Academic literature on the topic 'Theoreical and Computational Chemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Theoreical and Computational Chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Theoreical and Computational Chemistry"

1

Hase, W. L., and G. E. Scuseria. "Computational chemistry." Computing in Science & Engineering 5, no. 4 (July 2003): 12–13. http://dx.doi.org/10.1109/mcise.2003.1208636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Truhlar, D. G., and V. Mckoy. "Computational chemistry." Computing in Science & Engineering 2, no. 6 (November 2000): 19–21. http://dx.doi.org/10.1109/mcise.2000.881703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leszczynski, Jerzy. "Computational chemistry." Parallel Computing 26, no. 7-8 (July 2000): 817–18. http://dx.doi.org/10.1016/s0167-8191(00)00013-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DeTar, DeLosF. "Computational Chemistry." Computers & Chemistry 13, no. 3 (January 1989): 297. http://dx.doi.org/10.1016/0097-8485(89)85015-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schuster, Peter, and Peter Wolschann. "Computational chemistry." Monatshefte für Chemie - Chemical Monthly 139, no. 4 (January 18, 2008): III—IV. http://dx.doi.org/10.1007/s00706-008-0882-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schneider, Gisbert. "Computational medicinal chemistry." Future Medicinal Chemistry 3, no. 4 (March 2011): 393–94. http://dx.doi.org/10.4155/fmc.11.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernández, Israel, and Fernando P. Cossío. "Applied computational chemistry." Chemical Society Reviews 43, no. 14 (2014): 4906. http://dx.doi.org/10.1039/c4cs90040e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yates, Brian F. "Computational organic chemistry." Annual Reports Section "B" (Organic Chemistry) 102 (2006): 219. http://dx.doi.org/10.1039/b518099f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bachrach, Steven M. "Computational organic chemistry." Annual Reports Section "B" (Organic Chemistry) 105 (2009): 398. http://dx.doi.org/10.1039/b822063h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mück-Lichtenfeld, Christian. "Computational Organic Chemistry." Synthesis 2008, no. 11 (June 2008): 1808. http://dx.doi.org/10.1055/s-2008-1080541.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Theoreical and Computational Chemistry"

1

Belding, Stephen Richard. "Computational electrochemistry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:e997642f-fbaa-469c-98a3-f359b0996f03.

Full text
Abstract:
Electrochemistry is the science of electron transfer. The subject is of great importance and appeal because detailed information can be obtained using relatively simple experimental techniques. In general, the raw data is sufficiently complicated to preclude direct interpretation, yet is readily rationalised using numerical procedures. Computational analysis is therefore central to electrochemistry and is the main topic of this thesis. Chapters 1 and 2 provide an introductory account to electrochemistry and numerical analysis respectively. Chapter 1 explains the origin of the potential difference and describes its relevance to the thermodynamic and kinetic properties of a redox process. Voltammetry is introduced as an experimental means of studying electrode dynamics. Chapter 2 explains the numerical methods used in later chapters. Chapter 3 presents a review of the use of nanoparticles in electrochemistry. Chapter 4 presents the simulation of a random array of spherical nanoparticles. Conclusions obtained theoretically are experimentally confirmed using the Cr3+/Cr2+ redox couple on a random array of silver nanoparticles. Chapter 5 presents an investigation into the concentration of supporting electrolyte required to make a voltammetric experiment quantitatively diffusional. This study looks at a wide range of experimental conditions. Chapter 6 presents an investigation into the deliberate addition of insufficient supporting electrolyte to an electrochemical experiment. It is shown that this technique can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the reduction of anthracene in acetonitrile. Chapter 7 presents a new method for simulating voltammetry at disc shaped electrodes in the presence of insufficient supporting electrolyte. It is shown that, under certain conditions, the results obtained from this complicated simulation can be quantitatively obtained by means of a much simpler ‘hemispherical approximation’. Conclusions obtained theoretically are experimentally confirmed using the hexammineruthenium ([Ru(NH3)6]3+/[Ru(NH3)6]2+) and hexachloroiridate ([IrCl6]2−/[IrCl6]3−) redox couples. Chapter 8 presents an investigation into the voltammetry of stepwise two electron processes using ionic liquids as solvents. It is shown that these solvents can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the oxidation of N,N-dimethyl-p-phenylenediamine in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C4 mim][BF4]). The work presented in this thesis has been published as 7 scientific papers.
APA, Harvard, Vancouver, ISO, and other styles
2

Dinescu, Adriana Cundari Thomas R. "Metals in chemistry and biology computational chemistry studies /." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dinescu, Adriana. "Metals in Chemistry and Biology: Computational Chemistry Studies." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3678/.

Full text
Abstract:
Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
APA, Harvard, Vancouver, ISO, and other styles
4

Lathey, Daniel Craig. "Fluorescence prediction through computational chemistry." Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rajarathinam, Kayathri. "Nutraceuticals based computational medicinal chemistry." Licentiate thesis, KTH, Teoretisk kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122681.

Full text
Abstract:
In recent years, the edible biomedicinal products called nutraceuticals have been becoming more popular among the pharmaceutical industries and the consumers. In the process of developing nutraceuticals, in silico approaches play an important role in structural elucidation, receptor-ligand interactions, drug designing etc., that critically help the laboratory experiments to avoid biological and financial risk. In this thesis, three nutraceuticals possessing antimicrobial and anticancer activities have been studied. Firstly, a tertiary structure was elucidated for a coagulant protein (MO2.1) of Moringa oleifera based on homology modeling and also studied its oligomerization that is believed to interfere with its medicinal properties. Secondly, the antimicrobial efficiency of a limonoid from neem tree called ‘azadirachtin’ was studied with a bacterial (Proteus mirabilis) detoxification agent, glutathione S-transferase, to propose it as a potent drug candidate for urinary tract infections. Thirdly, sequence specific binding activity was analyzed for a plant alkaloid called ‘palmatine’ for the purpose of developing intercalators in cancer therapy. Cumulatively, we have used in silico methods to propose the structure of an antimicrobial peptide and also to understand the interactions between protein and nucleic acids with these nutraceuticals.

QC 20130531

APA, Harvard, Vancouver, ISO, and other styles
6

Brookes, Benjamin A. "Computational electrochemistry." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bertolani, Steve James. "Computational Methods for Modeling Enzymes." Thesis, University of California, Davis, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10928544.

Full text
Abstract:

Enzymes play a crucial role in modern biotechnology, industry, food processing and medical applications. Since their first discovered industrial use, man has attempted to discover new enzymes from Nature to catalyze different chemical reactions. In modern times, with the advent of computational methods, protein structure solutions, protein sequencing and DNA synthesis methods, we now have the tools to enable new approaches to rational enzyme engineering. With an enzyme structure in hand, a researcher may run an in silico experiment to sample different amino acids in the active site in order to identify new combinations which likely stabilize a transition-state-enzyme model. A suggested mutation can then be encoded into the desired enzyme gene, ordered, synthesized and tested. Although this truly astonishing feat of engineering and modern biotechnology allows the redesign of existing enzymes to acquire a new substrate specificity, it still requires a large amount of time, capital and technical capabilities.

Concurrently, while making strides in computational protein design, the cost of sequencing DNA plummeted after the turn of the century. With the reduced cost of sequencing, the number of sequences in public databases of naturally occurring proteins has grown exponentially. This new, large source of information can be utilized to enable rational enzyme design, as long as it can be coupled with accurate modeling of the protein sequences.

This work first describes a novel approach to reengineering enzymes (Genome Enzyme Orthologue Mining; GEO) that utilizes the vast amount of protein sequences in modern databases along with extensive computation modeling and achieves comparable results to the state-of-the-art rational enzyme design methods. Then, inspired by the success of this new method and aware of it's reliance on the accuracy of the protein models, we created a computational benchmark to both measure the accuracy of our models as well as improve it by encoding additional information about the structure, derived from mechanistic studies (Catalytic Geometry constraints; CG). Lastly, we use the improved accuracy method to automatically model hundreds of putative enzymes sequences and dock substrates into them to extract important features that are then used to inform experiments and design. This is used to reengineer a ribonucleotide reductase to catalyze a aldehyde deformylating oxygenase reaction.

These chapters advance the field of rational enzyme engineering, by providing a novel technique that may enable efficient routes to rationally design enzymes for reactions of interest. These chapters also advance the field of homology modeling, in the specific domain in which the researcher is modeling an enzyme with a known chemical reaction. Lastly, these chapters and techniques lead to an example which utilizes highly accurate computational models to create features which can help guide the rational design of enzyme catalysts.

APA, Harvard, Vancouver, ISO, and other styles
8

Funes, Ardoiz Ignacio. "Computational Chemistry for Homogeneous Redox Catalysis." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/456826.

Full text
Abstract:
Aquesta Tesis Doctoral s'ha centrat en l'estudi computacional mitjançant metodologia DFT (Teoria del funcional de la densitat) de reaccions redox catalitzades en fase homogènia. La primera part recau en l'estudi computacional de dos cicles catalítics d'acoblament oxidatiu. Aquest estudi ha aconseguit desxifrar una de les claus d'aquest tipus de reaccions, l'efecte de l'oxidant extern. Demostrem que en totes dues reaccions, diferents metalls de transició poden col•laborar per a donar una reacció més eficient i selectiva. A més a més, descobrim els factors claus per a la regioselectivitat de les dues reaccions estudiades. La segona reacció va ser estudiada en col•laboració amb el grup experimental del Prof. Frederic Patureau (University of Kaiserslautern). La segona part de la tesis es centra en canvi en l'estudi teòric de la reacció d'oxidació de l'aigua catalitzada per complexes de la primera serie de transició. S'ha desenvolupat una nova família de catalitzadors mononuclears de coure en col•laboració amb el grup del Prof. Antoni Llobet (ICIQ). S'ha descobert un nou mecanisme de formació de l'enllaç oxígen-oxígen que consisteix en l'atac nucleòfil de l'aigua mitjançant la transferència d'un electró (SET-WNA). Un cop descobert aquest mecanisme, es va veure que també operava sobre altres catalitzadors de coure i ruteni, redefinint així el context mecanístic d'aquesta reacció en catàlisis homogènia. Aquesta tesis, per tant, proporciona una profunda base mecanística sobre importants reaccions redox mitjançant la química computacional a través dels mètodes DFT.
Esta Tesis Doctoral se ha centrado en el estudio computacional mediante metodología DFT (Teoría del funcional de la densidad) de reacciones redox catalizadas en fase homogénea. La primera parte versa sobre el estudio computacional de dos ciclos catalíticos de acoplamiento oxidativo. Este estudio dio con una de las claves en este tipo de reacciones, el efecto del oxidante externo. Demostramos en ambas reacciones como diferentes metales de transición podían colaborar para dar una reacción más eficiente y selectiva. Además descubrimos las claves para la regioselectividad en ambas reacciones. La segunda reacción fue estudiada en colaboración con el grupo experimental del profesor Frederic Patureau (University of Kaiserslautern). Por otro lado, la segunda parte de esta tesis se centra en el estudio teórico de la reacción de oxidación de agua catalizada por complejos de la primera serie de transición. Desarrollamos una nueva familia de catalizadores mononucleares de cobre con la colaboración experimental del grupo del profesor Antoni Llobet (ICIQ), descubriendo un nuevo mecanismo en la formación de enlace oxígeno-oxígeno, el ataque nucleófilo del agua mediante la transferencia de un electrón (SET-WNA). Tras esto extendimos este mecanismo a otros sistemas de cobre y de rutenio, redefiniendo el contexto mecanístico para esta reacción en catálisis homogénea. Esta tesis, por tanto, proporciona una profunda base mecanística sobre el estudio de importantes reacciones redox mediante química computacional a través de los métodos DFT.
This Doctoral Thesis is focused on the computational study by DFT methodology (Density Functional Theory) of homogeneous redox catalized reactions. The first part describes successfully the mechanism of two different catalytic cycles of oxidative coupling reactions. This study found out the explanation about one of the challenging questions on the field, the key role of the external oxidant. We demonstrated the cooperation between different transition metals is essential to catalyze the reaction efficiently and with good selectivities. Additionally, we explained also the regioselectivity of both reactions, in very good agreement with the experimental results. The second reaction was studied in collaboration with the experimental group of professor Frederic Patureau (University of Kaiserslautern). On the other hand, the second part of the thesis is focused on the theoretical study of water oxidation reaction catalyzed by first-row transition metal complexes. Firstly, we developed a new family of mononuclear copper complexes in collaboration with the experimental group of professor Antoni Llobet (ICIQ), discovering a new mechanism for the oxygen-oxygen bond formation step, the water nucleophilic attack. single electron transfer (SET-WNA). From this point, we extended the new mechanism to other catalytic systems based on copper and ruthenium, redefining the mechanistic scenario for the homogeneous catalytic version of this reaction. Therefore, this thesis provides a deep theoretical knowledge abour the homogeneous redox catalysis mechanisms by DFT calculations.
APA, Harvard, Vancouver, ISO, and other styles
9

Sykes, Adam. "High-throughput computational chemistry of macromolecules." Thesis, University of Liverpool, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tassell, M. J. "Computational investigations of molecular actinide chemistry." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1386659/.

Full text
Abstract:
This thesis is a computational study of the first members of the actinide series, thorium, protactinium, uranium, neptunium, plutonium, americium and curium. There are two general themes that occur throughout this thesis; the first is the electronic structures of the aforementioned actinides, and in particular what is the role of the 5f and 6d orbitals in the electronic structure of some early actinide complexes. The second is how covalent are the interactions between the early actinides and lighter members of the periodic table, in particular carbon, halogens and the chalcogens. The principal quantity that has been probed to assess this covalency is the electron density. Chapter 2 makes use of both time dependent density functional theory (TDDFT) and multiconfigurational self-consistent field theory (CASPT2) to assess the experimentally determined Cl K edge spectra of [AnCl6]2-; An = Th, Pa, U, Np and Pu. Particular attention is applied to the [NpCl6]2- and [PuCl6]2- spectra as an anomalous transition splitting pattern is seen. Quantum theory of atoms in molecules (QTAIM) theory has been used to probe the actinide cyclopentadienyl bond in chapter 3 and the actinide halogen bond in chapter 4. Unlike more traditional Mulliken and orbital analysis QTAIM is based on the topology of the electron density and is therefore an observable quantity. The actinide halide bond is then also probed with bond orders derived from QTAIM. The [M{N(EPPh2}2]3 ;(M = La, Ce, Eu, U, Pu, Am, Cm; E = S, Se) molecules studied in chapter 5 have been purposely synthesized so as to assess the degree of covalency between An(III) and La(III) chalcogen bonds. Natural population analysis and QTAIM is used to study these complexes.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Theoreical and Computational Chemistry"

1

Houk, Kendall N., and Fang Liu. Computational Chemistry. Washington, DC, USA: American Chemical Society, 2022. http://dx.doi.org/10.1021/acsinfocus.7e5011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lewars, Errol G. Computational Chemistry. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lewars, Errol G. Computational Chemistry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30916-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

G, Richards W., ed. Computational chemistry. Oxford [England]: Oxford University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1964-, Cundari Thomas R., ed. Computational organometallic chemistry. New York: Marcel Dekker, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bachrach, Steven M. Computational organic chemistry. Hoboken, N.J: Wiley-Interscience, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiest, Olaf, and Yundong Wu, eds. Computational Organometallic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25258-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Onishi, Taku. Quantum Computational Chemistry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5933-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bachrach, Steven M. Computational Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118671191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curtiss, L. A., and M. S. Gordon, eds. Computational Materials Chemistry. Dordrecht: Kluwer Academic Publishers, 2005. http://dx.doi.org/10.1007/1-4020-2117-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Theoreical and Computational Chemistry"

1

Safouhi, Hassan, and Ahmed Bouferguene. "Computational Chemistry." In Scientific Data Mining and Knowledge Discovery, 173–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02788-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna, et al. "Computational Chemistry." In Encyclopedia of Parallel Computing, 352. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klostermeier, Dagmar, and Markus G. Rudolph. "Computational Biology." In Biophysical Chemistry, 341–61. Names: Klostermeier, Dagmar, author. | Rudolph, Markus G., author. Title: Biophysical chemistry / Dagmar Klostermeier and Markus G. Rudolph. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315156910-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lewars, Errol G. "An Outline of What Computational Chemistry Is All About." In Computational Chemistry, 1–7. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lewars, Errol G. "The Concept of the Potential Energy Surface." In Computational Chemistry, 9–43. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lewars, Errol G. "Molecular Mechanics." In Computational Chemistry, 45–83. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lewars, Errol G. "Introduction to Quantum Mechanics in Computational Chemistry." In Computational Chemistry, 85–173. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lewars, Errol G. "Ab initio Calculations." In Computational Chemistry, 175–390. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lewars, Errol G. "Semiempirical Calculations." In Computational Chemistry, 391–444. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lewars, Errol G. "Density Functional Calculations." In Computational Chemistry, 445–519. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Theoreical and Computational Chemistry"

1

Onishi, Taku. "Recent computational chemistry." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maroulis, George. "Computational quantum chemistry." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cisneros, Gerardo, J. A. Cogordan, Miguel Castro, and Chumin Wang. "Computational Chemistry and Chemical Engineering." In Third UNAM-CRAY Supercomputing Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adamov, Dmitri P., Alexey Y. Akhlyostin, Alexandre Z. Fazliev, Eugeni P. Gordov, Alexey S. Karyakin, Sergey A. Mikhailov, and Olga B. Rodimova. "Information-computational system: atmospheric chemistry." In Sixth International Symposium on Atmospheric and Ocean Optics, edited by Gennadii G. Matvienko and Vladimir P. Lukin. SPIE, 1999. http://dx.doi.org/10.1117/12.370548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wimmer, Erich. "Industrial trends in computational chemistry." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yeguas, Violeta, and Ruben Casado. "Big Data issues in Computational Chemistry." In 2014 2nd International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2014. http://dx.doi.org/10.1109/ficloud.2014.69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clementi, Enrico, and Giorgina Corongiu. "Extrapolations on Ab Initio Computational Chemistry." In Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sukumar, N. "Cellular automata in computational quantum chemistry." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Infante, Ivan. "Computational Chemistry for Colloidal Semiconductor Nanocrystals." In Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Till, Stephen, Andrew Heaton, David Payne, Corinne Stone, and Martin Swan. "Computational chemistry studies of phenolic resin." In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-182.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Theoreical and Computational Chemistry"

1

Author, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/7376091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, R. J., R. Shepard, and A. F. Wagner. Computational chemistry on parallel computers. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

J. Thomas Mckinnon. Computational Chemistry and Reaction Engineering Workbench. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/820562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alexeev, Yuri. Scalable Computational Chemistry: New Developments and Applications. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/806585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Basak, Subhash C. Predicting Chemical Toxicity from Proteomics and Computational Chemistry. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada576221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, Katrina, Kim Ferris, and George Irving. Computational Chemistry for the High Power Microwave Initiative. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada376400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler, et al. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/15010139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Millis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rudd, R., and M. McElfresh. 2004 LLNL Computational Chemistry and Materials Science Summer Institute. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/15014752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guest, M. F., E. Apra, and D. E. Bernholdt. High performance computational chemistry: Towards fully distributed parallel algorithms. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10162988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography