Dissertations / Theses on the topic 'Theoretical quantum chemistry'

To see the other types of publications on this topic, follow the link: Theoretical quantum chemistry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Theoretical quantum chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Rudberg, Elias. "Quantum Chemistry for Large Systems." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Larsson, Per-Erik. "Modelling Chemical Reactions : Theoretical Investigations of Organic Rearrangement Reactions." Doctoral thesis, Uppsala University, Department of Quantum Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3475.

Full text
Abstract:

Chemical reactions are ubiquitous and very important for life and many other processes taking place on earth. In both theoretical and experimental studies of reactivity a transition state is often used to rationalise the outcome of such studies. The present thesis deals with calculations of transition states in radical cation rearrangements, and a principle of least motion study of the rearrangements in the barbaralyl cation.

In particular, alternative quadricyclane radical cation (Q∙+) rearrangements are extensively studied. The rearrangement of Q∙+ to norbornadiene is extremely facile and is often used as a prototype for one-electron oxidations. However, electron spin resonance (ESR) experiments show that there are additional cations formed from Q∙+. Two plausible paths for the rearrangement of Q∙+ to the 1,3,5-cycloheptatriene radical cation are located. The most favourable one is a multistep rearrangement with two shallow intermediates, which has a rate-limiting step of 16.5 kcal/mol. In addition, a special structure, the bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cation, is identified on these alternative paths; and its computed ESR parameters agree excellently with the experimental spectrum assigned to another intermediate on this path. Moreover, this cation show a homoconjugative stabilization, which is uncommon for radical cations.

The bicyclopropylidene (BCP) radical cation undergoes ring opening to the tetramethyleneethane radical cation upon γ-irradiation of the neutral BCP. This rearrangement proceeds through a stepwise mechanism for the first ring opening with a 7.3 kcal/mol activation energy, while the second ring opening has no activation energy. The dominating reaction coordinate during each ring opening is an olefinic carbon rehybridization.

The principle of least motion is based on the idea that, on passing from reactant to product, the reaction path with the least nuclear change is the most likely. By using hyperspherical coordinates to define a distance measure between conformations on a potential energy surface, a possibility to interpret reaction paths in terms of distance arises. In applying this measure to the complex rearrangements of the barbaralyl cation, a correct ordering of the conformations on this surface is found.

APA, Harvard, Vancouver, ISO, and other styles
3

Allis, Damian Gregory Spencer James T. Hudson Bruce S. "Computational quantum chemistry in initial designs and final analyses." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2004. http://wwwlib.umi.com/cr/syr/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bassan, Arianna. "Theoretical studies of mononuclear non-heme iron active sites." Doctoral thesis, Stockholm : Fysikum, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ai, Yuejie. "Theoretical studies on photophysics and photochemistry of DNA." Doctoral thesis, KTH, Teoretisk kemi och biologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33531.

Full text
Abstract:
Theoretical studies on biological systems like nucleic acid and protein have been widely developed in the past 50 years and will continue to be a topic of interest in forefronts of natural science. In addition to experimental science, computational modeling can give useful information and help us to understand biochemical issues at molecular, atomic and even electronic levels. Deoxyribonucleic acid (DNA), the hereditary basis of life’s genetic identity, has always been major topic of discussions since its structure was built in 1953. However, harmful UV radiation from sunlight can make damage to DNA molecules and eventually give rise to DNA damaging biological consequences, like mutagenesis, carcinogenesis, and cell death. Photostability, photodamage, and photorepair are of vital importance in the photophysics and photochemistry of DNA. In this thesis, we have applied high level computer-aided theoretical methods to explore the underlying mechanisms for these three critical issues of DNA. Special attentions are paid to the following aspects: the properties of the excited states, the design of relevant computational models and the effects of biological environments. We have systematically studied the excited state properties of DNA from single base to base pair and oligonucleotides, where the concerted base pairing and base stacking effects was found to play important roles in DNA photostability. The UV-light induced isomerization mechanism between two photoproducts of DNA photodamage has been revealed in different biological environments. In association with DNA photodamage, the related photorepair processes have been proposed for different lesions in photolyase which is a catalytic enzyme for DNA, and the calculated results well explained the experimental observations. In particular, the internal and external properties of flavin cofactors have been extensively studied by combining the electronic structure and spectroscopic calculations. We have examined the effects of the intramolecular hydrogen bond on spectroscopic properties of flavins. The good agreements with the experimental spectra indicated that the biological self-regulation acted critical role in these biological systems.
QC 20110530
APA, Harvard, Vancouver, ISO, and other styles
6

Wåhlin, Pernilla. "Theoretical Actinide Chemistry – Methods and Models." Doctoral thesis, Stockholms universitet, Fysikum, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-54848.

Full text
Abstract:
The chemistry of actinides in aqueous solution is important, and it is essential to build adequate conceptual models and develop methods applicable for actinide systems. The complex electronic structure makes benchmarking necessary. In the thesis a prototype reaction of the water exchange reaction for uranyl(VI), for both ground and luminescent states, described with a six-water model, was used to study the applicability of density functional methods on actinides and different solvation models. An excellent agreement between the wave function methods CCSD(T) and MP2 was obtained in the ground state, implying that near-minimal CASPT2 can be used with confidence for the reaction in the luminescent state of uranyl(VI), while density functionals are not suited to describe energetics for this type of reaction. There was an ambiguity concerning the position of the waters in the second hydration sphere. This issue was resolved by investigating a larger model, and prop- erly used the six-water model was found to adequately describe the water exchange reaction. The effect of solvation was investigated by comparing the results from conductor-like polarizable continuum models using two cavity models. Scattered numbers made it difficult to determine which solvation model to use. The final conclusion was that the water exchange reaction in the luminescent state of uranyl(VI) should be addressed with near-minimal CASPT2 and a solvation model without explicit cavities for hydrogens. Finally it was shown that no new chemistry appears in the luminescent state for this reaction. The thesis includes a methodological investigation of a multi-reference density functional method based on a range separation of the two-electron interaction. The method depends on a universal parameter, which has been determined for lighter elements. It is shown here that the same parameter could be used for actinides, a prerequisite for further development of the method. The results are in that sense promising.
APA, Harvard, Vancouver, ISO, and other styles
7

Velkov, Yasen. "Quantum nuclear dynamics in x-ray scattering and lasing." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wright, Christopher James. "Theoretical studies of underscreened Kondo physics in quantum dots." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:62207edb-af3a-4340-a6f2-5264b1374a41.

Full text
Abstract:
We study correlated two-level quantum impurity models coupled to a metallic conduction band in the hope of gaining insight into the physics of nanoscale quantum dot systems. We focus on the possibility of formation of a spin-1 impurity local moment which, on coupling to the band, generates an underscreened (USC) singular Fermi liquid state. By employing physical arguments and the numerical renormalization group (NRG) technique, we analyse such systems in detail examining in particular both the thermodynamic and dynamic properties, including the differential conductance. The quantum phase transitions occurring between the USC phase and a more ordinary Fermi liquid (FL) phase are analysed in detail. They are generically found to be of Kosterlitz-Thouless type; exceptions occur along lines of high symmetry where first-order transitions are found. A `Friedel-Luttinger sum rule' is derived and, together with a generalization of Luttinger's theorem to the USC phase, is used to obtain general results for the $T=0$ zero-bias conductance --- it is expressed solely in terms of the number of electrons present on the impurity and applicable in both the USC and FL phases. Relatedly, dynamical signatures of the quantum phase transition show two broad classes of behaviour corresponding to the collapse of either a resonance or antiresonance in the single-particle density of states. Evidence of both of these behaviours is seen in experimental devices. We study also the effect of a local magnetic field on both single- and two-level quantum impurities. In the former case we attempt to resolve some points of contention that remain in the literature. Specifically we show that the position of the maximum in the spin resolved density of states (and related peaks in the differential conductance) is not linear in the applied field, showing a more complicated form than a simple `Zeeman splitting'. The analytic result for the low-field asymptote is recovered. For two-level impurities we illustrate the manner in which the USC state is destroyed: due to two cancelling effects an abrupt change in the zero-bias conductance does not occur as one might expect. Comparison with experiment is made in both cases and used to interpret experimental findings in a manner contrary to previous suggestions. We find that experiments are very rarely in the limit of strong impurity-host coupling. Further, features in the differential conductance as a function of bias voltage should not be simply interpreted in terms of isolated quantum dot states. The many-body nature of such systems is crucially important to their observed properties.
APA, Harvard, Vancouver, ISO, and other styles
9

Jayatilaka, Frederic William. "Theoretical studies of tunnel-coupled double quantum dots." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:756add23-aae6-4a71-a22b-087695bc600a.

Full text
Abstract:
We study the low-temperature physics arising in models of a strongly correlated, tunnel-coupled double quantum dot (DQD), particularly the two-impurity Anderson model (2AIM) and the two-impurity Kondo model (2IKM), employing a combination of physical arguments and the Numerical Renormalisation Group. These models exhibit a rich range of Kondo physics. In the regime with essentially one electron on each dot, there is a competition between the Kondo effect and the interdot exchange interaction. This competition gives rise to a quantum phase transition (QPT) between local singlet and Kondo singlet phases in the 2IKM, which becomes a continuous crossover in the 2AIM as a result of the interlead charge transfer present. The 2IKM is known to exhibit two-channel Kondo (2CK) physics at the QPT, and we investigate whether this is also the case for the 2AIM at the crossover. We find that while in principle 2CK physics can be observed in the 2AIM, extremely low temperatures are required, such that it is unlikely that 2CK physics will be observed in an experimental DQD system in the near future. We have studied the effect of a magnetic field on the 2AIM and the 2IKM, finding that both the zero-field QPT in the 2IKM and the zero-field crossover in the 2AIM, persist to finite field. This presents the possibility of observing 2CK physics in an experimental DQD at finite field, but we find that the temperatures required to do so are extremely low. We show that longer even-numbered chains of spins also exhibit QPTs at finite field, and argue that a 2N-spin chain should undergo N QPTs as field is increased (starting deep in the local singlet phase at zero field). We have also carried out a joint theoretical-experimental study of a carbon nanotube based DQD, in collaboration with Dr. Mark Buitelaar et al. The agreement between experimental and theoretical results is good, and the experiments are able to access the crossover present in the 2AIM at finite field. Furthermore, the experiments show the wide range of physics exhibited by DQD systems, and illustrate the utility of such systems in probing correlated electron physics.
APA, Harvard, Vancouver, ISO, and other styles
10

Rubensson, Emanuel H. "Matrix Algebra for Quantum Chemistry." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Campolieti, Giuseppe. "Quantum theoretical investigations of field modulation and spin dynamics in NMRNQR." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75955.

Full text
Abstract:
Spin dynamics in pulsed Nuclear Magnetic Resonance (NMR) spectroscopy are studied theoretically using spin density operator formulation. The theory exploits the use of irreducible spherical tensor (multipole) operators of spin angular momentum in developing alternative treatments to spin dynamical problems. Applications in spin decoupling and soft pulse dynamics are considered, giving new analytical solutions for the complete density matrix. The focus of the thesis, however, is on the development of two distinctly new methods of solution to the quantum Liouville equation for NMR field modulation. The first method derives a linear integral equation for the magnetization and provides a rapidly converging integral series solution which is useful in explaining many pulse shapes. The second method uses the Wei-Norman Lie algebra approach$ sp{ rm 96}$ which reduces the complete arbitrary spin I problem to a Riccati equation. Novel exact analytical solutions for a class of temporal field modulations are obtained. In contrast to all other existing formulations, the theory provides the first known examples of exactly soluble nonrectangular pulse shapes for all resonance off-set, all field amplitudes, all time and valid for all spin I $ geq$ 1/2. In addition, a new series expansion for the complete spin density matrix is obtained. The theory is applied to producing spin inversion profiles which show applicability to selective excitation.
APA, Harvard, Vancouver, ISO, and other styles
12

Hammar, Peter. "Quantum Chemical Studies of Enantioselective Organocatalytic Reactions." Licentiate thesis, Stockholm : Bioteknologi, Biotechnology, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mintz, Benjamin Wilson Angela K. "Reducing the computational cost of Ab Initio methods." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Borg, Anders. "Theoretical Photochemistry : Halogenated Arenes, Phytochromobilin, Ru(II)polypyridyl complexes and 6-4 photoadducts." Doctoral thesis, Uppsala universitet, Kvantkemi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8469.

Full text
Abstract:
This thesis presents Quantum Chemical calculations on the Photochemistry of Halogenated benzenes, Phytochromobilin, Ruthenium Polypyridyl complexes and 6-4 photoadducts in DNA. The work is focused on improving the understanding of a number of experimentally observed photochemical processes in these systems. New results regarding the mechanism of photodissociation of halogenated arenes, photointerconversion of phytochromobilin are presented, as well as of the photoprocesses of Ruthenium Polypyridyl complexes and new mechanistic insights in the repair of 6-4 photoadducts in DNA.
APA, Harvard, Vancouver, ISO, and other styles
15

Rudberg, Elias. "Fock Matrix Construction for Large Systems." Licentiate thesis, Stockholm : Biotechnology (Institutionen för bioteknologi), KTH, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Georgieva, Polina. "Quantum Chemical Modeling of Enzymatic Methyl Transfer Reactions." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hammar, Peter. "Quantum Chemical Studies of Mechanisms and Stereoselectivities of Organocatalytic Reactions." Doctoral thesis, KTH, Teoretisk kemi (stängd 20110512), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11616.

Full text
Abstract:
As the field of organocatalysis is growing, it is becoming more important to understand the specific modes of action of these new organic catalysts. Quantum chemistry, in particular density functional theory, has proven very powerful in exploring reaction mechanisms as well as selectivities in organocatalytic reactions, and is the tool used in this thesis. Different reaction mechanisms of several organocatalytic reactions have been examined, and we have been able to exclude various reaction pathways based on the calculated reaction barriers. The origins of stereoselection in a number of reactions have been rationalized. The computational method has generally reproduced the experimental stereoselectivities satisfactorily. The amino acid-catalyzed aldol reaction has previously been established to go through an enamine intermediate. In the first study of this thesis the understanding of this kind of reactions has been expanded to the dipeptide-catalyzed aldol reaction. The factors governing the enantioselection have been studied, showing how the chirality of the amino acids controls the conformation of the transition state, thereby determining the configuration of the product. In the cinchona thiourea-catalyzed Henry reaction two reaction modes regarding substrate binding to the two sites of the catalyst have been investigated, showing the optimal arrangement for this reaction. This enabled the rationalization of the observed stereoselectivity. The hydrophosphination of α,β-unsaturated aldehydes was studied. The bulky substituent of the chiral prolinol-derived catalyst was shown to effectively shield one face of the reactive iminium intermediate, thereby inducing the stereoselectivity. The transfer hydrogenation of imines using Hantzsch esters as hydride source and axially chiral phosphoric acid catalyst has also been explored. A reaction mode where both the Hantzsch ester and the protonated imine are hydrogen bonded to the phosphoric acid is demonstrated to be the preferred mode of action. The different arrangements leading to the two enantiomers of the product are evaluated for several cases, including the hydride transfer step in the reductive amination of α-branched aldehydes via dynamic kinetic resolution. Finally, the intramolecular aldol reaction of ketoaldehydes catalyzed by guanidinebased triazabicyclodecene (TBD) has been studied. Different mechanistic proposals have been assessed computationally, showing that the favoured reaction pathway is catalyzed by proton shuttling. The ability of a range of guanidines to catalyze this reaction has been investigated. The calculated reaction barriers reproduced the experimental reactivities quite well.
QC 20100719
APA, Harvard, Vancouver, ISO, and other styles
18

Ying, Fuming. "Application and development of quantum chemical methods. Density functional theory and valence bond theory." Licentiate thesis, KTH, Teoretisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25033.

Full text
Abstract:
This thesis deals with two disjoint subdiciplines of quantum chemistry.  One isthe most used electronic structure method today, density functional theory(DFT), and the other one of the least used electronic structure methods,valence bond theory (VB).  The work on DFT is based on previous developments inthe department in density functional response theory and involves studies ofhyperfine coupling constants which are measured in electron paramagneticresonance experiments.  The method employed is a combination of arestricted-unrestriced approaches which allows for adequate description of spinpolarization without spin contamination, and spin-orbit corrections to accountfor heavy atom effects useing degenerate perturbation theory.  The work anvalence bond theory is a new theoretical approach to higher-order derivatives.The orbital derivatives are complicated by the fact that the wave functions areconstructed from determinants of non-orthogonal orbitals. An approach based onnon-orthogonal second-quantization in biorthogonal basis sets leads tostraightforward derivations without explicit references to overlap matrices.These formulas are relevant for future applications in time-dependent valencebond theory.
QC 20101006
APA, Harvard, Vancouver, ISO, and other styles
19

Martín, Fernando J. "Theoretical synthesis of macromolecules from transferable functional groups /." *McMaster only, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mitchell, Andrew Keith. "Two-channel Kondo phases in coupled quantum dots." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:3d4e9d86-794c-441c-9d4b-20e6f1bd1de1.

Full text
Abstract:
We investigate systems comprising chains and rings of quantum dots, coupled to two metallic leads. Such systems allow to study the competition between orbital and spin degrees of freedom in a nanodevice, and the effect this subtle interplay has on two-channel Kondo (2CK) physics. We demonstrate that a rich range of strongly correlated electron behaviour results, with non-Fermi liquid 2CK phases and non-trivial phase transitions accessible. We employ physical arguments and the numerical renormalization group (NRG) technique to analyse these systems in detail, examining in particular both thermodynamic and dynamical properties. When leads are coupled to either end of a chain of dots, we show that the resulting behaviour on low temperature/energy scales can be understood in terms of simpler paradigmatic quantum `impurity' models. An effective low-energy single-spin 2CK model is derived for all odd-length chains, while the behaviour of even-length chains is related fundamentally to that of the classic `two-impurity Kondo' model. In particular, for small interdot coupling, we show that an effective coupling mediated though incipient single-channel Kondo states drives all odd chains to the 2CK fixed point (FP) on the lowest temperature/energy scales. A theory is also developed to describe a phase transition in even chains. We derive an effective channel-anisotropic 2CK model, which indicates that the critical FP of such models must be the 2CK FP. This physical picture is confirmed using NRG for various chain systems. We also examine the effect of local frustration on 2CK physics in mirror-symmetric ring systems. The importance of geometry and symmetry is demonstrated clearly in the markedly different physical behaviour that arises in systems where two leads are either connected to the same dot, or to neighbouring dots. In the latter case, we show for all odd-membered rings that two distinct 2CK phases, with different ground state parities, arise on tuning the interdot couplings. A frustration-induced phase transition thus occurs, the 2CK phases being separated by a novel critical point for which an effective low-energy model is derived. Precisely at the transition, parity mixing of the quasidegenerate local trimer states acts to destabilise the 2CK FPs, and the critical FP is shown to consist of a free pseudospin together with effective single-channel spin quenching. While connecting both leads to the same dot again results in two parity-distinct phases, a simple level-crossing transition now results due to the symmetry of the setup. The proposed geometry also allows access to a novel ferromagnetically-coupled two-channel local moment phase. Driven by varying the interdot couplings and occurring at the point of inherent magnetic frustration, such transitions in ring structures provide a striking example of the subtle interplay between internal spin and orbital degrees of freedom in coupled quantum dot systems, and the resulting effect on Kondo physics.
APA, Harvard, Vancouver, ISO, and other styles
21

Kirkbride, James M. R. "Coherent transient spectroscopy with quantum cascade lasers." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c7b897e5-052f-4c15-a3c9-f95ca3b56d70.

Full text
Abstract:
This thesis is concerned with coherent effects in high resolution mid-infrared gas phase spectroscopy using quantum cascade lasers (QCLs). An introductory chapter explains the importance of QCLs as radiation sources in the mid-infrared region of the spectrum and goes on to detail their development and structure. A discussion of coherent effects in spectroscopy follows, leading into the second chapter which discusses the theories relevant to the experimental sections of the thesis. In chapter 2 the theory underpinning direct and velocity selective, Doppler-free spectroscopy is discussed and a density matrix formalism is followed to derive the equations of motion that govern coherent excitation effects in two-level systems. In the final part of the chapter this treatment is extended to three-level systems. The equations derived in this chapter form the basis of quantitative interpretations of the phenomena observed in experimental data and presented in the remainder of the thesis. In chapter 3 the characterisation of a high power, narrow linewidth QCL is carried out. This laser is then used to perform direct and sub-Doppler resolution spectroscopy on NO, demonstrating non-linear absorption at high laser intensities and providing a measurement of the laser linewidth in the limit of slow frequency tuning. As the slow tuning rate increases, evidence of coherent transient effects is presented and density matrix theory used to model this behaviour. The data presented include the first observations of asymmetric Lamb dips and the onset of rapid passage oscillations from a Lamb dip. Pump-probe experiments on NO, utilising two cw QCLs are presented in chapter 4. The high level of velocity selection afforded by QCL excitation leads to coherent transient signals at far lower probe scan rates than previously reported. The effect of altering both the scan rate and the gas pressure and the importance of hyperfine structure are presented. A radio frequency noise source applied to one of the lasers is shown to broaden the laser linewidth, leading to rapid dephasing. A two-colour polarisation spectroscopy experiment is also presented which allows the measurement of both the absorption and the Doppler-free dispersion signals and the three-level density matrix formalism presented at the end of chapter 2 used to model the non-linear response of the system. The final chapter details the use of an acousto-optic modulator to create a pulse of mid-IR light using a cw QCL and the application of this to time resolved pump-probe spectroscopy. This capability suggests the prospect of achieving coherent population transfer by stimulated Raman adiabatic passage (STIRAP) using two such pulses. Simulations based on a simple three-level model and including Zeeman coherences are presented, which take the measured properties of the lasers used in this thesis as inputs to predict the potential population transfer achievable in NO as well as providing useful information about the angular momentum polarisation of the excited molecules. An experimental realisation of STIRAP would require the lasers to be stabilised, and so the final part of the chapter details experimental attempts to achieve stabilisation of an external cavity QCL, and suggests future avenues for improved implementation.
APA, Harvard, Vancouver, ISO, and other styles
22

Pelmenschikov, Vladimir. "Theoretical Modeling of Enzyme Catalysis with Focus on Radical Chemistry." Doctoral thesis, Stockholm : Dept. of Physics, Stockholm university, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jarrold, Thomas Furnley. "Single channel Kondo physics in triple quantum dots." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:e2772c4e-6c76-44b8-9c02-401d9f90b27f.

Full text
Abstract:
In this thesis we investigate a system of three tunnel-coupled quantum dots, arranged in a triangular geometry and attached to a single metallic conduction band, using both analytic and semi-analytic methods and the numerical renormalisation group technique. This is the simplest coupled quantum dot system to exhibit frustration. We study three different models of the triple quantum dot device: a mirror symmetric arrangement of dots in which only one dot is connected to the conduction band, a triple quantum dot system in which only one dot is connected to the conduction band without a plane of mirror symmetry and a mirror symmetric arrangement of quantum dots in which all three dots are coupled to the conduction band. We study these models over a wide range of parameter space, and in both the presence and absence of a magnetic field. Both antiferromagnetic and ferromagnetic Kondo effects are observed, and in all three models we find that the system contains at least two phases, and so a number of quantum phase transitions may be observed, associated in some cases with significant changes in the low temperature conductance through the triple quantum dot device. In addition to zero-field Kondo physics, a number of field induced Kondo effects are also observed. Both first order quantum phase transitions and Kosterlitz-Thouless phase transitions are observed. We use both symmetry arguments and low energy effective models which we derive to explain and understand both the position of and type of phase boundary that is observed in each case, and perturbative methods are used to accurately predict Kondo temperatures for a wide range of systems.
APA, Harvard, Vancouver, ISO, and other styles
24

Chen, Shilu. "Quantum Chemical Modeling of Binuclear Zinc Enzymes." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Olivares-Amaya, Roberto. "Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10184.

Full text
Abstract:
The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure methods using graphics processing units. This hardware represents a change of paradigm with respect to the typical CPU device architectures. We accelerate the resolution-of-the-identity Moller-Plesset second-order perturbation theory algorithm using graphics cards. We also provide detailed tools to address memory and single-precision issues that these cards often present.
APA, Harvard, Vancouver, ISO, and other styles
26

Lao, Ka Un. "Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1457973344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schwarz, Lauretta Rebecca. "Projector Quantum Monte Carlo methods for linear and non-linear wavefunction ansatzes." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267871.

Full text
Abstract:
This thesis is concerned with the development of a Projector Quantum Monte Carlo method for non-linear wavefunction ansatzes and its application to strongly correlated materials. This new approach is partially inspired by a prior application of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method to the three-band (p-d) Hubbard model. Through repeated stochastic application of a projector FCIQMC projects out a stochastic description of the Full Configuration Interaction (FCI) ground state wavefunction, a linear combination of Slater determinants spanning the full Hilbert space. The study of the p-d Hubbard model demonstrates that the nature of this FCI expansion is profoundly affected by the choice of single-particle basis. In a counterintuitive manner, the effectiveness of a one-particle basis to produce a sparse, compact and rapidly converging FCI expansion is not necessarily paralleled by its ability to describe the physics of the system within a single determinant. The results suggest that with an appropriate basis, single-reference quantum chemical approaches may be able to describe many-body wavefunctions of strongly correlated materials. Furthermore, this thesis presents a reformulation of the projected imaginary time evolution of FCIQMC as a Lagrangian minimisation. This naturally allows for the optimisation of polynomial complex wavefunction ansatzes with a polynomial rather than exponential scaling with system size. The proposed approach blurs the line between traditional Variational and Projector Quantum Monte Carlo approaches whilst involving developments from the field of deep-learning neural networks which can be expressed as a modification of the projector. The ability of the developed approach to sample and optimise arbitrary non-linear wavefunctions is demonstrated with several classes of Tensor Network States all of which involve controlled approximations but still retain systematic improvability towards exactness. Thus, by applying the method to strongly-correlated Hubbard models, as well as ab-initio systems, including a fully periodic ab-initio graphene sheet, many-body wavefunctions and their one- and two-body static properties are obtained. The proposed approach can handle and simultaneously optimise large numbers of variational parameters, greatly exceeding those of alternative Variational Monte Carlo approaches.
APA, Harvard, Vancouver, ISO, and other styles
28

Remmert, Sarah M. "Reduced dimensionality quantum dynamics of chemical reactions." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:7f96405f-105c-4ca3-9b8a-06f77d84606a.

Full text
Abstract:
In this thesis a reduced dimensionality quantum scattering model is applied to the study of polyatomic reactions of type X + CH4 <--> XH + CH3. Two dimensional quantum scattering of the symmetric hydrogen exchange reaction CH3+CH4 <--> CH4+CH3 is performed on an 18-parameter double-Morse analytical function derived from ab initio calculations at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. Spectator mode motion is approximately treated via inclusion of curvilinear or rectilinear projected zero-point energies in the potential surface. The close-coupled equations are solved using R-matrix propagation. The state-to-state probabilities and integral and differential cross sections show the reaction to be primarily vibrationally adiabatic and backwards scattered. Quantum properties such as heavy-light-heavy oscillating reactivity and resonance features significantly influence the reaction dynamics. Deuterium substitution at the primary site is the dominant kinetic isotope effect. Thermal rate constants are in excellent agreement with experiment. The method is also applied to the study of electronically nonadiabatic transitions in the CH3 + HCl <--> CH4 + Cl(2PJ) reaction. Electrovibrational basis sets are used to construct the close-coupled equations, which are solved via Rmatrix propagation using a system of three potential energy surfaces coupled by spin-orbit interaction. Ground and excited electronic surfaces are developed using a 29-parameter double-Morse function with ab initio data at the CCSD(T)/ccpV( Q+d)Z-dk//MP2/cc-pV(T+d)Z-dk level of theory, and with basis set extrapolated data, both corrected via curvilinear projected spectator zero-point energies. Coupling surfaces are developed by fitting MCSCF/cc-pV(T+d)Z-dk ab initio spin orbit constants to 8-parameter functions. Scattering calculations are performed for the ground adiabatic and coupled surface models, and reaction probabilities, thermal rate constants and integral and differential cross sections are presented. Thermal rate constants on the basis set extrapolated surface are in excellent agreement with experiment. Characterisation of electronically nonadiabatic nonreactive and reactive transitions indicate the close correlation between vibrational excitation and nonadiabatic transition. A model for comparing the nonadiabatic cross section branching ratio to experiment is discussed.
APA, Harvard, Vancouver, ISO, and other styles
29

Mintz, Benjamin. "Reducing the Computational Cost of Ab Initio Methods." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9061/.

Full text
Abstract:
In recent years, advances in computer technology combined with new ab initio computational methods have allowed for dramatic improvement in the prediction of energetic properties. Unfortunately, even with these advances, the extensive computational cost, in terms of computer time, memory, and disk space of the sophisticated methods required to achieve chemical accuracy - defined as 1 kcal/mol from reliable experimental data effectively - limits the size of molecules [i.e. less than 10-15 non-hydrogen atoms] that can be studied. Several schemes were explored to help reduce the computational cost while still maintaining chemical accuracy. Specifically, a study was performed to assess the accuracy of ccCA to compute atomization energies, ionization potentials, electron affinities, proton affinities, and enthalpies of formation for third-row (Ga-Kr) containing molecules. Next, truncation of the correlation consistent basis sets for the hydrogen atom was examined as a possible means to reduce the computational cost of ab initio methods. It was determined that energetic properties could be extrapolated to the complete basis set (CBS) limit utilizing a series of truncated hydrogen basis sets that was within 1 kcal/mol of the extrapolation of the full correlation consistent basis sets. Basis set truncation for the hydrogen atom was then applied to ccCA in the development of two reduced basis set composite methods, ccCA(aug) and ccCA(TB). The effects that the ccCA(aug) and ccCA(TB) methods had upon enthalpies of formation and the overall percent disk space saved as compared to ccCA was examined for the hydrogen containing molecules of the G2/97 test suite. Additionally, the Weizmann-n (Wn) methods were utilized to compute the several properties for the alkali metal hydroxides as well as the ground and excited states of the alkali monoxides anion and radicals. Finally, a multi-reference variation to the correlation consistent Composite Approach [MR-ccCA] was presented and utilized in the computation of the potential energy surfaces for the N2 and C2 molecules.
APA, Harvard, Vancouver, ISO, and other styles
30

Edwards, Luke J. "Highly efficient quantum spin dynamics simulation algorithms." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:3eec480e-5a3a-4197-a786-e6d42988d4a5.

Full text
Abstract:
Spin dynamics simulations are used to gain insight into important magnetic resonance experiments in the fields of chemistry, biochemistry, and physics. Presented in this thesis are investigations into how to accelerate these simulations by making them more efficient. Chapter 1 gives a brief introduction to the methods of spin dynamics simulation used in the rest of the thesis. The `exponential scaling problem' that formally limits the size of spin system that can be simulated is described. Chapter 2 provides a summary of methods that have been developed to overcome the exponential scaling problem in liquid state magnetic resonance. The possibility of utilizing the multiple processors prevalent in modern computers to accelerate spin dynamics simulations provides the impetus for the investigation found in Chapter 3. A number of different methods of parallelization leading to acceleration of spin dynamics simulations are derived and discussed. It is often the case that the parameters defining a spin system are time-dependent. This complicates the simulation of the spin dynamics of the system. Chapter 4 presents a method of simplifying such simulations by mapping the spin dynamics into a larger state space. This method is applied to simulations incorporating mechanical spinning of the sample with powder averaging. In Chapter 5, implementations of several magnetic resonance experiments are detailed. In so doing, use of techniques developed in Chapters 2 and 3 are exemplified. Further, specific details of these experiments are utilized to increase the efficiency of their simulation.
APA, Harvard, Vancouver, ISO, and other styles
31

Biggs, Jason Daniel 1978. "Theoretical studies of the external vibrational control of electronic excitation transfer and its observation using polarization- and optical phase-sensitive ultrafast spectroscopy." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/11074.

Full text
Abstract:
xvi, 218 p. : ill. (some col.)
Our theoretical studies involve the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation. Our control strategy is based upon the fact that, following impulsive electronic excitation, nuclear motion acts to change the instantaneous energy difference between site-excited electronic states and thereby influences short-time electronic excitation transfer (EET). By inducing coherent intramolecular vibration in one of the chromophores prior to short-pulse electronic excitation, we exert external control over electronic dynamics. As a means to monitor this coherent control over EET, we propose using multidimensional wave-packet interferometry (md-WPI). Two pairs of polarized phase-related femtosecond pulses following the control pulse would generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signal due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We test both the control strategy and its spectroscopic investigation by calculating pump-probe difference signals for various combinations of pulse polarizations. That signal is the limiting case of the control-influenced md-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for a variety of systems including a simplified model of the covalent dimer dithia-anthracenophane (DTA) in which we treat only the weakly Franck-Condon active ν 12 anthracene vibration at 385 cm -1 . We further present calculated nl-WPI difference signals for an oriented DTA complex, which reveal amplitude-level dynamical information about the interaction of nuclear motion and electronic energy transfer. We also present pump-probe difference signals from a model system in which a CF 3 group, whose torsional angle is strongly Franck-Condon active, has been added to the anthracene monomers which make up DTA. We make use of electronic structure calculations to find the torsional potential of the monomer, from which we calculate the spectroscopic signals of the dimer. We show that a significant measure of control over short-time EET is achievable in this system. This dissertation includes previously published coauthored material.
Commitee in charge: Dr. Michael E. Kellman, Chair; Dr. Jeffrey A. Cina, Advisor; Dr. David R. Herrick; Dr. Andrew H. Marcus; Dr. Daniel A. Steck
APA, Harvard, Vancouver, ISO, and other styles
32

Tucker, Adam Philip. "Local moment phases in quantum impurity problems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:538d2d83-963e-4a51-81cd-4235e9761da4.

Full text
Abstract:
This thesis considers quantum impurity models that exhibit a quantum phase transition (QPT) between a Fermi liquid strong coupling (SC) phase, and a doubly-degenerate non-Fermi liquid local moment (LM) phase. We focus on what can be said from exact analytic arguments about the LM phase of these models, where the system is characterized by an SU(2) spin degree of freedom in the entire system. Conventional perturbation theory about the non-interacting limit does not hold in the non-Fermi liquid LM phase. We circumvent this problem by reformulating the perturbation theory using a so-called `two self-energy' (TSE) description, where the two self-energies may be expressed as functional derivatives of the Luttinger-Ward functional. One particular paradigmatic model that possesses a QPT between SC and LM phases is the pseudogap Anderson impurity model (PAIM). We use infinite-order perturbation theory in the interaction, U, to self-consistently deduce the exact low-energy forms of both the self-energies and propagators in each of the distinct phases of the model. We analyse the behaviour of the model approaching the QPT from each phase, focusing on the scaling of the zero-field single-particle dynamics using both analytical arguments and detailed numerical renormalization group (NRG) calculations. We also apply two `conserving' approximations to the PAIM. First, second-order self-consistent perturbation theory and second, the fluctuation exchange approximation (FLEX). Within the FLEX approximation we develop a numerical algorithm capable of self-consistently and coherently describing the QPT coming from both distinct phases. Finally, we consider a range of static spin susceptibilities that each probe the underlying QPT in response to coupling to a magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
33

Panesar, Kuldeep Singh. "Quantum molecular dynamics of guest molecules in supramolecular complexes." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10741/.

Full text
Abstract:
The quantum motion of guest molecules has been studied in a variety of calixarene host-guest complexes, and in a endohedral fullerene complex. The guest molecules of the calixarene complexes studied each comprise weakly hindered methyl groups, which undergo rotation via quantum tunnelling, even at cryogenic temperatures. The rotational motion of the guest methyl-groups has been studied by making temperature and frequency-dependent measurements of proton T1, using field-cycling NMR, thus revealing the spectral density functions of the magnetic dipole-dipole interaction. Crystallographically inequivalent methyl-group environments have been identified and characterised in p-tert-butylcalix[4]arene(1:1)toluene, p-tert-butylcalix[4]arene(1:1)gamma-picoline and p-isopropylcalix[4]arene(2:1)p-xylene. In many of the calixarene complexes the proton spin-lattice relaxation has been observed to be strongly dependent on the thermal history of the sample. Temperature-dependent measurements of proton T1 in samples of p-tert-butylcalix[4]arene(1:1)toluene with partially deuterated guest molecules reveal a systematic reduction in T1 at low temperatures with increased degree of deuteration. Calixarene and fullerene host-guest complexes have been identified as having a potential application in cryogenic MAS-NMR as cryorelaxor complexes, capable of being attached to a large biomolecule and encouraging proton spin-lattice relaxation. The suitability of the calixarene complexes for use in this capacity has been investigated by measuring the temperature-dependence of proton T1 at low temperatures. The quantised rotational and translational motion of dihydrogen confined within an open-cage fullerene—namely, aza-thio-open-cage-fullerene (ATOCF)—has been revealed by inelastic neutron scattering (INS) measurements. The splitting of excited rotational and translational states, due to the low symmetry of the ellipsoidal fullerene cavity, has been directly measured. Assignment of the peaks observed in the INS spectrum has been aided by analysis of the Q-dependence of excitation bands. The thermodynamics of ortho- and parahydryogen have been investigated via temperature dependence measurements. INS measurements have allowed the anistropic rotational potential experienced by the H2 rotor to be determined.
APA, Harvard, Vancouver, ISO, and other styles
34

Lin, Na. "Theoretical Studies on Electronic and Vibrationally Resolved Multi-Photon Absorption and Dichroism." Doctoral thesis, Stockholm : Skolan för bioteknologi, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Risko, Chad Michael. "Theoretical Evaluations of Electron-Transfer Processes in Organic Semiconductors." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7272.

Full text
Abstract:
The field of organic electronics, in which -conjugated, organic molecules and polymers are used as the active components (e.g., semiconductor, light emitter/harvester, etc.), has lead to a number a number of key technological developments that have been founded within fundamental research disciplines. In the Dissertation that follows, the research involves the use of quantum-chemical techniques to elucidate fundamental aspects of both intermolecular and intramolecular electron-transfer processes in organic, -conjugated molecules. The Dissertation begins with an introduction and brief review of organic molecular systems used as electron-transport semiconducting materials in device applications and/or in the fundamental studies of intramolecular mixed-valence processes. This introductory material is then followed by a brief review of the electronic-structure methods (e.g., Hartree-Fock theory and Density Functional Theory) and electron-transfer theory (i.e., semiclassical Marcus theory) employed throughout the investigations. The next three Chapters deal with investigations related to the characterization of non-rigid, -conjugated molecular systems that have amorphous solid-state properties used as the electron-transport layer in organic electronic and optoelectronic devices. Chapters 3 and 4 involve studies of silole- (silacyclopentadiene)-based materials that possess attractive electronic and optical properties in the solid state. Chapter 5 offers a preliminary study of dioxaborine-based molecular structures as electron-transport systems. In Chapters 6 8, the focus of the work shifts to investigations of organic mixed-valence systems. Chapter 6 centers on the examination of tetraanisylarylenediamine systems where the inter-redox site distances are approximately equal throughout the series. Chapter 7 examines the bridge-length dependence of the geometric structure, charge-(de)localization, and electronic coupling for a series of vinylene- and phenylene-vinylene-bridged bis-dianisylamines. In Chapter 8, the role of symmetric vibrations in the delocalization of the excess charge is studied in a dioxaborine radical-anion and a series of radical-cation bridged-bisdimethylamines. Finally, Chapter 9 provides a synopsis of the work and goals for future consideration.
APA, Harvard, Vancouver, ISO, and other styles
36

Dourado, Augusto Gouvêa. "Uso de parâmetros teóricos de solutos em relações lineares de energia de solvatação." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-29112018-114651/.

Full text
Abstract:
Parâmetros teóricos obtidos pela otimização de geometria da estrutura molecular em fase gasosa com o método quântico semi-empírico PM3, foram usados para correlacionar constantes de partição (log Poct; log Pc16 e log Pcic) para uma série de 700 solutos, considerando como referência as LSER obtidas com os parâmetros experimentais dos solutos: acidez (Σα2), basicidade (Σβ2), e dipolaridade/polarizabilidade (π2) de ligação de hidrogênio; refração molar de excesso (R2) e volume característico (Vx). Os parâmetros avaliados foram: as energias HOMO e LUMO; o momento de dipolo elétrico e as cargas atômicas parciais do hidrogênio mais positivo e do átomo mais negativo (classe IV - modelo CM1 ); e o índice de polarizabilidade como proposto por Famini e col.. Estes parâmetros teóricos, juntamente com Vx, são adequadas para serem utilizados em LSER na correlação dos valores de log P. Para a maioria dos solutos considerados, as quantidades eletrostáticas q+ , Ιq-Ι e µ descrevem adequadamente os termos de acidez, basicidade e dipolaridade de ligação de hidrogênio, o que não ocorre para solutos com mais de um polo positivo ou negativo relevante, como hidroquinona, nem para solutos como 2-nitrofenol com capacidade de formar ligação de hidrogênio intramolecular. As LSER para log Poct; log Pc16 e log Pcic com estes parâmetros teóricos são quimicamente consistentes. Cargas atômicas parciais, largamente usadas qualitativamente para descrever a reatividade de compostos e de grupos funcionais, podem ser usadas como descritor quantitativo de interações moleculares em estudos de solubilização, o primeiro estágio, que governa muitas reações químicas.
Semiempirical quantum theoretical parameters, obtained from PM3 geometry optimization method in gas-phase for a wide range of 700 solutes, were used to correlate experimental partition coeficients (log Poct; log Pc16 and log Pcyc), bearing as reference the LSER with experimentally derived parameters: Hydrogen bond acidity (Σα2), basicity (Σβ2) , and dipolarity/polarizability (π2); excess molar refraction and characteristic volume (Vx). Theoretical quantities tested includes: HOMO and LUMO energies; class IV, CM1 model atomic partial charges (q+ and Ιq-Ι) and dipole moment (µ); Famini\'s polarizability index (πF); and Vx. Those quantum derived quantities can successfully be used, jointly with Vx, to correlate log P values in the LSER approach. For most of the considered solutes, electrostatic quantities q+, Ιq-Ι and µ describes fairly well Hydrogen bond acidity, basicity and dipolarity terms, but do not describe hydrogen bond terms for solutes with more than one relevant positive or negative centers, like hydroquinone, nor solutes like 2-nitrophenol wich forms intramolecular hydrogen bond when in condensed phases. LSER with those theoretical parameters for log Poct, log Pc16 and log Pcic are chemically consistent. Atomic partial charges, widelly used to describe compounds and functional group reactivity in a qualitative way, can be used as a quantitative descriptor of molecular interactions in solubility, the first step wich drive a lot of chemical reactions.
APA, Harvard, Vancouver, ISO, and other styles
37

Rodrigues, André Luis Gois. "Estudo Teórico da Espécie BeMg." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-21092018-100103/.

Full text
Abstract:
O objetivo deste trabalho é descrever a estrutura eletrônica da espécie diatôrnica BeMg, utilizando métodos ab initio multiconfiguracionais. A primeira descrição teórica da espécie BeMg foi feita por Chiles e Dykstra em 1982, empregando os métodos SCF, CCD e CEPA. Naquele trabalho, os autores propuseram que a estrutura eletrônica do BeMg seria intermediária entre a apresentada pelas espécies Be2 e Mg2. Em 1994, Boldyrev et al. empregaram o método QCISD e conjuntos de bases atômicas do tipo 6 - 311 + G* para calcular a distância de equilíbrio do BeMg. Até onde sabemos, não existe nenhum outro estudo téorico, nem experimental, sobre esta espécie. Apesar dos esforços anteriores, devido à natureza dos átomos envolvidos, para descrever com maiores detalhes e precisão não somente o estado fundamental, mas também diferentes estados eletrônicos excitados, é necessário empregar métodos ab initio multiconfiguracionais, fato explicitamente reconhecido por Boldyrev et al. Em 1994. No presente trabalho, as curvas de energia potencial para os estados eletrônicos energeticamente mais baixos, que correlacionam com os primeiros quatro canais de dissociação, da espécie BeMg foram descritas teoricamente empregando conjunto de bases atômicas do tipo cc-pVQZ e funções de onda do tipo CASSCF/MRCI. Todos os orbitais de valência, além de um conjunto adicional de funções de correlação do tipo s e p foram incluídos no espaço ativo. Diversas constantes espectroscópicas também foram calculadas para os estados eletrônicos selecionados. O estado fundamental foi caracterizado como de simetria 1Σ+ e fracamente ligado (De = 0,05 eV), possuindo consequentemente uma distância internuclear de equihbrio relativamente longa (3, 30 Å, ωe = 44, 2 cm-1). É interessante notar que nos trabalhos anteriores a distância internuclear de equilíbrio do estado fundamental foi calculada com sendo 4, 5 Å e 5,1 Å, por Chiles e Dykstra e Boldyrev et al., respectivamente. Os dois primeiros estados excitados são o a3II (Re = 2,416 Å, Te = 11029 cm-1) e o b3 Σ+ (Re = 2,578 Å, Te = 11058 cm-1), ambos com energia de dissociação igual a 1,28 eV.
The first theoretical description of BeMg (using the SCF, CCD, and CEPA methods) was done by Chiles and Dykstra in 1982, when it was proposed that its electronic structure would be intermediate to Be2 and Mg2. In 1994, Boldyrev et al., using the QCISD method and 6 - 311+G* basis sets, presented other results on this diatomic species. To the best of our knowledge, there are no other study about this diatomic species. However, due to the nature of the atoms involved, it is necessary to employ more sophisticated theoretical methods to describe BeMg accurately. In this study, potential energy curves for the lowest-lying electronic states correlating with the first four dissociation channels were determined using the cc-p VQZ basis sets and CASSCF /MRCI wave functions. All valence orbitals plus one set of s and p correlating functions were included in the active space. A whole set of spectroscopic constants completes the characterization of each state. In its ground state (X1Σ+) BeMg is weakly bond (De = 0.05 eV), and consequently has a long internuclear equilibrium distance (Re = 3.30 Å, we = 44.2cm-1). It is interesting to note that in previous theoretical works, the internuclear equilibrium distance was calculated to be around 4.5 Å and 5.1 Å. The first two excited states are an a3II (Re = 2.416 Å, Te= 11029 cm-1) and a b3Σ+ (Re = 2.578 Å, Te= 11058 cm-1), with the same dissociation energy, 1.28 eV.
APA, Harvard, Vancouver, ISO, and other styles
38

Lange, Adrian W. "Multi-layer Methods for Quantum Chemistry in the Condensed Phase: Combining Density Functional Theory, Molecular Mechanics, and Continuum Solvation Models." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1329752615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sinnokrot, Mutasem Omar. "Theoretical Investigations of pi-pi Interactions and Their Role in Molecular Recognition." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5019.

Full text
Abstract:
Noncovalent interactions are of pivotal importance in many areas of chemistry, biology, and materials science, and the intermolecular interactions involving aromatic rings in particular, are fundamental to molecular organization and recognition processes. The work detailed in this thesis involves the application of state-of-the-art ab initio electronic structure theory methods to elucidate the nature of pi-pi interactions. The binding energies, and geometrical and orientational preferences of the simplest prototype of aromatic pi-pi interactions, the benzene dimer, are explored. We obtain the first converged values of the binding energies using highly accurate methods and large basis sets. Results from this study predict the T-shaped and parallel-displaced configurations of benzene dimer to be nearly isoenergetic. The role of substituents in tuning pi-pi interaction is investigated. By studying dimers of benzene with various monosubstituted benzenes (in the sandwich and two T-shaped configurations), we surprisingly find that all of the substituted sandwich dimers considered bind more strongly than benzene dimer. We also find that these interactions can be tuned by a modest degree of substitution. Energy decomposition analysis using symmetry-adapted perturbation theory (SAPT) reveals that models based solely on electrostatic effects will have difficulty in reliably predicting substituent effects in pi-pi interactions.
APA, Harvard, Vancouver, ISO, and other styles
40

Goh, Kelvin S. K. "Spectroscopic investigation of the quantum dynamics of small molecules encapsulated inside fullerene cages." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28849/.

Full text
Abstract:
The encapsulation of a small molecule inside a fullerene cage through advances in synthetic chemistry have created a new platform to study the dynamics of a freely rotating and translating quantum rotors entrapped inside a symmetric cage potential. These endohedral fullerene complexes are of great interest because the fullerene cages uniquely provide the entrapped molecules a high level of isolation, homogeneity, symmetry and stability. The endohedral fullerene complexes discussed in this thesis are the H2@C60, H2@C70 and H2O@C60. Both variants of small molecules studied in this thesis, H2 and H2O, exhibits spin isomerism, where the spins of both protons in the molecule are able to combine either symmetrically with total spin I=1 (ortho) or anti-symmetrically with total spin I=0 (para). The H2@C60 is the union between the simplest molecule and the most symmetrical molecule in the universe. This thesis discusses the temperature dependence of cold neutron scattering study in this complex to investigate the statistical distribution of the energy states. The H2@C70 is a less symmetric endohedral fullerene which has a prolate ellipsoidal symmetry cage. This thesis discusses the low temperature thermal neutron scattering and the temperature dependence of cold neutron scattering investigations in the complex to study the effect of the ellipsoidal cage on the quantum dynamics of the molecules. H2O@C60 is different to the dihydrogen variant of the small molecule endohedral fullerenes because H2O has a permanent electric dipole moment and is less symmetric than H2. The quantum dynamics of the H2O@C60 is investigated using low temperature thermal neutron scattering, temperature dependence cold neutron scattering and milli-Kelvin NMR. Unlike the dihydrogen endohedral fullerenes, the H2O@C60 also exhibits slow nuclear spin-isomer conversion at low temperatures. This low temperature ortho-H2O to para-H2O conversion process is investigated with both INS and NMR to study the conversion mechanism.
APA, Harvard, Vancouver, ISO, and other styles
41

Clark, Craig R. "Sympathetic heating and cooling of trapped atomic and molecular ions." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43757.

Full text
Abstract:
Laser-cooled atomic ions have led to an unprecedented amount of control over the quantum states of matter. The Coulombic interaction allows for information to be transferred between neighboring ions, and this interaction can be used to entangle qubits for logic operations in quantum information processors. The same procedure for logic operations can be used for high resolution atomic spectroscopy, and is the basis for the most accurate atomic optical clocks to date. This thesis describes how laser-cooled atomic ions can impact physical chemistry through the development of molecular ion spectroscopy techniques and the simulation of magnetic systems by ion trap quantum computers. A new technique developed for spectroscopy, Sympathetic Heating Spectroscopy (SHS), takes advantage of the Coulombic interaction between two trapped ions: the control ion and a spectroscopy ion. SHS uses the back action of the interrogating laser to map spectroscopy ion information onto the Doppler shift of the control ion for measurement. SHS only requires Doppler cooling of the ions and fluorescence measurement and represents a simplification of quantum logic spectroscopy. This technique is demonstrated on two individual isotopes of calcium: Ca-40(+) for cooling and Ca-44(+) as the spectroscopy ion. Having demonstrated SHS with atomic ions, the next step was to extend the technique by loading and characterizing molecular ions. The identification of an unknown molecular ion is necessary and can be achieved by monitoring the change in motion of the two ion crystal, which is dependent on the molecular ion mass. The motion of two trapped ions is described by their normal modes, which can be accurately measured by performing resolved sideband spectroscopy of the S(1/2)-D(5/2) transition of calcium. The resolved sidebands can be used to identify unknown ions (atomic and molecular) by calculating the mass based on the observed value in axial normal mode frequencies. Again, the trapped molecular ion is sympathetically cooled via the Coulombic interaction between the Ca-40(+) and the unknown molecular ion. The sensitivity of SHS could be improved by implementing sympathetic sideband cooling and determining the heating by measuring single quanta of motion. The ultimate limit of control would be the development of an ion trap quantum computer. Many theoretical quantum computing researchers have made bold claims of the exponential improvement a quantum computer would have over a classical computer for the simulation of physical systems such as molecules. These claims are true in principle for ideal systems, but given non-ideal components it is necessary to consider the scaling due to error correction. An estimate of the resource requirements, the total number of physical qubits and computational time, required to compute the ground state energy of a 1-D quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of the system size and the numerical precision, is presented. This estimate is based on analyzing the impact of fault-tolerant quantum error correction in the context of the quantum logic array architecture. The results show that a significant amount of error correction is required to implement the TIM problem due to the exponential scaling of the computational time with the desired precision of the energy. Comparison of this result to the resource requirements for a fault-tolerant implementation of Shor's quantum factoring algorithm reveals that the required logical qubit reliability is similar for both the TIM problem and the factoring problem.
APA, Harvard, Vancouver, ISO, and other styles
42

Filho, Antonio Gustavo Sampaio de Oliveira. "Estudo teórico da reação O(3P) + HBr: superfícies de energia potencial, cinética e dinâmica." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-23042013-093150/.

Full text
Abstract:
Neste trabalho, a reação O(3P) + HBr → OH + Br, que se insere no contexto da química atmosférica, mais especificamente nos ciclos de destruição catalítica do ozônio, foi estudada empregando superfícies de energia potencial ab initio de alta qualidade. Construímos superfícies para os estados eletrônicos 3A\" e 3A\', baseadas na expansão de muitos corpos, com potenciais de dois corpos ajustados por funções \"switched-MLJ\" e potenciais de três corpos interpolados utilizando o método RKHS. Os pontos ab initio utilizados foram obtidos no nível de teoria MRCISD+Q/CBS+SO. A superfície final para o estado eletrônico 3A\" foi corrigida por um fator multiplicativo de modo que reproduzisse cálculos benchmark para a altura de barreira, em que foram considerados efeitos relativísticos (escalares e spin-órbita), correlação caroço-valência e correlação de ordem alta (excitações triplas e quádruplas). As principais características da SEP 3A\" são dois mínimos de van der Walls no canal de entrada e saída e um estado de transição com uma barreira energética de 5,01 kcal mol-1. A SEP 3A\' tem um estado de transição linear em 6,45 kcal mol-1. O valor obtido para a entalpia de reação, a 0 K, foi de -15,7 kcal mol-1, muito próximo do valor experimental de -15,14 kcal mol-1. Calculamos constantes de velocidade, no intervalo de 200 a 1000 K, utilizando a teoria do estado de transição variacional com contribuições de tunelamento multidimensional (ICVT/µOMT) e com uma aproximação de espalhamento reativo quântico (QM/JS). Estes valores estão em ótima concordância com os dados experimentais da literatura, em todo intervalo de temperatura em que estão disponíveis: de 221 a 554 K para reação O + HBr e de 295 a 419 K para reação O + DBr. As constantes de velocidade, a 298 K e em cm3 molécula-1 s-1, obtidas para a reação O + HBr são: 3,62·10-14 (ICVT/µOMT) e 3,35·10-14 (QM/JS), enquanto que o valor experimental é 3,78·10-14. A qualidade destes resultados reforça nossa confiança nos procedimentos e aproximações utilizadas, abrindo caminho para a caracterização, em alto nível, de uma grande variedade de reações em fase gasosa.
In this work, the O(3P) + HBr → OH + Br reaction, which is relevant to atmospheric chemistry, specially for the catalytic ozone depletion, was studied using high-level ab initio potential energy surfaces. We constructed surfaces for the 3A\" and 3A\' electronic states, based on the many-body expansion, with the two-body potentials adjusted by the switched-MLJ function and the three-body potentials interpolated using the RKHS method. The ab initio points were calculated at the MRCISD+Q/CBS+SO level of theory. The main features of the 3A\" are the presence of two van der Waals minima, at the entrance and exit channels, and a transition state with a barrier height of 5.01 kcal mol-1. The 3A\' PES has a linear transition state at 6.45 kcal mol-1. We obtained the enthalpy of reaction, at 0 K, of -15.7 kcal mol-1, in close agreement with the experimental value of -15.14 kcal mol-1. Rate constants, in the temperature range from 200 to 1000 K, were calculated using the variational transition state theory with contributions of multidimensional tunneling (ICVT/µOMT) and also a quantum reactive scattering approach (QM/JS). Their values are in fair agreement with the experimental data in the literature in the whole temperature range available: from 221 to 554 K for the O + HBr reaction, and from 295 to 419 K for the O + DBr reaction. At 298 K, the calculated rate constants, in cm3 molecule-1 s-1, for the O + HBr reaction are 3.62·10-14 (ICVT/µOMT) and 3.35·10-14 (QM/JS); and the experimental value is 3.78·10-14. The quality of these results reinforces our confidence in the procedures and approximations used, leading to the possibility of high-level characterization of a variety of gas phase reactions.
APA, Harvard, Vancouver, ISO, and other styles
43

Kinal, Armagan. "Theoretical Investigation Of Unimolecular Reactions Of Cyclic C5h6 Compounds By Ab Initio Quantum Chemical Methods." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605124/index.pdf.

Full text
Abstract:
Thermodynamic stabilities of eighteen cyclic C5H6 isomers were explored computationally both on singlet and triplet state potential energy surfaces (PES). All isomers have singlet ground states except for bicyclo[2.1.0]pent-5-ylidene (B5) having no stable geometry on the singlet C5H6 PES. Cyclopenta-1,3-diene (M1) is the most stable cyclic C5H6 isomer while cyclopent-1,4-diylidene is the least stable one among all. Cyclopenta-1,2-diene (M2) and cyclopentyne (M3) have biradical characters of 46.9 and 21.5%, respectively. Seven unimolecular isomerization reactions occurring among several of these molecules were investigated by DFT and ab initio methods. The conversion of bicyclo[2.1.0]pent-2-ene (B1) and tricyclo[2.1.0.02,5]-pentane (T1) into 1,3-cyclopentadiene (M1) are shown to be concerted processes whose reaction paths pass through TSs with a high degree of biradical character. The reaction enthalpies (DH0) are predicted to be -47.7 kcal/mol for B1 and -63.8 kcal/mol for T1 at UB3LYP/6-31G(d) level. The activation enthalpy (DH0¹
) for the ring opening of B1 was calculated by the CR-CCSD(T) method to be 25.2 kcal/mol, in good agreement with experiment. Furthermore, the DH0¹
for the ring opening of T1 was obtained by the CR-CCSD(T) method to be 48.2 kcal/mol. The self-conversion of M1 via 1,5-hydrogen shift is a facile and concerted reaction with aromatic TS. The DH0¹
estimations of B3LYP and CC methods are 25.24 and 28.78 kcal/mol, respectively. For 1,2-hydrogen shift reactions of cyclopent-3-enylidene (M4) and cyclopenten-2-ylidene (M5), the single point CC calculations predicted the DH0¹
values of 3.13 and 10.12 kcal/mol, as well as, the DH0 values of -71.28 and -64.05 kcal/mol, respectively. The reason of M5 being more stable than M4 is due to the conjugation of the carbene carbon and the double bond in M5. The reaction path of cyclobutylidene methylene to cyclopentyne rearrangement is found to be rather shallow. The DH0¹
and DH0 values predicted by the RCCSD(T) method to be 3.65 and -5.72 kcal/mol, respectively. Finally, triplet state isomerization of bicyclo[2.1.0]pent-5-ylidene to cyclopenta-1,2-diene, as well as, its parent reaction, cyclopropylidene to 1,2-propadiene were investigated at several levels of theory including DFT, CASSCF and CC methods. The UCCSD(T) method estimated a moderate barrier whose value is 8.12 kcal/mol for the isomerization of 3B5 with the reaction enthalpy of -44.63 kcal/mol.
APA, Harvard, Vancouver, ISO, and other styles
44

Hohenstein, Edward G. "Implementation and applications of density-fitted symmetry-adapted perturbation theory." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42699.

Full text
Abstract:
Noncovalent interactions play a vital role throughout much of chemistry. The understanding and characterization of these interactions is an area where theoretical chemistry can provide unique insight. While many methods have been developed to study noncovalent interactions, symmetry-adapted perturbation theory (SAPT) stands out as one of the most robust. In addition to providing energetic information about an interaction, it provides insight into the underlying physics of the interaction by decomposing the energy into electrostatics, exchange, induction and dispersion. Therefore, SAPT is capable of not only answering questions about how strongly a complex is bound, but also why it is bound. This proves to be an invaluable tool for the understanding of noncovalent interactions in complex systems. The wavefunction-based formulation of SAPT can provide qualitative results for large systems as well as quantitative results for smaller systems. In order to extend the applicability of this method, approximations to the two-electron integrals must be introduced. At low-order, the introduction of density fitting approximations allows SAPT computations to be performed on systems with up to 220 atoms and 2850 basis functions. Higher-orders of SAPT, which boasts accuracy rivaling the best theoretical methods, can be applied to systems with over 40 atoms. Higher-order SAPT also benefits from approximations that attempt to truncate unneccesary unoccupied orbitals.
APA, Harvard, Vancouver, ISO, and other styles
45

Eriksson, Martin. "Photoluminescence Characteristics of III-Nitride Quantum Dots and Films." Doctoral thesis, Linköpings universitet, Halvledarmaterial, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139766.

Full text
Abstract:
III-Nitride semiconductors are very promising in both electronics and optical devices. The ability of the III-Nitride semiconductors as light emitters to span the electromagnetic spectrum from deep ultraviolet light, through the entire visible region, and into the infrared part of the spectrum, is a very important feature, making this material very important in the field of light emitting devices. In fact, the blue emission from Indium Gallium Nitride (InGaN), which was awarded the 2014 Nobel Prize in Physics, is the basis of the common and important white light emitting diode (LED). Quantum dots (QDs) have properties that make them very interesting for light emitting devices for a range of different applications, such as the possibility of increasing device efficiency. The spectrally well-defined emission from QDs also allows accurate color reproduction and high-performance communication devices. The small size of QDs, combined with selective area growth allows for an improved display resolution. By control of the polarization direction of QDs, they can be used in more efficient displays as well as in traditional communication devices. The possibility of sending out entangled photon pairs is another QD property of importance for quantum key distribution used for secure communication. QDs can hold different exciton complexes, such as the neutral single exciton, consisting of one electron and one hole, and the biexciton, consisting of two excitons. The integrated PL intensity of the biexciton exhibits a quadratic dependence with respect to the excitation power, as compared to the linear power dependence of the neutral single exciton. The lifetime of the neutral exciton is 880 ps, whereas the biexciton, consisting of twice the number of charge carriers and lacks a dark state, has a considerably shorter lifetime of only 500 ps. The ratio of the lifetimes is an indication that the size of the QD is in the order of the exciton Bohr radius of the InGaN crystal making up these QDs in the InGaN QW. A large part of the studies of this thesis has been focused on InGaN QDs on top of hexagonal Gallium Nitride (GaN) pyramids, selectively grown by Metal Organic Chemical Vapor Deposition (MOCVD). On top of the GaN pyramids, an InGaN layer and a GaN capping layer were grown. From structural and optical investigations, InGaN QDs have been characterized as growing on (0001) facets on truncated GaN pyramids. These QDs exhibit both narrow photoluminescence linewidths and are linearly polarized in directions following the symmetry of the pyramids. In this work, the neutral single exciton, and the more rare negatively charged exciton, have been investigated. At low excitation power, the integrated intensity of the PL peak of the neutral exciton increases linearly with the excitation power. The negatively charged exciton, on the other hand, exhibits a quadratic power dependence, just like that of the biexciton. Upon increasing the temperature, the power dependence of the negatively charged exciton changes to linear, just like the neutral exciton. This change in power dependence is explained in terms of electrons in potential traps close to the QD escaping by thermal excitation, leading to a surplus of electrons in the vicinity of the QD. Consequently, only a single exciton needs to be created by photoexcitation in order to form a negatively charged exciton, while the extra electron is supplied to the QD by thermal excitation. Upon a close inspection of the PL of the neutral exciton, a splitting of the peak of just below 0.4 meV is revealed. There is an observed competition in the integrated intensity between these two peaks, similar to that between an exciton and a biexciton. The high energy peak of this split exciton emission is explained in terms of a remotely charged exciton. This exciton state consists of a neutral single exciton in the QD with an extra electron or hole in close vicinity of the QD, which screens the built-in field in the QD. The InGaN QDs are very small; estimated to be on the order of the exciton Bohr radius of the InGaN crystal, or even smaller. The lifetimes of the neutral exciton and the negatively charged exciton are approximately 320 ps and 130 ps, respectively. The ratio of the lifetimes supports the claim of the QD size being on the order of the exciton Bohr radius or smaller, as is further supported by power dependence results. Under the assumption of a spherical QD, theoretical calculations predict an emission energy shift of 0.7 meV, for a peak at 3.09 eV, due to the built-in field for a QD with a diameter of 1.3 nm, in agreement with the experimental observations. Studying the InGaN QD PL from neutral and charged excitons at elevated temperatures (4 K to 166 K) has revealed that the QDs are surrounded by potential fluctuations that trap charge carriers with an energy of around 20 meV, to be compared with the exciton trapping energy in the QDs of approximately 50 meV. The confinement of electrons close to the QD is predicted to be smaller than for holes, which accounts for the negative charge of the charged exciton, and for the higher probability of capturing free electrons. We have estimated the lifetimes of free electrons and holes in the GaN barrier to be 45 ps and 60 ps, in consistence with excitons forming quickly in the barrier upon photoexcitation and that free electrons and holes get trapped quickly in local potential traps close to the QDs. This analysis also indicates that there is a probability of 35 % to have an electron in the QD between the photoexcitation pulses, in agreement with a lower than quadratic power dependence of the negatively charged exciton. InN is an attractive material due to its infrared emission, for applications such as light emitters for communication purposes, but it is more difficult to grow with high quality and low doping concentration as compared to GaN. QDs with a higher In-composition or even pure InN is an interesting prospect as being a route towards increased quantum confinement and room temperature device operation. For all optical devices, p-type doping is needed. Even nominally undoped InN samples tend to be heavily n-type doped, causing problems to make pn-junctions as needed for LEDs. In our work, we present Mg-doped p-type InN films, which when further increasing the Mg-concentration revert to n-type conductivity. We have focused on the effect of the Mg-doping on the light emission properties of these films. The low Mg doped InN film is inhomogeneous and is observed to contain areas with n-type conductivity, so called n-type pockets in the otherwise p-type InN film. A higher concentration of Mg results in a higher crystalline quality and the disappearance of the n-type pockets. The high crystalline quality has enabled us to determine the binding energy of the Mg dopants to 64 meV. Upon further increase of the Mg concentration, the film reverts to ntype conductivity. The highly Mg doped sample also exhibits a red-shifted emission with features that are interpreted as originating from Zinc-Blende inclusions in the Wurtzite InN crystal, acting as quantum wells. The Mg doping is an important factor in controlling the conductivity of InN, as well as its light emission properties, and ultimately construct InN-based devices. In summary, in this thesis, both pyramidal InGaN QDs and InGaN QDs in a QW have been investigated. Novel discoveries of exciton complexes in these QD systems have been reported. Knowledge has also been gained about the challenging material InN, including a study of the effect of the Mg-doping concentration on the semiconductor crystalline quality and its light emission properties. The outcome of this thesis enriches the knowledge of the III-Nitride semiconductor community, with the long-term objective to improve the device performance of III-Nitride based light emitting devices.
APA, Harvard, Vancouver, ISO, and other styles
46

Walker, Richard James. "Quantum cascade laser spectroscopy : developments and applications." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5021ac50-c69d-4a1d-8071-e59ffed9fcb8.

Full text
Abstract:
This thesis presents work examining the characteristics and applicability of quantum cascade lasers. An introduction is given explaining both the desire for a widely tunable, narrow bandwidth device working in the midinfrared, as well as detailing the ways in which quantum cascade lasers (QCLs) fulfill these requirements. The development and manufacture of QCLs are then discussed. The experimental section of this thesis is then split into three parts. Chapter 2 concerns the characterisation and application of several pulsed QCLs. The intrapulse mode of operation is employed and the effect of the resulting rapid frequency chirp upon molecular spectra is investigated in the form of rapid passage signals. The evolution of said rapid passage signals is then investigated as a function of chromophore pressure and identity, with different QCLs, chirp rates, and optical path lengths. The prospect of producing population transfer with chirped lasers is discussed. Chapters 3, 4, and 5 are then concerned with the application and characterisation of continuous wave QCLs. In these chapters a widely tunable commercially produced EC-QCL is utilised as well as two DFB QCLs, one of which is used in tandem with a home-made mount and temperature controller. In Chapter 3 a number of sensitive detection techniques are compared with the employment of wavelength modulation spectroscopy, long path cells and optical cavities, and the narrow bandwidth of QCLs utilised to determine a previously unknown spectral constant of DBr. Chapters 4 and 5 then utilise the high power of an external cavity quantum cascade laser in sub-Doppler Lamb-dip and polarisation spectroscopy measurements and then a pump-probe experiment. The laser linewidth is investigated on a millisecond timescale returning a current noise limited value of c.a. 2 MHz and the fundamental linewidth of the device investigated by altering the injection current. Chapter 5 is concerned with the pump-probe experiment, directly measuring the hot band absorption in a ladder like transition (R(6.5)$_\frac{1}{2}$ $v=1\leftarrow0$ and P(7.5)$_\frac{1}{2}$ $v=1\leftarrow0$). The Bennett peak in the hot band is observed with a DFB-QCL swept at $\sim 0.15$ MHz ns$^{-1}$ and is seen not just as a pump bandwidth limited lineshape, but as a highly velocity selected rapid passage signal. The effect of pressure, pump and probe scan rate and power upon this rapid passage signal is also studied. It is further noted that rapid thermalisation occurs within $v=1$ such that at pressures above c.a. 30 mTorr a broad NO doublet absorption is observed beneath the Bennett peak from which a total population transfer of c.a. $16 \%$ can be estimated. Finally an experiment is discussed in which this population transfer could be increased for use in secondary applications. Chapter 6 then presents initial measurements with two prototype pulsed 3.3 \si{\micro\metre} QCLs considering the prospects of such devices. A Fabry-P\'rot device is first studied using a Fourier transform spectrometer and temperature tuning used to produce a spectrum of the Q-branch of CH$_4$ around 3025 cm$^$. Experiments are then performed using a DFB QCL investigating the chirp rate of the system as an indicator of the rate of heat accumulation within the system. Heat management is of particular consideration when the sea-change is made from pulsed to continuous devices. For this device absorption spectra of two CH$_4$ transitions at 2971 cm$^$ are used to determine the chirp rate, which is found to be c.a. 1.8 GHz ns$^$, at least an order of magnitude higher than that of the longer wavelength pulsed devices considered in Chapter 2.
APA, Harvard, Vancouver, ISO, and other styles
47

Engberg, André. "Exploiting excited-state aromaticity for the design of efficient molecular motors : A quantum chemical study." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162675.

Full text
Abstract:
In this work, a study of a recent approach in the design of light-driven molecular motors is presented. The approach involves enabling part of the motor to obtain aromatic-like properties through photoexcitation, and is found to significantly facilitate the rotary motion by reducing the barriers normally present in the excited-state potential energy surfaces of rotary motors.
APA, Harvard, Vancouver, ISO, and other styles
48

Temelso, Berhane. "Computation of Molecular Properties at the Ab Initio Limit." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14638.

Full text
Abstract:
The accuracy of a quantum chemical calculation inherently depends on the ability to account for the completeness of the one- and n-particle spaces. The size of the basis set used can be systematically increased until it reaches the complete one-particle basis set limit (CBS) while the n-particle space approaches its exact full configuration interaction (FCI) limit by following a hierarchy of electron correlation methods developed over the last seventy years. If extremely high accuracy is desired, properly correcting for very small effects such as those resulting the Born-Oppenheimer approximation and the neglect of relativistic effects becomes indispensable. For a series of chemically interesting and challenging systems, we identify the limits of conventional approaches and use state-of-the-art quantum chemical methods along with large basis sets to get the “right answer for the right reasons.” First, we quantify the importance of small effects that are ignored in conventional quantum chemical calculations and manage to achieve spectroscopic accuracy (agreement of 1 cm−1 or less with experimental harmonic vibrational frequencies) for BH, CH+ and NH. We then definitively resolve the global minimum structure for Li₆ , Li₆⁺ , and Li₆- using high accuracy calculations of the binding energies, ionization potentials, electron affinities and vertical excitation spectra for the competing isomers. The same rigorous approach is used to study a series of hydrogen transfer reactions and validate the necessary parameters for the hydrogen abstraction and donation steps in the mechanosynthesis of diamondoids. Finally, in an effort to overcome the steep computational scaling of most high-level methods, a new hybrid methodology which scales as O(N⁵) but performs comparably to O(N⁶) methods is benchmarked for its performance in the equilibrium and dissociation regimes.
APA, Harvard, Vancouver, ISO, and other styles
49

López, José G. "Theoretical studies of the dynamics and spectroscopy of weakly bound systems." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1127220592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Walker, Alice Rachel. "Computational Simulations of Cancer and Disease-Related Enzymatic Systems Using Molecular Dynamics and Combined Quantum Methods." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157647/.

Full text
Abstract:
This work discusses applications of computational simulations to enzymatic systems with a particular focus on the effects of various small perturbations on cancer and disease-related systems. First, we cover the development of carbohydrate-based PET imaging ligands for Galectin-3, which is a protein overexpressed in pancreatic cancer tumors. We uncover several structural features for the ligands that can be used to improve their binding and efficacy. Second, we discuss the AlkB family of enzymes. AlkB is the E. coli DNA repair protein for alkylation damage, and has human homologues with slightly different functions and substrates. Each has a conserved active site with a catalytic iron and a coordinating His...His...Asp triad. We have applied molecular dynamics (MD) to investigate the effect of a novel single nucleotide polymorphism for AlkBH7, which is correlated with prostate cancer and has an unknown function. We show that the mutation leads to active site distortion, which has been confirmed by experiments. Thirdly, we investigate the unfolding of hen egg white lysozyme in 90% ethanol solution and low pH, to show the initial steps of unfolding from a native-like state to the disease-associated beta-sheet structure. We compare to mass spectrometry experiments and also show differing pathways based on protonation state. Finally, we discuss three different DNA polymerase systems. DNA polymerases are the primary proteins that replicate DNA during cell division, and have various extra or specific functions. We look at a proofreading-deficient DNA polymerase III mutant, the effects of solvent on DNA polymerase IV's ability to bypass bulky DNA adducts, and a variety of mutations on DNA polymerase kappa.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography