To see the other types of publications on this topic, follow the link: Théorie semi-Paramétrique.

Dissertations / Theses on the topic 'Théorie semi-Paramétrique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Théorie semi-Paramétrique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Harari-Kermadec, Hugo. "Vraisemblance empirique généralisée et estimation semi-paramétrique." Paris 10, 2006. http://www.theses.fr/2006PA100136.

Full text
Abstract:
La vraisemblance empirique est une méthode d'estimation inspirée de la vraisemblance classique, mais s'affranchissant du choix d'une famille paramétrique de lois. Cette méthode semi-paramétrique consiste à maximiser la vraisemblance d'une loi ne chargeant que les données et permet de construire des régions de confiance lorsque le paramètre d'intérêt est défini à partir de contraintes de moments. Dans cette thèse, nous généraliserons la méthode de vraisemblance empirique à une vaste gamme de méthodes de divergence empirique. Nous montrerons que l’on peut obtenir des résultats non asymptotiques originaux pour certaines divergences. Nous proposerons également une adaptation de la vraisemblance empirique aux chaînes de Markov. Nous mènerons deux applications : l’estimation d’un indice du risque d’exposition au méthylmercure, en combinant les diverses sources de données disponibles, et l’étude du rôle de la norme sociale sur le surpoids et l’obésité
Empirical likelihood is an estimation method inspired by the classical likelihood method, but without assuming any parametric model for the distribution of the data. The empirical likelihood method can be described as the maximization of the likelihood of a discrete distribution supported by the data. It can be used to build confidence regions, as long as the parameter of interest is defined by some moment constraints. In this thesis, we will generalize the empirical likelihood method to a wide family of empirical discrepancy methods. We give in particular non asymptotic results for some well-chosen discrepancies. We will also propose an extension of empirical likelihood to Markov chains. Those theoretical results will be used in two. The first one proposes to evaluate some risk index for the exposition to methyl-mercury via sea products consumption, by taking into account several data sources. The second one evaluates the effect of social norm on obesity
APA, Harvard, Vancouver, ISO, and other styles
2

Ouhbi, Brahim. "Estimation non paramétrique dans les processus semi-markoviens et application en fiabilité." Compiègne, 1997. http://www.theses.fr/1997COMP1046.

Full text
Abstract:
Les processus semi-markoviens sont des processus très généraux dont les applications couvrent beaucoup des domaines : fiabilité des systèmes, évolution des populations, traitements médicaux, sociologie, etc. Ils généralisent les processus de Markov de sauts ainsi que les processus de renouvellement. Le présent travail porte sur l'estimation non-paramétrique des différentes grandeurs semi-markoviennes. En effet, nous présentons un modèle d'estimation du taux de hasard associé au noyau semi-markovien. En nous basant sur ce modèle, nous obtenons la majorité des estimateurs connus et nous proposons, à partir de ce même modèle, un nouvel estimateur du noyau semi-markovien. Les propriétés asymptotiques des différents estimateurs sont étudiées : convergence faible, convergence uniforme forte et normalité. La matrice de renouvellement markovien et la matrice de transition semi-markovienne jouent un rôle fondamental dans l'étude des processus semi-markoviens. Ce travail fournit un estimateur de chacune des deux matrices ci-dessus. Nous étudions aussi leurs propriétés asymptotiques. Le domaine d'application qui nous intéresse est la fiabilité des systèmes. Nous donnons un estimateur de la fiabilité et un estimateur de la disponibilité des systèmes semi-markoviens et nous étudions leurs propriétés asymptotiques. Les résultats que nous avons obtenus sont validés sur des données d'exploitation qui concernent les rotors turbo-générateurs des alternateurs. Nous avons obtenu beaucoup plus de renseignements que par les méthodes classiques.
APA, Harvard, Vancouver, ISO, and other styles
3

Attaoui, Said. "Sur l'estimation semi paramétrique robuste pour statistique fonctionnelle." Phd thesis, Université du Littoral Côte d'Opale, 2012. http://tel.archives-ouvertes.fr/tel-00871026.

Full text
Abstract:
Dans cette thèse, nous nous proposons d'étudier quelques paramètres fonctionnels lorsque les données sont générées à partir d'un modèle de régression à indice simple. Nous étudions deux paramètres fonctionnels. Dans un premier temps nous supposons que la variable explicative est à valeurs dans un espace de Hilbert (dimension infinie) et nous considérons l'estimation de la densité conditionnelle par la méthode de noyau. Nous traitons les propriétés asymptotiques de cet estimateur dans les deux cas indépendant et dépendant. Pour le cas où les observations sont indépendantes identiquement distribuées (i.i.d.), nous obtenons la convergence ponctuelle et uniforme presque complète avec vitesse de l'estimateur construit. Comme application nous discutons l'impact de ce résultat en prévision non paramétrique fonctionnelle à partir de l'estimation de mode conditionnelle. La dépendance est modélisée via la corrélation quasi-associée. Dans ce contexte nous établissons la convergence presque complète ainsi que la normalité asymptotique de l'estimateur à noyau de la densité condtionnelle convenablement normalisée. Nous donnons de manière explicite la variance asymptotique. Notons que toutes ces propriétés asymptotiques ont été obtenues sous des conditions standard et elles mettent en évidence le phénomène de concentration de la mesure de probabilité de la variable fonctionnelle sur des petites boules. Dans un second temps, nous supposons que la variable explicative est vectorielle et nous nous intéressons à un modèle de prévision assez général qui est la régression robuste. A partir d'observations quasi-associées, on construit un estimateur à noyau pour ce paramètre fonctionnel. Comme résultat asymptotique on établit la vitesse de convergence presque complète uniforme de l'estimateur construit. Nous insistons sur le fait que les deux modèles étudiés dans cette thèse pourraient être utilisés pour l'estimation de l'indice simple lorsque ce dernier est inconnu, en utilisant la méthode d'M-estimation ou la méthode de pseudo-maximum de vraisemblance, qui est un cas particulier de la première méthode.
APA, Harvard, Vancouver, ISO, and other styles
4

Lévy-Leduc, Céline. "Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications." Paris 11, 2004. http://www.theses.fr/2004PA112146.

Full text
Abstract:
Cette thèse porte sur l'estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers cadres statistiques ainsi qu'à la mise en place de tests non-paramétriques permettant de détecter la présence de signal périodique dans du bruit. Dans le chapitre 1, nous proposons des estimateurs asymptotiquement optimaux de la période d'une fonction périodique et des périodes de deux fonctions périodiques à partir de leur somme bruitée. Dans le chapitre 2, nous proposons un algorithme pratique d'estimation de période fondée sur les idées du chapitre 1 que nous testons sur des données simulées de vibrométrie laser. Cet algorithme est testé dans le chapitre 3 sur des données réelles musicales. Dans le chapitre 4, nous proposons un estimateur de période lorsque les observations correspondent à une fonction presque périodique particulière bruitée ainsi qu'une mise en oeuvre pratique de la méthode que l'on a testée sur des signaux de vibrométrie laser. Dans le chapitre 5, on propose un test de détection de fonctions périodiques dans du bruit lorsque la période de la fonction et la variance du bruit sont inconnues qui est adaptatif au sens du minimax et on l'a teste sur des données de vibrométrie laser
This thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data
APA, Harvard, Vancouver, ISO, and other styles
5

Knefati, Muhammad Anas. "Estimation non-paramétrique du quantile conditionnel et apprentissage semi-paramétrique : applications en assurance et actuariat." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2280/document.

Full text
Abstract:
La thèse se compose de deux parties : une partie consacrée à l'estimation des quantiles conditionnels et une autre à l'apprentissage supervisé. La partie "Estimation des quantiles conditionnels" est organisée en 3 chapitres : Le chapitre 1 est consacré à une introduction sur la régression linéaire locale, présentant les méthodes les plus utilisées, pour estimer le paramètre de lissage. Le chapitre 2 traite des méthodes existantes d’estimation nonparamétriques du quantile conditionnel ; Ces méthodes sont comparées, au moyen d’expériences numériques sur des données simulées et des données réelles. Le chapitre 3 est consacré à un nouvel estimateur du quantile conditionnel et que nous proposons ; Cet estimateur repose sur l'utilisation d'un noyau asymétrique en x. Sous certaines hypothèses, notre estimateur s'avère plus performant que les estimateurs usuels. La partie "Apprentissage supervisé" est, elle aussi, composée de 3 chapitres : Le chapitre 4 est une introduction à l’apprentissage statistique et les notions de base utilisées, dans cette partie. Le chapitre 5 est une revue des méthodes conventionnelles de classification supervisée. Le chapitre 6 est consacré au transfert d'un modèle d'apprentissage semi-paramétrique. La performance de cette méthode est montrée par des expériences numériques sur des données morphométriques et des données de credit-scoring
The thesis consists of two parts: One part is about the estimation of conditional quantiles and the other is about supervised learning. The "conditional quantile estimate" part is organized into 3 chapters. Chapter 1 is devoted to an introduction to the local linear regression and then goes on to present the methods, the most used in the literature to estimate the smoothing parameter. Chapter 2 addresses the nonparametric estimation methods of conditional quantile and then gives numerical experiments on simulated data and real data. Chapter 3 is devoted to a new conditional quantile estimator, we propose. This estimator is based on the use of asymmetrical kernels w.r.t. x. We show, under some hypothesis, that this new estimator is more efficient than the other estimators already used. The "supervised learning" part is, too, with 3 chapters: Chapter 4 provides an introduction to statistical learning, remembering the basic concepts used in this part. Chapter 5 discusses the conventional methods of supervised classification. Chapter 6 is devoted to propose a method of transferring a semiparametric model. The performance of this method is shown by numerical experiments on morphometric data and credit-scoring data
APA, Harvard, Vancouver, ISO, and other styles
6

Barbu, Vlad. "Estimation des chaînes semi-markoviennes et des chaînes semi-markoviennes cachées en vue d'applications en fiabilité et en biologie." Compiègne, 2005. http://www.theses.fr/2005COMP1568.

Full text
Abstract:
Dans la première partie de ma thèse je me suis intéressé au modèle semi-markovien à temps discret et à l'estimation non-paramétrique associée. Les résultats obtenus sont appliqués pour déduire des estimateurs de la fiabilité des systèmes et des mesures associées. Les propriétés asymptotiques des estimateurs sont étudiées. Un exemple illustre le calcul pratique des mesures de la fiabilité. La deuxième partie de ma thèse est consacrée à l'estimation des modèles semi-markoviens cachés. Les propriétés asymptotiques des estimateurs sont étudiées et un algorithme EM pour obtenir les estimateurs est proposé. Une application en génétique pour l'estimation des îlots CpG dans une séquence d'ADN illustre l'intérêt de nos recherches
The first part of my thesis concerns the discrete time semi-Markov models and the associated nonparametric estimation. The obtained results are used for deriving estimators of the systems reliability and of the associated measures. The asymptotic properties of the estimators are studied. An example illustrates how to practically compute the reliability indicators. The second part of my thesis is devoted to the estimation of hidden semi-Markov models. The asymptotic properties of the estimators are studied and an EM algorithm is proposed. An application in genetics for detecting the CpG islands in a DNA sequence shows the interest of our researches
APA, Harvard, Vancouver, ISO, and other styles
7

Georgiadis, Stylianos. "Estimation des systèmes semi-markoviens à temps discret avec applications." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2112/document.

Full text
Abstract:
Le présent travail porte sur l’estimation d’un système en temps discret dont l’évolution est décrite par une chaîne semi-markovienne (CSM) d’espace d’état fini. Nous présentons le principe d’invariance sous forme multidimensionnelle pour le noyau semi-markovien (NSM), ainsi que diverses mesures du processus. Ensuite, nous étudions l’estimation non-paramétrique de la loi stationnaire de la CSM, en considérant deux estimateurs différents, et nous montrons qu’ils ont le même comportement asymptotique. La probabilité de la première entrée est également introduite. Nous proposons un estimateur et nous étudions ses propriétés asymptotiques : la convergence forte et la normalité asymptotique.D’autre part, nous nous concentrons sur l’étude de la fiabilité des systèmes semi-markoviens. Nous définissons la fiabilité sur intervalle d’un système dont la fiabilité et la disponibilité sont des cas particuliers et nous étudions les propriétés asymptotiques d’un estimateur proposé. De plus, nous présentons une comparaison de l’estimation des différentes mesures de fiabilité fondées sur deux estimateurs du NSM, en réalisant une trajectoire unique et des observations multiples indépendantes. Ce travail fournit aussi des résultats dans le cas semi-markovien à temps discret avec espace d’état général. Nous évaluons l’approximation de moyenne et de diffusion des chaînes de renouvellement markovien. Enfin, nous nous sommes aussi intéressés à une autre classe des processus pour laquelle nous obtenons des résultats dans le cadre des files d’attente. Nous étudions l’approximation de moyenne pour le modèle d’Engset en temps continu et nous appliquons ce résultat aux files d’attente avec ré-essais
The present work concerns the estimation of a discrete-time system whose evolution is governed by a semi-Markov chain (SMC) with finitely many states. We present the invariance principle in a multidimensional form for the semi-Markov kernel (SMK) and some associated measures of the process. Afterwards, we study the nonparametric estimation of the stationary distribution of the SMC, considering two different estimators, and we prove that they hold the same asymptotic behavior. We introduce also the first hitting probability. We propose an estimator and study its asymptotic properties : the strong consistency and the asymptotic normality. On the other hand, we focus on the study of the dependability of semi-Markovsystems. We introduce the interval reliability whose special cases are the reliability and the availability measures and we study the asymptotic properties of a proposed estimator. Moreover, we present a comparison of nonparametric estimation for various reliability measures based on two estimators of the SMK, realizing a unique trajectory and multiple independent observations.Furthermore, this work provides results on the discrete-time semi-Markov case with general state space. We evaluate the average and diffusion approximation of Markov renewal chains. Finally, we are also interested in another class of processes for which we obtain results in the framework of queueing systems. We establish the average approximationfor the Engset model in continuous time and we apply this result to retrial queues
APA, Harvard, Vancouver, ISO, and other styles
8

Trevezas, Samis. "Etude de l'estimation du Maximum de Vraisemblance dans des modèles Markoviens, Semi-Markoviens et Semi-Markoviens Cachés avec Applications." Phd thesis, Université de Technologie de Compiègne, 2008. http://tel.archives-ouvertes.fr/tel-00472644.

Full text
Abstract:
Dans ce travail je présente une étude unifiée basée sur l'estimation du maximum de vraisemblance pour des modèles markoviens, semi-markoviens et semi-markoviens cachés. Il s'agit d'une étude théorique des propriétés asymptotiques de l'EMV des modèles mentionnés ainsi que une étude algorithmique. D'abord, nous construisons l'estimateur du maximum de vraisemblance (EMV) de la loi stationnaire et de la variance asymptotique du théorème de la limite centrale (TLC) pour des fonctionnelles additives des chaînes de Markov ergodiques et nous démontrons sa convergence forte et sa normalité asymptotique. Ensuite, nous considérons un modèle semi-markovien non paramétrique. Nous présentons l'EMV exact du noyau semi-markovien qui gouverne l'évolution de la chaîne semi-markovienne (CSM) et démontrons la convergence forte, ainsi que la normalité asymptotique de chaque sous-vecteur fini de cet estimateur en obtenant des formes explicites pour les matrices de covariance asymptotiques. Ceci a été appliqué pour une observation de longue durée d'une seule trajectoire d'une CSM, ainsi que pour une suite des trajectoires i.i.d. d'une CSM censurée à un instant fixe. Nous introduisons un modèle semi-markovien caché (MSMC) général avec dépendance des temps de récurrence en arrière. Nous donnons des propriétés asymptotiques de l'EMV qui correspond à ce modèle. Nous déduisons également des expressions explicites pour les matrices de covariance asymptotiques qui apparaissent dans le TLC pour l'EMV des principales caractéristiques des CSM. Enfin, nous proposons une version améliorée de l'algorithme EM (Estimation-Maximisation) et une version stochastique de cet algorithme (SAEM) afin de trouver l'EMV pour les MSMC non paramétriques. Des exemples numériques sont présentés pour ces deux algorithmes.
APA, Harvard, Vancouver, ISO, and other styles
9

Trevezas, Samis. "Etude de l'estimation du maximum de vraisemblance dans des modèles markoviens, semi-markoviens et semi-markoviens cachés avec applications." Phd thesis, Compiègne, 2008. http://www.theses.fr/2008COMP1772.

Full text
Abstract:
Nous construisons l'estimateur du maximum de vraisemblance (EMV) de la loi stationnaire et de la variance asymptotique du théorème de la limite centrale (TLC) pour des fonctionnelles additives des chaînes de Markov ergodiques et nous démontrons sa convergence forte et sa normalité asymptotique. Ensuite, nous considérons un modèle semi-markovien non paramétrique. Nous présentons l'EMV exact du noyau semi-markovien qui gouverne l'évolution de la chaîne semi-markovienne (CSM) et démontrons la convergence forte, ainsi que la normalité asymptotique de chaque sous-vecteur fini de cet estimateur en obtenant des formes explicites pour les matrices de covariance asymptotiques. Ceci a été appliqué pour une observation de longue durée d'une seule trajectoire d'une CSM, ainsi que pour une suite des trajectoires i. I. D. D'une CSM censurée à un instant fixe. Nous introduisons un modèle semi-markovien caché (MSMC) général avec dépendance des temps de récurrence arrière. Nous donnons des propriétés asymptotiques de l'EMV qui correspond à ce modèle. Nous déduisons également des expressions explicites pour les matrices de de covariance asymptotiques qui apparaissent dans le TLC pour l'EMV des principales caractéristiques des CSM. Enfin, nous proposons une version améliorée de l'algorithme EM (Estimation-Maximisation) et une version stochastique de cet algorithme (SAEM) afin de trouver l'EMV pour les MSMC non para métriques. Des exemples numériques sont présentés pour ces deux algorithmes
We construct the maximum likehood estimator (MLE) of the stationnary distribution an of the asymptotic variance of the central limit theorem for additive functionals of ergodic Markov chains and we prove its strong consistency and its asymptotic normamlity. In the sequel, we consider a non-parametric semi-Markov model. We present the exact MLE of the semi-Markov kernel that governs the evolution of the semi-Markov chain (SMC) and we prove the strong consistency as well as the asymptotic normality of every finite subvector of this estimator by obtaining explicit forms for the asymptotic covariance matrices. The asymptotics were considered for one trajectory of SMC as well as for a sequence of i. D. D. Observations of a SMC censored at a fixed time. We introduce a general hidden semi-Markov model (HSMM) with backward recurrence time dependence. We prove asymptotic properties of the MLE that corresponds to this model. We also deduce explicit expressions for the asymptotic covariance matrices that appear in the CLT for the MLE of some basic characteristics of the SMC. Finally, we propose an improved version of the EM algorithm for HSMM and a stochastic version of this algorithm (SAEM), in order to find the MLE for non-parametric HSMMs. Numerical examples are presented for both algorithms
APA, Harvard, Vancouver, ISO, and other styles
10

Gassiat, Elisabeth. "Déconvolution aveugle." Paris 11, 1989. http://www.theses.fr/1988PA112005.

Full text
Abstract:
Considérant une série x formée de variables aléatoires indépendamment identiquement distribuées, et le signal Y obtenu lorsque l'on filtre X par un système linéaire s, nous étudions l'estimation de s sur la base des observations y dans le cadre semi-paramétrique suivant : la loi des x est inconnue et non gaussienne, et s possède un inverse de convolution de longueur finie fixée. Aucune hypothèse n'est faite sur la phase du système, c'est à-dire sur la causalité ou non causalité de s. Nous proposons une estimation par maximum d'objectif. L'estimateur ainsi obtenu est consistant et asymptotiquement gaussien, ce résultat restant valable quelle que soit la dimension de l'espace d'indexation des séries considérées. Nous étudions l'efficacité asymptotique de la méthode et, dans le cas causal, nous la comparons aux méthodes usuelles de moindres carrés. Interprétant notre signal sortant comme un champ autorégressif, nous proposons une méthode consistante d'identification de l'ordre du modèle. Nous étudions divers types de robustesse des estimateurs : robustesse à une sous-paramétrisation, robustesse à l'addition d'un bruit sur l'observation. Nous nous intéressons enfin au cas où la loi de x a des moments infinis, et montrons que, pour des objectifs "cumulants standardisés" et sous certaines hypothèses vérifiées en particulier pour les lois dans les domaines d'attraction de lois stables, l'estimateur obtenu reste consistant, et sa vitesse de convergence, dans le cas causal, est meilleur que pour des lois de variance finie
Considering a signal X which is a process of random variables identically independently distributed, and the signal Y obtained by filtering X through a linear system s, we study the estimation of s from the observation of y in the following semi-parametric situation the law of X is unknown and non Gaussian, and s has an inverse of convolution with finite length. We need no assumption on the phase of the system, i. E. On the causality or non causality of s. We propose an estimation by maximum objective. The estimates are consistent and asymptotically Gaussian this result is still available what-ever the dimension of the index space of the series is. We study the asymptotic efficiency of the estimate and, in the causal case, we compare it to the usual minimum square estimates. The output y being an autoregressive field, we propose a consis- tent method of identification of the order of the model. We study different types of robustness robustness to underparametrization, robustness to additive noise on the observations. We also inves tigate the case where the law of X has infinite moments, and we show that, for "standardized cumulants" as objectives, and under assumptions which are in particular verified for laws in the attraction demains of stable laws, the obtained estimates are still consistent, and the speed of convergence is, in the causal case, better than for laws with finite variance
APA, Harvard, Vancouver, ISO, and other styles
11

Nguyen, Thi Mong Ngoc. "Estimation récursive pour les modèles semi-paramétriques." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00938607.

Full text
Abstract:
Dans cette th ese, nous nous int eressons au mod ele semi-param etrique de r egression de la forme y = f( \theta'x; \epsilon), lorsque x \in R^p et y\in R. Notre objectif est d' etudier des probl emes d'estimation des param etres \theta et f de ce mod ele avec des m ethodes r ecursives. Dans la premi ere partie, l'approche que nous d eveloppons est fond ee sur une m ethode introduite par Li (1991), appel ee Sliced Inverse Regression (SIR). Nous proposons des m ethodes SIR r ecursives pour estimer le param etre . Dans le cas particulier o u l'on consid ere le nombre de tranches egal a 2, il est possible d'obtenir une expression analytique de l'estimateur de la direction de . Nous proposons une forme r ecursive pour cet estimateur, ainsi qu'une forme r ecursive de l'estimateur de la matrice d'int er^et. Ensuite, nous proposons une nouvelle approche appell ee \SIRoneslice" (r ecursive ou non r ecursive) de la m ethode SIR bas ee sur l'utilisation de l'information contenue dans une seule tranche optimale (qu'il faudra choisir parmi un nombre quelconque de tranches). Nous proposons egalement un crit ere \bootstrap na f" pour le choix du nombre de tranches. Des r esultats asymptotiques sont donn es et une etude sur des simulations d emontre le bon comportement num erique des approches r ecursives propos ees et l'avantage principal de l'utilisation la version r ecursive de SIR et de SIRoneslice du point de vue des temps de calcul. Dans la second partie, nous travaillons sur des donn ees de valvom etrie mesur ees sur des bivalves. Sur ces donn ees, nous comparons le comportement num erique de trois estimateurs non param etrique de la fonction de r egression : celui de Nadaraya-Watson, celui de Nadaraya-Watson r ecursif et celui de R ev esz qui est lui aussi r ecursif. Dans la derni ere partie de cette th ese, nous proposons une m ethode permettant de combiner l'estimation r ecursive de la fonction de lien f par l'estimateur de Nadaraya- Watson r ecursif et l'estimation du param etre via l'estimateur SIR r ecursif. Nous etablissons une loi des grands nombres ainsi qu'un th eor eme de limite centrale. Nous illustrons ces r esultats th eoriques par des simulations montrant le bon comportement num erique de la m ethode d'estimation propos ee.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhao, Pan. "Topics in causal inférence and policy learning with applications to precision medicine." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS029.

Full text
Abstract:
La causalité est un concept fondamental en science et en philosophie. Dans un contexte où la collecte massive de données de grande complexité s’impose dans tous les domaines, les statistiques jouent un rôle crucial dans l'inférence des causes et des effets. Cette thèse explore des méthodes avancées d'inférence causale. Elle met l'accent sur l'apprentissage de politiques d’action (“politiques” dans la suite), les variables instrumentales (IV), et les approches de différences en différences (DiD).Les méthodes IV et DiD sont utilisées par les chercheurs en épidémiologie, médecine, biostatistique, économétrie et sciences sociales quantitatives. Elles reposent sur des hypothèses restrictives, telles que, d’une part, l'exigence que l'IV n’ait aucun effet direct sur le résultat autre qu’à travers le traitement et, d’autre part, l'hypothèse de tendances parallèles en DiD, qui peut être violée en présence de confusion non mesurée.Dans ce contexte, cette thèse propose une approche innovante de DiD instrumentalisée pour l'apprentissage de politiques. Cette combinaison permet de relâcher certaines des hypothèses clés des méthodes IV et DiD conventionnelles. Des résultats d'identification novateurs pour les politiques optimales en présence de confusion non mesurée sont établis, et une gamme d'estimateurs (de Wald ; par pondération inverse des probabilités ; semi-paramétriques efficaces et multiplement robustes) sont introduits. Des garanties théoriques multiplement robustes sont fournies, incluant le taux cubique de convergence pour les politiques paramétriques et une inférence statistique valide avec des algorithmes de machine learning (ML) flexibles pour l'estimation des paramètres de nuisance. Ces méthodes sont en outre étendues à la configuration de données de panel.La majorité des méthodes d'inférence causale dans la littérature dépendent fortement de trois hypothèses causales standard pour identifier les effets causaux et les politiques optimales. Bien que des progrès aient été réalisés pour relâcher les hypothèses de consistance et de non-confusion, les avancées pour traiter les violations de l'hypothèse de positivité sont restées limitées.Dans ce contexte, cette thèse présente un cadre novateur d'apprentissage des politiques qui ne repose pas sur l'hypothèse de positivité, se concentrant plutôt sur des politiques dynamiques et stochastiques pratiques pour des applications réelles. Des politiques de score de propension incrémentale, ajustant les scores de propension par des paramètres individualisés, sont proposées. Leur analyse ne met en jeu que les hypothèses de consistance et de non-confusion. Ce cadre améliore le concept d'effets d'intervention incrémentale, l'adaptant aux contextes de politique de traitement individualisée, et utilise la théorie semi-paramétrique pour développer des fonctions d'influence efficaces et des estimateurs ML dédiés. Des méthodes pour optimiser les politiques en maximisant la fonction de valeur sous des contraintes spécifiques sont également introduites.De plus, le régime de traitement individualisé optimal (ITR) appris d'une population source peut ne pas se généraliser bien à une population cible en raison des décalages de covariables. Un cadre d'apprentissage par transfert est proposé pour l'estimation de l'ITR dans des populations hétérogènes avec des données de survie censurées à droite, que l’on rencontre fréquemment dans les études cliniques. Un estimateur doublement robuste pour la fonction de valeur ciblée est proposé, qui accommode une large classe de fonctionnelles de distributions de survie. Pour une classe pré-spécifiée d'ITRs, un taux cubique de convergence pour le paramètre estimé indexant l'ITR optimal est établi. L'utilisation de procédures de cross-fitting (ajustement croisé) assure la consistance et la normalité asymptotique de l'estimateur de valeur optimal proposé, y compris lorsque l’on a recours à des méthodes ML flexibles pour estimer des paramètres de nuisance
Causality is a fundamental concept in science and philosophy, and with the increasing complexity of data collection and structure, statistics plays a pivotal role in inferring causes and effects. This thesis delves into advanced causal inference methods, with a focus on policy learning, instrumental variables (IV), and difference-in-differences (DiD) approaches.The IV and DiD methods are critical tools widely used by researchers in fields like epidemiology, medicine, biostatistics, econometrics, and quantitative social sciences. However, these methods often face challenges due to restrictive assumptions, such as the IV's requirement to have no direct effect on the outcome other than through the treatment, and the parallel trends assumption in DiD, which may be violated in the presence of unmeasured confounding.In that context, this thesis introduces an innovative instrumented DiD approach to policy learning, which combines these two natural experiments to relax some of the key assumptions of conventional IV and DiD methods. To the best of our knowledge, the thesis presents the first comprehensive study of policy learning under the DiD setting. The direct policy search approach is proposed to learn optimal policies, based on the conditional average treatment effect estimators using instrumented DiD. Novel identification results for optimal policies under unmeasured confounding are established. Moreover, a range of estimators, including a Wald estimator, inverse probability weighting (IPW) estimators, and semiparametric efficient and multiply robust estimators, are introduced. Theoretical guarantees for these multiply robust policy learning approaches are provided, including the cubic rate of convergence for parametric policies and valid statistical inference with flexible machine learning algorithms for nuisance parameter estimation. These methods are further extended to the panel data setup.The majority of causal inference methods in the literature heavily depend on three standard causal assumptions to identify causal effects and optimal policies. While there has been progress in relaxing the consistency and unconfoundedness assumptions, addressing the violations of the positivity assumption has seen limited advancements.In that context, this thesis presents a novel policy learning framework that does not rely on the positivity assumption, instead focusing on dynamic and stochastic policies that are practical for real-world applications. Incremental propensity score policies, which adjust propensity scores by individualized parameters, are proposed, requiring only the consistency and unconfoundedness assumptions. This approach enhances the concept of incremental intervention effects, adapting it to individualized treatment policy contexts, and employs semiparametric theory to develop efficient influence functions and debiased machine learning estimators. Methods to optimize policy by maximizing the value function under specific constraints are also introduced.Additionally, the optimal individualized treatment regime (ITR) learned from a source population may not generalize well to a target population due to covariate shifts. A transfer learning framework is proposed for ITR estimation in heterogeneous populations with right-censored survival data, which is common in clinical studies and motivated by medical applications. This framework characterizes the efficient influence function (EIF) and proposes a doubly robust estimator for the targeted value function, accommodating a broad class of survival distribution functionals. For a pre-specified class of ITRs, a cubic rate of convergence for the estimated parameter indexing the optimal ITR is established. The use of cross-fitting procedures ensures the consistency and asymptotic normality of the proposed optimal value estimator, even with flexible machine learning methods for nuisance parameter estimation
APA, Harvard, Vancouver, ISO, and other styles
13

Lu, Yang. "Analyse de survie bivariée à facteurs latents : théorie et applications à la mortalité et à la dépendance." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090020/document.

Full text
Abstract:
Cette thèse étudie quelques problèmes d’identification et d’estimation dans les modèles de survie bivariée, avec présence d’hétérogénéité individuelle et des facteurs communs stochastiques.Chapitre I introduit le cadre général.Chapitre II propose un modèle pour la mortalité des deux époux dans un couple. Il permet de distinguer deux types de dépendance : l’effet de deuil et l’effet lié au facteur de risque commun des deux époux. Une analyse de leurs effets respectifs sur les primes d’assurance écrites sur deux têtes est proposée.Chapitre III montre que, sous certaines hypothèses raisonnables, on peut identifier l’évolution jointe du risque d’entrer en dépendance et du risque de mortalité, à partir des données de mortalité par cohortes. Une application à la population française est proposée.Chapitre IV étudie la queue de distribution dans les modèles de survie bivariée. Sous certaines hypothèses, la loi jointe des deux durées résiduelles converge, après une normalisation adéquate. Cela peut être utilisé pour analyser le risque parmi les survivants aux âges élevés. Parallèlement, la distribution d’hétérogénéité parmi les survivants converge vers une distribution semi-paramétrique
This thesis comprises three essays on identification and estimation problems in bivariate survival models with individual and common frailties.The first essay proposes a model to capture the mortality dependence of the two spouses in a couple. It allows to disentangle two types of dependencies : the broken heart syndrome and the dependence induced by common risk factors. An analysis of their respective effects on joint insurance premia is also proposed.The second essay shows that, under reasonable model specifications that take into account the longevity effect, we can identify the joint distribution of the long-term care and mortality risks from the observation of cohort mortality data only. A numerical application to the French population data is proposed.The third essay conducts an analysis of the tail of the joint distribution for general bivariate survival models with proportional frailty. We show that under appropriate assumptions, the distribution of the joint residual lifetimes converges to a limit distribution, upon normalization. This can be used to analyze the mortality and long-term care risks at advanced ages. In parallel, the heterogeneity distribution among survivors converges also to a semi-parametric limit distribution. Properties of the limit distributions, their identifiability from the data, as well as their implications are discussed
APA, Harvard, Vancouver, ISO, and other styles
14

Matias, Catherine. "Estimation dans des modèles à variables cachées." Phd thesis, Université Paris Sud - Paris XI, 2001. http://tel.archives-ouvertes.fr/tel-00008383.

Full text
Abstract:
Cette thèse porte sur des problèmes d'estimation dans des modèles à variables cachées. Le Chapitre 1 est consacré à l'étude d'un modèle de Markov caché où la chaîne de Markov, non-nécessairement stationnaire, est supposée à valeurs dans un espace d'états compact et les observations dans un espace métrique séparable complet. La loi de la chaîne cachée ainsi que la loi conditionnelle dépendent d'un paramètre. Nous prouvons que l'estimateur du maximum de vraisemblance du paramètre est consistant, asymptotiquement normal et efficace. Le Chapitre 2 porte sur l'étude du modèle de convolution. Les observations sont issues d'un signal composé de variables aléatoires i.i.d. de densité inconnue g et d'un bruit blanc Gaussien centré de variance inconnue \sigma. Nous montrons que la non-connaissance de \sigma dégrade nettement la vitesse d'estimation de g : dans la plupart des cas ``réguliers'' cette vitesse est toujours plus lente que (log n)^(-1/2). Nous proposons alors un estimateur de \sigma qui est presque minimax lorsque g possède un support inclus dans un compact fixé. Nous construisons également un estimateur consistant universel de \sigma (i.e. sans contrainte sur g autre que celle d'identifiabilité du modèle). Dans le Chapitre 3, nous considérons ce même modèle de convolution mais lorsque le bruit possède une variance connue (fixée égale à 1) et nous nous intéressons aux propriétés d'estimation de fonctionnelles linéaires intégrales de de la forme \int f(x)\Phi_1(y-x) g(x)dx où \Phi_1 désigne la densité du bruit et f est une fonction connue. Nous étendons les résultats de Taupin dans le cas où la fonction f est soit une fonction polynomiale, soit un polynôme trigonométrique, en établissant des minorations du risque quadratique ponctuel et du risque par rapport à la norme infinie, ainsi que des majorations et minorations du risque par rapport à la norme p (1 \geq p <\infty). Nous montrons que l'estimateur proposé par Taupin atteint les vitesses optimales dans le cas où f est un polynôme et est presque minimax dans le cas où f est un polynôme trigonométrique, avec une perte pour le risque quadratique et pour le risque en norme infinie.
APA, Harvard, Vancouver, ISO, and other styles
15

Fontaine, Charles. "Utilisation de copules paramétriques en présence de données observationnelles : cadre théorique et modélisations." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT009/document.

Full text
Abstract:
Les études observationnelles (non-randomisées) sont principalement constituées de données ayant des particularités qui sont en fait contraignantes dans un cadre statistique classique. En effet, dans ce type d'études, les données sont rarement continues, complètes et indépendantes du bras thérapeutique dans lequel les observations se situent. Cette thèse aborde l'utilisation d'un outil statistique paramétrique fondé sur la dépendance entre les données à travers plusieurs scénarios liés aux études observationnelles. En effet, grâce au théorème de Sklar (1959), les copules paramétriques sont devenues un sujet d'actualité en biostatistique. Pour commencer, nous présentons les concepts de base relatifs aux copules et aux principales mesures d'association basées sur la concordance retrouvées dans la littérature. Ensuite, nous donnons trois exemples d'application des modèles de copules paramétriques pour autant de cas de données particulières retrouvées dans des études observationnelles. Nous proposons d’abord une stratégie de modélisation de l'analyse coût-efficacité basée uniquement sur une réécriture des fonctions de distribution jointes et évitant les modèles de régression linéaire. Nous étudions ensuite, les contraintes relatives aux données discrètes, particulièrement dans un contexte de non-unicité de la fonction copule, nous réécrivons le score de propension grâce à une approche novatrice basée sur l'extension d'une sous-copule. Enfin, nous évoquons un type particulier de données manquantes : les données censurées à droite, dans un contexte de régression, grâce à l'utilisation de copules semi-paramétriques
Observational studies (non-randomized) consist primarily of data with features that are in fact constraining within a classical statistical framework. Indeed, in this type of study, data are rarely continuous, complete, and independent of the therapeutic arm the observations are belonging to. This thesis deals with the use of a parametric statistical tool based on the dependence between the data, using several scenarios related to observational studies. Indeed, thanks to the theorem of Sklar (1959), parametric copulas have become a topic of interest in biostatistics. To begin with, we present the basic concepts of copulas, as well as the main measures of association based on the concordance founded on an analysis of the literature. Then, we give three examples of application of models of parametric copulas for as many cases of specific data found in observational studies. We first propose a strategy of modeling cost-effectiveness analysis based essentially on rewriting the joint distribution functions, while discarding the use of linear regression models. We then study the constraints relative to discrete data, particularly in a context of non-unicity of the copula function. We rewrite the propensity score, thanks to an innovative approach based on the extension of a sub-copula. Finally, we introduce a particular type of missing data: right censored data, in a regression context, through the use of semi-parametric copulas
APA, Harvard, Vancouver, ISO, and other styles
16

Kengne, William Charky. "Détection des ruptures dans les processus causaux : application aux débits du bassin versant de la Sanaga au Cameroun." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2012. http://tel.archives-ouvertes.fr/tel-00695364.

Full text
Abstract:
Cette thèse porte sur la détection de rupture dans les processus causaux avec application aux débits du bassin versant de la Sanaga. Nous considérons une classe semi-paramétrique de modèles causaux contenant des processus classique tel que l'AR, ARCH, TARCH. Le chapitre 1 est une synthèse des travaux. Il présente le modèle avec des exemples et donne les principaux résultats obtenus aux chapitres 2, 3,4. Le chapitre 2 porte sur la détection off-line de ruptures multiples en utilisant un critère de vraisemblance pénalisée. Le nombre de rupture, les instants de rupture et les paramètres du modèle sur chaque segment sont inconnus. Ils sont estimés par maximisation d'un contraste construit à partir des quasi-vraisemblances et pénalisées par le nombre de ruptures. Nous donnons les choix possibles du paramètre de pénalité et montrons que les estimateurs des paramètres du modèle sont consistants avec des vitesses optimales. Pour des applications pratiques, un estimateur adaptatif du paramètre de pénalité basé sur l'heuristique de la pente est proposé. La programmation dynamique est utilisée pour réduire le coût numérique des opérations, celui-ci est désormais de l'ordre de $\mathcal{O}(n^2)$. Des comparaisons faites avec des résultats existants montrent que notre procédure est plus stable et plus robuste. Le chapitre 3 porte toujours sur la détection off-line de ruptures multiples, mais cette fois en utilisant une procédure de test. Nous avons construit une nouvelle procédure qui, combinée avec un algorithme de type ICSS (Itereted Cumulative Sums of Squares) permet de détecter des ruptures multiples dans des processus causaux. Le test est consistant en puissance et la comparaison avec des procédures existantes montre qu'il est plus puissant. Le chapitre 4 étudie la détection des ruptures on-line dans la classe de modèle considéré aux chapitres 2 et 3. Une procédure basée sur la quasi-vraisemblance des observations a été développée. La procédure est consistante en puissance et le délai de détection est meilleur que celui des procédures existantes. Le chapitre 5 est consacré aux applications aux débits du bassin versant de la Sanaga, les procédures décrites aux chapitres 2 et 3 ont été utilisées en appliquant un modèle ARMA sur les données désaisonnalisées et standardisées. Ces deux procédures ont détecté des ruptures qui sont "proches".
APA, Harvard, Vancouver, ISO, and other styles
17

Ferfache, Anouar Abdeldjaoued. "Les M-estimateurs semiparamétriques et leurs applications pour les problèmes de ruptures." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2643.

Full text
Abstract:
Dans cette thèse, nous nous intéressons principalement aux modèles semiparamétriques qui ont reçu beaucoup d’intérêt par leur excellente utilité scientifique et leur complexité théorique intrigante. Dans la première partie, nous considérons le problème de l’estimation d’un paramètre dans un espace θ de Banach, en maximisant une fonction critère qui dépend d’un paramètre de nuisance inconnu h, éventuellement de dimension infinie. Nous montrons que le bootstrap m out of n, dans ce cadre général, est consistant sous des conditions similaires à celles requises pour la convergence faible des M-estimateurs non-réguliers. Dans ce cadre délicat, des techniques avancées seront nécessaires pour faire face aux estimateurs du paramètre de nuisance à l’intérieur des fonctions critères non régulières. Nous étudions ensuite le bootstrap échangeable pour les Z-estimateurs. L’ingrédient principal est l’utilisation originale d’une identité différentielle qui s’applique lorsque la fonction critère aléatoire est linéaire en termes de mesure empirique. Un grand nombre de schémas de rééchantillonnage bootstrap apparaissent comme des cas particuliers de notre étude. Des exemples d’applications de la littérature sont présentes pour illustrer la généralité et l’utilité de nos résultats. La deuxième partie est consacrée aux modèles statistiques semiparamétriques de ruptures multiples. L’objectif principal de cette partie est d’étudier les propriétés asymptotiques des M-estimateurs semiparamétriques avec des fonctions critères non lisses des paramètres d’un modèle de rupture multiples pour une classe générale de modèles dans lesquels la forme de la distribution peut changer de segment en segment et dans lesquels, éventuellement, il y a des paramètres communs à tous les segments. La consistance des M-estimateurs semi-paramétriques des points de rupture est établie et la vitesse de convergence est déterminée. La normalité asymptotique des M-estimateurs semiparamétriques des paramètres est établie sous des conditions générales. Nous étendons enfin notre étude au cadre des données censurées. Nous étudions les performances de nos méthodologies pour des petits échantillons à travers des études de simulations
In this dissertation we are concerned with semiparametric models. These models have success and impact in mathematical statistics due to their excellent scientific utility and intriguing theoretical complexity. In the first part of the thesis, we consider the problem of the estimation of a parameter θ, in Banach spaces, maximizing some criterion function which depends on an unknown nuisance parameter h, possibly infinite-dimensional. We show that the m out of n bootstrap, in a general setting, is weakly consistent under conditions similar to those required for weak convergence of the non smooth M-estimators. In this framework, delicate mathematical derivations will be required to cope with estimators of the nuisance parameters inside non-smooth criterion functions. We then investigate an exchangeable weighted bootstrap for function-valued estimators defined as a zero point of a function-valued random criterion function. The main ingredient is the use of a differential identity that applies when the random criterion function is linear in terms of the empirical measure. A large number of bootstrap resampling schemes emerge as special cases of our settings. Examples of applications from the literature are given to illustrate the generality and the usefulness of our results. The second part of the thesis is devoted to the statistical models with multiple change-points. The main purpose of this part is to investigate the asymptotic properties of semiparametric M-estimators with non-smooth criterion functions of the parameters of multiple change-points model for a general class of models in which the form of the distribution can change from segment to segment and in which, possibly, there are parameters that are common to all segments. Consistency of the semiparametric M-estimators of the change-points is established and the rate of convergence is determined. The asymptotic normality of the semiparametric M-estimators of the parameters of the within-segment distributions is established under quite general conditions. We finally extend our study to the censored data framework. We investigate the performance of our methodologies for small samples through simulation studies
APA, Harvard, Vancouver, ISO, and other styles
18

Guin, Ophélie. "Méthodes bayésiennes semi-paramétriques d'extraction et de sélection de variables dans le cadre de la dendroclimatologie." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00636704.

Full text
Abstract:
Selon le Groupe Intergouvernemental d'experts sur l'Évolution du Climat (GIEC), il est important de connaitre le climat passé afin de replacer le changement climatique actuel dans son contexte. Ainsi, de nombreux chercheurs ont travaillé à l'établissement de procédures permettant de reconstituer les températures ou les précipitations passées à l'aide d'indicateurs climatiques indirects. Ces procédures sont généralement basées sur des méthodes statistiques mais l'estimation des incertitudes associées à ces reconstructions reste une difficulté majeure. L'objectif principal de cette thèse est donc de proposer de nouvelles méthodes statistiques permettant une estimation précise des erreurs commises, en particulier dans le cadre de reconstructions à partir de données sur les cernes d'arbres.De manière générale, les reconstructions climatiques à partir de mesures de cernes d'arbres se déroulent en deux étapes : l'estimation d'une variable cachée, commune à un ensemble de séries de mesures de cernes, et supposée climatique puis l'estimation de la relation existante entre cette variable cachée et certaines variables climatiques. Dans les deux cas, nous avons développé une nouvelle procédure basée sur des modèles bayésiens semi- paramétriques. Tout d'abord, concernant l'extraction du signal commun, nous proposons un modèle hiérarchique semi-paramétrique qui offre la possibilité de capturer les hautes et les basses fréquences contenues dans les cernes d'arbres, ce qui était difficile dans les études dendroclimatologiques passées. Ensuite, nous avons développé un modèle additif généralisé afin de modéliser le lien entre le signal extrait et certaines variables climatiques, permettant ainsi l'existence de relations non-linéaires contrairement aux méthodes classiques de la dendrochronologie. Ces nouvelles méthodes sont à chaque fois comparées aux méthodes utilisées traditionnellement par les dendrochronologues afin de comprendre ce qu'elles peuvent apporter à ces derniers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography