Academic literature on the topic 'Théorie des singularités réelles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Théorie des singularités réelles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Théorie des singularités réelles"
Dutertre, N. "Courbures et singularités réelles." Commentarii Mathematici Helvetici 77, no. 4 (November 2002): 846–63. http://dx.doi.org/10.1007/pl00012444.
Full textBruter, Claude-Paul. "Inflation et théorie des singularités." Économie appliquée 40, no. 3 (1987): 565–79. http://dx.doi.org/10.3406/ecoap.1987.4128.
Full textParmentier, Marie. "Lectures réelles et théorie littéraire." Poétique 181, no. 1 (2017): 125. http://dx.doi.org/10.3917/poeti.181.0125.
Full textLegrand, André, and David Poutriquet. "K-théorie pour les singularités coniques isolées." Comptes Rendus Mathematique 341, no. 12 (December 2005): 751–54. http://dx.doi.org/10.1016/j.crma.2005.10.015.
Full textChanson, Guillaume. "Externalisation et théorie des coûts de transaction : analyser un phénomène dynamique avec une théorie statique ?" Management international 18, no. 2 (April 1, 2014): 181–94. http://dx.doi.org/10.7202/1024202ar.
Full textKast, Robert, André Lapied, Sophie Pardo, and Camélia Protopopescu. "Évaluation de risques controversés par la théorie des options réelles." Économie & prévision 149, no. 3 (2001): 51–63. http://dx.doi.org/10.3406/ecop.2001.6291.
Full textKast, Robert, André Lapied, Sophie Pardo, and Camelia Protopopescu. "Évaluation de risques controversés par la théorie des options réelles." Économie & prévision 149, no. 3 (2001): 51. http://dx.doi.org/10.3917/ecop.149.0051.
Full textRea, John, and Béatrice Rea. "Gradus ad Infernum (troisième partie) : entrevue avec Ferdinand Larven Niemantz, « penseur de la musique » et auteur de Musical Compositions of the Century." Circuit 26, no. 1 (April 7, 2016): 73–85. http://dx.doi.org/10.7202/1036061ar.
Full textGagean, Nicolas. "Corpus et Classes d’objet." Scolia 16, no. 1 (2003): 97–115. http://dx.doi.org/10.3406/scoli.2003.1037.
Full textBartha-Kovács, Katalin. "Franck Salaün, Le genou de Jacques. Singularités et théorie du moi dans l’œuvre de Diderot." Studi Francesi, no. 194 (LXV | II) (August 1, 2021): 374. http://dx.doi.org/10.4000/studifrancesi.45100.
Full textDissertations / Theses on the topic "Théorie des singularités réelles"
Brugallé, Erwan. "Courbes algébriques réelles et courbes pseudoholomorphes réelles dans les surfaces réglées." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00008652.
Full textPopescu-Pampu, Patrick. "Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles." Phd thesis, Université Paris-Diderot - Paris VII, 2001. http://tel.archives-ouvertes.fr/tel-00002800.
Full textOudrane, M'hammed. "Projections régulières, structure de Lipschitz des ensembles définissables et faisceaux de Sobolev." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4034.
Full textIn this thesis we address questions around the metric structure of definable sets in o-minimal structures. In the first part we study regular projections in the sense of Mostowski, we prove that these projections exists only for polynomially bounded structures, we use regular projections to re perform Parusinski's proof of the existence of regular covers. In the second part of this thesis, we study Sobolev sheaves (in the sense of Lebeau). For Sobolev functions of positive integer regularity, we construct these sheaves on the definable site of a surface based on basic observations of definable domains in the plane
Sorea, Miruna-Ştefana. "The shapes of level curves of real polynomials near strict local minima." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I055/document.
Full textWe consider a real bivariate polynomial function vanishing at the origin and exhibiting a strict local minimum at this point. We work in a neighbourhood of the origin in which the non-zero level curves of this function are smooth Jordan curves. Whenever the origin is a Morse critical point, the sufficiently small levels become boundaries of convex disks. Otherwise, these level curves may fail to be convex, as was shown by Coste.The aim of the present thesis is twofold. Firstly, to construct examples of non-Morse strict local minima whose sufficiently small level curves are far from being convex. And secondly, to study a combinatorial object measuring this non-convexity, namely the Poincaré-Reeb tree of the restriction of the first coordinate to the region bounded by a given level curve. These planar trees are rooted and their vertices roughly speaking correspond to points on the curve with vertical tangent lines.The main objective of our study is to characterise all possible topological types of Poincaré-Reeb trees. To this end, we construct a family of examples realising a large class of such trees. As a preliminary step, we restrict our attention to the univariate case, using a tool inspired by Ghys’ work. One of our main results gives a new and constructive proof of the existence of Morse polynomials whose associated permutation (the so-called “Arnold’s snake”) is separable
Alberti, Lionel. "Propriétés Quantitatives des Singularités des Variétés Algébriques Réelles." Phd thesis, Nice, 2008. http://www.theses.fr/2008NICE4064.
Full textSection 2 explains a subdivision procedure triangulating an algebraic plane curve. The mathematical tools are the topological degree, alias Gauss's application, the representation of polynomials in the Bernstein basis, all of it wrapped up in a subdivision very fast and certified subdivision method. Section 3 presents a quantitative theory for measuring transversality to a semi-algebraic map (not necessarily smooth). Stem from it: A quantitative version of Thom-Mather's topological triviality theorem, A ``metrically stable'' version of the local conic structure theorem and of the existence of a ``Milnor tube'' around strata. An triangulation algorithm based on Voronoi partitions (not completely implementable because the effective estimation of transversality is not completely detailed)Section 4 presents a bound on the generic number of connected components in an affine section of a real analytic germ in terms of the multiplicity and of the dimension of the ambient space. These two parameters are not always enough to bound the number of connected components. The result is thus proved under some conditions which are shown to be minimal
Campesato, Jean-Baptiste. "Une fonction zêta motivique pour l'étude des singularités réelles." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4104/document.
Full textThe main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence
Chevallier, Benoît. "Singularités et topologies optimales des hypersurfaces algébriques réelles de petites dimensions." Paris 7, 1996. http://www.theses.fr/1996PA077309.
Full textSevenheck, Christian. "Singularités lagrangiennes." Phd thesis, Ecole Polytechnique X, 2003. http://tel.archives-ouvertes.fr/tel-00003816.
Full textdéformation pour les singularités lagrangiennes. Pour une singularité
lagrangienne, un complexe de modules à différentielle non-linéaire,
dont la première cohomologie est isomorphe à l'espace de déformations
infinitésimales de la singularité, est défini. La cohomologie en degré deux contient des informations sur les obstructions. Ce
complexe est relié à la théorie des modules différentiels. Nous
démontrons que, sous une condition géométrique, sa cohomologie est
constituée de faisceaux constructibles. Nous décrivons une méthode
utilisant du calcul formel pour déterminer cette cohomologie pour
des surfaces quasi-homogènes.
Poutriquet, David. "K-théorie des singularités coniques isolées." Toulouse 3, 2006. http://www.theses.fr/2006TOU30091.
Full textIt seems natural to build an intersection K-theory for conical isolated singular varieties, and a Chern character witch takes its values in intersection cohomology groups. The intersection cohomology of the cone leads us to extend to singular setting the multiplicative K-theory groups of M. Karoubi. In general situation these groups are associated to a family of complexes of differentiable forms. Using an intersection complex chain, which depends on a non-negative integer q, we define a Chern character whose range is contained in the even intersection cohomology. But it cannot be an isomorphism even tensoring by rationnals. Thus we introduce the group of intersection K-theory of a singular variety, where the elements are classes of triples formed by a q-flat vector bundle, a subbundle, and a trivialisation of it over the boundary of the streched variety. It can be defined a Chern character between this singular K-theory and intersection cohomology, which becomes an isomorphism when tensoring by rationnals
Fichou, Goulwen. "Fonctions zêta réelles et équivalence de Nash après éclatements." Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00554877.
Full textBooks on the topic "Théorie des singularités réelles"
Real Analysis. 3rd ed. New York: Macmillan Publishing Company, 1988.
Find full textKhavinson, S. I͡A. Best approximation by linear superpositions (approximate nomography). Providence, R.I: American Mathematical Society, 1997.
Find full textFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Find full textGårding, Lars. Singularities in linear wave propagation. Berlin: Springer-Verlag, 1987.
Find full textLê, Dung Tráng. Introduction à la théorie des singularités. Hermann, 1997.
Find full textBook chapters on the topic "Théorie des singularités réelles"
"4 Caractérisation des singularités illusoires faibles." In Théorie des fonctions holomorphes de plusieurs variables, 194–202. EDP Sciences, 1997. http://dx.doi.org/10.1051/978-2-86883-379-2.c048.
Full text