GDP-MPs compared to the human counterpart, showing the prominence of this therapeutic target in the development of new treatments against leishmaniasis. The GDP-MP catalyzes the synthesis of GDP-Mannose,the activated form of mannose, an important molecular constituent of the glycosylation processes involved in the biosynthesis of glycoconjugates which are essential for host-parasite recognition. My thesis work consisted in the production and purification of GDP-MPs from 3 Leishmania species (Leishmania donovani,Leishmania infantum and Leishmania mexicana)and from humanin order to compare their enzymatic properties. From potential inhibitors designed and synthesized on the basis of leishmanial and human GDP-MP molecular models, 100 compounds were evaluated on purified enzymes and on parasites in vitro. These analyses allowed us to select some compounds which are specifically directed against the parasite target and presenting antileishmanial activities. We have also initiated a study of expression and localization of GDP-MP after treatment with the most potent compounds. These compounds will be used as pharmacological tools for the development of new specific antileishmanial drugs
Mendieta, Martínez Laura. "Protease inhibitors as therapeutic agents." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/279388.
Full textLas proteasas están involucradas en un alto número de enfermedades y por lo tanto, son dianas terapéuticas relevantes. Por este motivo, nuestra principal meta era el descubrimiento de inhibidores de proteasas cómo agentes terapéuticos. Para ello nuestro estudio en cuatro proteasas: la dipeptidil peptidasa IV, la prolil oligopeptidasa y las catepsinas L y B. Para la búsqueda de inhibidores, se seleccionaron tres estrategias: cribado de plantas medicinales, cribado de alto rendimiento y caracterización de una biblioteca proveniente de la química combinatoria. Una vez se llevó a cabo la expresión recombinante de la DPPIV, la proteína se estudió mediante resonancia magnética nuclear (NMR) para obtener información acerca de su dinamismo. Dado que es una proteína grande, se utilizó una estrategia en la que se combinó el marcaje selectivo y el uso de experimentos TROSY-HSQC. Posteriormente, se realizó el estudio de la DPP IV en presencia de sus inhibidores, para observar como estos afectan a la estructura proteica. Después, se realizó la búsqueda de inhibidores de la DPP IV a partir de extractos de plantas medicinales. De nuestra colección, se seleccionó el extracto de la planta AP-3 para un análisis en profundidad. Se detectaron dos inhibidores de la proteasa. El más potente, AP-3-a, se caracterizó cómo un inhibidor parabólico. Después se llevó a cabo el estudio del complejo DPP IV/AP-3-a por NMR. En cuanto a la POP, se realizó la búsqueda de inhibidores mediante cribado de alto rendimiento (HTS). De los 4,500 compuestos testados se obtuvo un total de 73 hits en el ensayo de polarización de la fluorescencia (FP). La validación de estas moléculas mediante docking, clustering y ensayos enzimáticos, permitió identificar seis potentes inhibidores de POP. Uno de ellos, HTS-75, se caracterizó como un inhibidor parabólico. Esta es la primera vez que se describe un inactivador de este tipo para POP. Finalmente, en cuanto a las catepsinas L y B, se cribó una librería de peptidil aril vinil sulfonas. Entre las 20 moléculas testadas se encontró un potente inhibidor irreversible de la catepsina L, el PAVS-20. Además, se realizó un estudio de docking que permitió evaluar las preferencias de los subsitios de las dos proteasas.
Mirza, Ahmad. "Structural characterization of novel antimicrobial therapeutic targets and crystallographic examination of enzymes involved in xenobiotic metabolism." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86555.
Full textPart II. Microbes have long been admired for their ability to process virtually any chemical. In Part II of this work we will engage in the structural characterization of two enzymes involved in the microbial degradation of xenobiotic compounds. The first enzyme, cyclohexylamine oxidase (CHAO), is the enabling step in the bacterial metabolism of cyclohexylamine. Preliminary crystallographic analysis of cofactor bound and ternary complexes of CHAO, will be used to highlight differences between this enzyme and its closest human homologue. This information will then be used to direct structure inspired mutagenesis studies in order to better understand the substrate specificity of this enzyme and how it might be altered. Finally, the last enzyme to be discussed in this work will be cyclohexanone monooxygenase (CHMO). Also from the same biodegradation pathway as CHAO this enzyme is responsible for the stereo- and regio- specific conversion of small cyclic ketones into lactones. This reaction, known as the Baeyer-Villiger Oxidation, is of tremendous importance in the pharmaceutical industry as lactones often serve as the building blocks of other larger compounds. Surprisingly, despite many years of research there has never been a published report on the structure of this enzyme. We detail here, for the first time, the crystallographic structure of CHMO in multiple conformations. Together, the various structures of CHAO and CHMO presented will provide insight into how bacteria are able to process xenobiotics and how we might use this information for structure based protein design.
Partie I. Récemment, il y a eu une augmentation alarmante du nombre d'infections causées par des organismes pathogènes qui sont insensibles aux produits pharmaceutiques existants, d'où la nécessité d'identifier de nouvelles cibles antimicrobiennes. Ici, nous décrivons des études structurales de deux enzymes de la famille des enzymes de biosynthèse de l'aspartate afin d'évaluer leur potentiel en tant que cible pharmaceutique. Notre première étude décrit comment un improbable inhibiteur avec une liaison de l'ordre du millimolaire, 5-hydroxy-4-oxo-norvaline, peut inactiver l'homosérine déshydrogénase (HSD) par la formation d'un complexe covalent stable. L'étude est suivie par la caractérisation structurale du premier inhibiteur de l'HSD qui est dérivé du phénol et non d'un acide aminé, et dont nous démontrons qu'il occupe le site de liaison du substrat et forme des contacts spécifiques avec les résidus impliqués dans la catalyse. Mis ensembles, ces études jettent les bases pour la conception de nouveaux adjuvants de l'HSD basée sur la structure. Suite à cela, nous rapportons la première structure de l'enzyme suivante dans la voie métabolique de l'aspartate, l'homosérine transacétylase (HTA). Cette enzyme est essentielle à la survie microbienne, car elle catalyse une réaction déterminante de la biosynthèse microbienne de la méthionine. La structure cristalline à haute résolution identifie l'HTA comme un nouveau membre d'une large famille structurale d'enzymes appelées les alpha/beta hydrolases. En utilisant la structure comme guide, nous proposons une explication pour le mécanisme de réaction ping-pong rapporté antérieurement pour cette enzyme. Nous concluons avec une perspective sur la façon dont le substrat naturel, l'homosérine, lie le site actif, ainsi que sur les différences subtiles qui existent entre les HTA provenant de sources différentes.
Partie II. Les microbes ont depuis longtemps été admirés pour leur capacité à transformer littéralement n'importe quel composé chimique. Dans la deuxième partie de cette thèse, nous entreprenons la caractérisation structurale de deux enzymes impliquées dans la dégradation microbienne des composés xénobiotiques. La première enzyme, la cyclohexylamine oxidase (CHAO), est l'étape déterminante dans le métabolisme bactérien de la cyclohexylamine. L'analyse cristallographique préliminaire de CHAO lié avec un co-facteur ou en complexe ternaire sera utilisée pour souligner les différences entre cette enzyme et son homologue le plus près chez l'humain. Cette information sera ensuite utilisée pour diriger des études de mutagénèse inspirées de la structure afin de mieux comprendre la spécificité de l'enzyme envers son substrat et comment celle-ci pourra être altéré. Enfin, la dernière enzyme dont nous discuterons dans ce travail sera la cyclohexanone monooxygenase (CHMO). Provenant de la même voie métabolique de dégradation que la CHAO, cette enzyme est responsable pour la conversion stéréo- et régio-spécifique de petites cétones cycliques en lactones. Cette réaction, connu sous le nom d'oxydation Baeyer-Villiger, est d'une importance capitale pour l'industrie pharmaceutique car les lactones servent de précurseurs pour la synthèse d'autres composés plus grands. Étonnamment, en dépit de nombreuses années de recherches, il n'y a jamais eu de publication rapportant la structure de cette enzyme. Ici, nous décrivons pour la première fois la structure cristallographique de la CHMO dans des conformations multiples. Ensemble, les structures de CHAO et CHMO présentées ici nous permettront de mieux comprendre comment les bactéries transforment les composés xénobiotiques et comment cette information pourra être utilisé pour l'ingénierie de protéine basée sur la structure. fr
Chen, Shen-En Trawick Mary Lynn. "Modeling, design, and development of potential inhibitors of [gamma]-glutamylamine cyclotransferase and inhibitors of cruzain as therapeutic agents for Chagas' disease." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5189.
Full textBooks on the topic "Therapeutic enzymes"
Cichoke, Anthony J. Enzymes, nature's energizer. New Canaan, Conn: Keats Pub., 1997.
Find full textLabrou, Nikolaos, ed. Therapeutic Enzymes: Function and Clinical Implications. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7709-9.
Full textCichoke, Anthony J. Enzymes the sparks of life. Summertown, Tenn: Books Alive, 2008.
Find full textLee, Lita. The enzyme cure: How plant enzymes can help you relieve 36 health problems. Tiburon, Calif: Future Medicine Pub., 1998.
Find full textBickerstaff, Gordon F. Enzymes in industry and medicine. London: E. Arnold, 1987.
Find full textDeFelice, Karen L. Enzymes : go with your gut: More practical guidelines for digestive enzymes. [Johnston, IA]: ThunderSnow Interactive, 2006.
Find full textCichoke, Anthony J. Enzymes and enzyme therapy: How to jump start your way to lifelong good health. New Canaan, Conn: Keats Pub., 1994.
Find full textEnzymes and enzyme therapy: How to jump-start your way to lifelong good health. 2nd ed. Los Angeles, CA: Keats Publishing, 2000.
Find full textHowell, Edward. Food enzymes for health and longevity. 2nd ed. Twin Lakes, WI: Lotus Press, 1994.
Find full textHowell, Edward. Enzyme nutrition: The food enzyme concept. Wayne, N.J: Avery, 1985.
Find full textBook chapters on the topic "Therapeutic enzymes"
Nampoothiri, K. Madhavan, Abdulhameed Sabu, and Ashok Pandey. "Therapeutic Enzymes." In Enzyme Technology, 697–707. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35141-4_35.
Full textKumar, Swaroop S., and Sabu Abdulhameed. "Therapeutic Enzymes." In Bioresources and Bioprocess in Biotechnology, 45–73. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4284-3_2.
Full textLutz, Stefan, Elsie Williams, and Pravin Muthu. "Engineering Therapeutic Enzymes." In Directed Enzyme Evolution: Advances and Applications, 17–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50413-1_2.
Full textTorchilin, Vladimir P. "Immobilization of Therapeutic Enzymes." In Progress in Clinical Biochemistry and Medicine, 13–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75821-8_3.
Full textPişkin, A. Kevser. "Therapeutic Potential of Immobilized Enzymes." In Uses of Immobilized Biological Compounds, 151–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1932-0_15.
Full textSilva, Ana Catarina, Cládia Pina Costa, Hugo Almeida, João Nuno Moreira, and José Manuel Sousa Lobo. "Hormones, Blood Products, and Therapeutic Enzymes." In Current Applications of Pharmaceutical Biotechnology, 115–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/10_2019_111.
Full textTaipa, M. Ângela, Pedro Fernandes, and Carla C. C. R. de Carvalho. "Production and Purification of Therapeutic Enzymes." In Advances in Experimental Medicine and Biology, 1–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7709-9_1.
Full textTorchilin, Vladimir P. "Therapeutic Immobilized Enzymes for Parenteral Application." In Progress in Clinical Biochemistry and Medicine, 29–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75821-8_4.
Full textSabu, Abdulhameed, K. Madhavan Nampoothiri, and Ashok Pandey. "L-Glutaminase as a Therapeutic Enzyme of Microbial Origin." In Microbial Enzymes and Biotransformations, 75–90. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-846-3:075.
Full textLu, Anthony Y. H. "Therapeutic Agents and Cytochrome P450." In Molecular Aspects of Oxidative Drug Metabolizing Enzymes, 503–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79528-2_24.
Full textConference papers on the topic "Therapeutic enzymes"
O’Toole, S., H. Melarcode, S. Elbaruni, F. AbuSaadeh, M. Ward, M. Gallagher, L. Norris, S. Gray, J. O`Leary, and B. Mohamed. "EP926 PAD enzymes as a candidate therapeutic target in ovarian cancer." In ESGO Annual Meeting Abstracts. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/ijgc-2019-esgo.972.
Full textVazquez, Louis C., Erik Hagel, Bradley J. Willenberg, Christopher D. Batich, and Malisa Sarntinoranont. "Effect of Polymer Coated Needles on Infusate Backflow During Convection-Enhanced Delivery." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19557.
Full textOfosu, F. A., G. J. Modi, M. R. Buchanan, J. Hirsh, and M. A. Blajchman. "HEPARIN IS NOT AN EFFICIENT INHIBITOR OF THE FACTOR Xa-DEPENDENT ACTIVATION OF FACTOR V AND FACTOR VIII." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642931.
Full textAgouni, Abdelali, Duck Y. Lee, Assaad A. Eid, Yves Gorin, and Kumar Sharma. "The Protective Role of Sestrin2 in High Fat Diet-Induced Nephropathy." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0134.
Full textTurina, E. L., S. G. Efimenko, Yu A. Kornev, and A. P. Liksutina. "Results of Сamelina oil assessment." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.35.
Full textChen, Liqiang, Riccardo Petrelli, Krzysztof Felczak, Magda Olesiak, Eric M. Bennett, Giulio Magni, and Krzysztof W. Pankiewicz. "Novel cofactor-type inhibitors of NAD-dependent enzymes. NAD-based therapeutics." In XIVth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810071.
Full textBerger, C., A. Pilch, J. Ruppert, FP Armbruster, and J. Stein. "An enzyme-linked immunosorbent assay for therapeutic drug monitoring of Golimumab." In Viszeralmedizin 2017. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1604810.
Full textLee, David L., Hsiao-ling M. Chin, Christopher G. Knudsen, George L. Mayers, David S. Rose, Roy K. Skogstrom, Timothy Palzkill, et al. "Peptide-based scaffolds for in vivo immobilization and enzyme attachment in therapeutic applications." In Molecular and Nano Machines III, edited by Zouheir Sekkat and Takashige Omatsu. SPIE, 2020. http://dx.doi.org/10.1117/12.2566895.
Full textRohyami, Yuli, Rafika Debby Anjani, and Napthalina Putri Purwanti. "The influence of Saccharomyces cerevisiae enzyme ratio on preparation virgin coconut oil for candidate in-house reference materials." In PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978159.
Full textR., Halimahtussadiyah, Muh Natsir, Desy Kurniawati, and Sukma Puspita Utamy. "Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme." In PROCEEDINGS FROM THE 14TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND. Author(s), 2017. http://dx.doi.org/10.1063/1.4978135.
Full textReports on the topic "Therapeutic enzymes"
Chen, Shuo. Anti-Androgen Receptor RNA Enzyme as a Novel Therapeutic Agent for Prostate Cancer In Vivo. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada462865.
Full text