Academic literature on the topic 'Theoreical and Computational Chemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Theoreical and Computational Chemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Theoreical and Computational Chemistry"
Hase, W. L., and G. E. Scuseria. "Computational chemistry." Computing in Science & Engineering 5, no. 4 (July 2003): 12–13. http://dx.doi.org/10.1109/mcise.2003.1208636.
Full textTruhlar, D. G., and V. Mckoy. "Computational chemistry." Computing in Science & Engineering 2, no. 6 (November 2000): 19–21. http://dx.doi.org/10.1109/mcise.2000.881703.
Full textLeszczynski, Jerzy. "Computational chemistry." Parallel Computing 26, no. 7-8 (July 2000): 817–18. http://dx.doi.org/10.1016/s0167-8191(00)00013-2.
Full textDeTar, DeLosF. "Computational Chemistry." Computers & Chemistry 13, no. 3 (January 1989): 297. http://dx.doi.org/10.1016/0097-8485(89)85015-6.
Full textSchuster, Peter, and Peter Wolschann. "Computational chemistry." Monatshefte für Chemie - Chemical Monthly 139, no. 4 (January 18, 2008): III—IV. http://dx.doi.org/10.1007/s00706-008-0882-8.
Full textSchneider, Gisbert. "Computational medicinal chemistry." Future Medicinal Chemistry 3, no. 4 (March 2011): 393–94. http://dx.doi.org/10.4155/fmc.11.10.
Full textFernández, Israel, and Fernando P. Cossío. "Applied computational chemistry." Chemical Society Reviews 43, no. 14 (2014): 4906. http://dx.doi.org/10.1039/c4cs90040e.
Full textYates, Brian F. "Computational organic chemistry." Annual Reports Section "B" (Organic Chemistry) 102 (2006): 219. http://dx.doi.org/10.1039/b518099f.
Full textBachrach, Steven M. "Computational organic chemistry." Annual Reports Section "B" (Organic Chemistry) 105 (2009): 398. http://dx.doi.org/10.1039/b822063h.
Full textMück-Lichtenfeld, Christian. "Computational Organic Chemistry." Synthesis 2008, no. 11 (June 2008): 1808. http://dx.doi.org/10.1055/s-2008-1080541.
Full textDissertations / Theses on the topic "Theoreical and Computational Chemistry"
Belding, Stephen Richard. "Computational electrochemistry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:e997642f-fbaa-469c-98a3-f359b0996f03.
Full textDinescu, Adriana Cundari Thomas R. "Metals in chemistry and biology computational chemistry studies /." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3678.
Full textDinescu, Adriana. "Metals in Chemistry and Biology: Computational Chemistry Studies." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3678/.
Full textLathey, Daniel Craig. "Fluorescence prediction through computational chemistry." Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=522.
Full textRajarathinam, Kayathri. "Nutraceuticals based computational medicinal chemistry." Licentiate thesis, KTH, Teoretisk kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122681.
Full textQC 20130531
Brookes, Benjamin A. "Computational electrochemistry." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270000.
Full textBertolani, Steve James. "Computational Methods for Modeling Enzymes." Thesis, University of California, Davis, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10928544.
Full textEnzymes play a crucial role in modern biotechnology, industry, food processing and medical applications. Since their first discovered industrial use, man has attempted to discover new enzymes from Nature to catalyze different chemical reactions. In modern times, with the advent of computational methods, protein structure solutions, protein sequencing and DNA synthesis methods, we now have the tools to enable new approaches to rational enzyme engineering. With an enzyme structure in hand, a researcher may run an in silico experiment to sample different amino acids in the active site in order to identify new combinations which likely stabilize a transition-state-enzyme model. A suggested mutation can then be encoded into the desired enzyme gene, ordered, synthesized and tested. Although this truly astonishing feat of engineering and modern biotechnology allows the redesign of existing enzymes to acquire a new substrate specificity, it still requires a large amount of time, capital and technical capabilities.
Concurrently, while making strides in computational protein design, the cost of sequencing DNA plummeted after the turn of the century. With the reduced cost of sequencing, the number of sequences in public databases of naturally occurring proteins has grown exponentially. This new, large source of information can be utilized to enable rational enzyme design, as long as it can be coupled with accurate modeling of the protein sequences.
This work first describes a novel approach to reengineering enzymes (Genome Enzyme Orthologue Mining; GEO) that utilizes the vast amount of protein sequences in modern databases along with extensive computation modeling and achieves comparable results to the state-of-the-art rational enzyme design methods. Then, inspired by the success of this new method and aware of it's reliance on the accuracy of the protein models, we created a computational benchmark to both measure the accuracy of our models as well as improve it by encoding additional information about the structure, derived from mechanistic studies (Catalytic Geometry constraints; CG). Lastly, we use the improved accuracy method to automatically model hundreds of putative enzymes sequences and dock substrates into them to extract important features that are then used to inform experiments and design. This is used to reengineer a ribonucleotide reductase to catalyze a aldehyde deformylating oxygenase reaction.
These chapters advance the field of rational enzyme engineering, by providing a novel technique that may enable efficient routes to rationally design enzymes for reactions of interest. These chapters also advance the field of homology modeling, in the specific domain in which the researcher is modeling an enzyme with a known chemical reaction. Lastly, these chapters and techniques lead to an example which utilizes highly accurate computational models to create features which can help guide the rational design of enzyme catalysts.
Funes, Ardoiz Ignacio. "Computational Chemistry for Homogeneous Redox Catalysis." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/456826.
Full textEsta Tesis Doctoral se ha centrado en el estudio computacional mediante metodología DFT (Teoría del funcional de la densidad) de reacciones redox catalizadas en fase homogénea. La primera parte versa sobre el estudio computacional de dos ciclos catalíticos de acoplamiento oxidativo. Este estudio dio con una de las claves en este tipo de reacciones, el efecto del oxidante externo. Demostramos en ambas reacciones como diferentes metales de transición podían colaborar para dar una reacción más eficiente y selectiva. Además descubrimos las claves para la regioselectividad en ambas reacciones. La segunda reacción fue estudiada en colaboración con el grupo experimental del profesor Frederic Patureau (University of Kaiserslautern). Por otro lado, la segunda parte de esta tesis se centra en el estudio teórico de la reacción de oxidación de agua catalizada por complejos de la primera serie de transición. Desarrollamos una nueva familia de catalizadores mononucleares de cobre con la colaboración experimental del grupo del profesor Antoni Llobet (ICIQ), descubriendo un nuevo mecanismo en la formación de enlace oxígeno-oxígeno, el ataque nucleófilo del agua mediante la transferencia de un electrón (SET-WNA). Tras esto extendimos este mecanismo a otros sistemas de cobre y de rutenio, redefiniendo el contexto mecanístico para esta reacción en catálisis homogénea. Esta tesis, por tanto, proporciona una profunda base mecanística sobre el estudio de importantes reacciones redox mediante química computacional a través de los métodos DFT.
This Doctoral Thesis is focused on the computational study by DFT methodology (Density Functional Theory) of homogeneous redox catalized reactions. The first part describes successfully the mechanism of two different catalytic cycles of oxidative coupling reactions. This study found out the explanation about one of the challenging questions on the field, the key role of the external oxidant. We demonstrated the cooperation between different transition metals is essential to catalyze the reaction efficiently and with good selectivities. Additionally, we explained also the regioselectivity of both reactions, in very good agreement with the experimental results. The second reaction was studied in collaboration with the experimental group of professor Frederic Patureau (University of Kaiserslautern). On the other hand, the second part of the thesis is focused on the theoretical study of water oxidation reaction catalyzed by first-row transition metal complexes. Firstly, we developed a new family of mononuclear copper complexes in collaboration with the experimental group of professor Antoni Llobet (ICIQ), discovering a new mechanism for the oxygen-oxygen bond formation step, the water nucleophilic attack. single electron transfer (SET-WNA). From this point, we extended the new mechanism to other catalytic systems based on copper and ruthenium, redefining the mechanistic scenario for the homogeneous catalytic version of this reaction. Therefore, this thesis provides a deep theoretical knowledge abour the homogeneous redox catalysis mechanisms by DFT calculations.
Sykes, Adam. "High-throughput computational chemistry of macromolecules." Thesis, University of Liverpool, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507497.
Full textTassell, M. J. "Computational investigations of molecular actinide chemistry." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1386659/.
Full textBooks on the topic "Theoreical and Computational Chemistry"
Houk, Kendall N., and Fang Liu. Computational Chemistry. Washington, DC, USA: American Chemical Society, 2022. http://dx.doi.org/10.1021/acsinfocus.7e5011.
Full textLewars, Errol G. Computational Chemistry. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3.
Full textLewars, Errol G. Computational Chemistry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30916-3.
Full textG, Richards W., ed. Computational chemistry. Oxford [England]: Oxford University Press, 1995.
Find full text1964-, Cundari Thomas R., ed. Computational organometallic chemistry. New York: Marcel Dekker, 2001.
Find full textBachrach, Steven M. Computational organic chemistry. Hoboken, N.J: Wiley-Interscience, 2007.
Find full textWiest, Olaf, and Yundong Wu, eds. Computational Organometallic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25258-7.
Full textOnishi, Taku. Quantum Computational Chemistry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5933-9.
Full textBachrach, Steven M. Computational Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118671191.
Full textCurtiss, L. A., and M. S. Gordon, eds. Computational Materials Chemistry. Dordrecht: Kluwer Academic Publishers, 2005. http://dx.doi.org/10.1007/1-4020-2117-8.
Full textBook chapters on the topic "Theoreical and Computational Chemistry"
Safouhi, Hassan, and Ahmed Bouferguene. "Computational Chemistry." In Scientific Data Mining and Knowledge Discovery, 173–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02788-8_8.
Full textSteele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna, et al. "Computational Chemistry." In Encyclopedia of Parallel Computing, 352. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2417.
Full textKlostermeier, Dagmar, and Markus G. Rudolph. "Computational Biology." In Biophysical Chemistry, 341–61. Names: Klostermeier, Dagmar, author. | Rudolph, Markus G., author. Title: Biophysical chemistry / Dagmar Klostermeier and Markus G. Rudolph. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315156910-21.
Full textLewars, Errol G. "An Outline of What Computational Chemistry Is All About." In Computational Chemistry, 1–7. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_1.
Full textLewars, Errol G. "The Concept of the Potential Energy Surface." In Computational Chemistry, 9–43. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_2.
Full textLewars, Errol G. "Molecular Mechanics." In Computational Chemistry, 45–83. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_3.
Full textLewars, Errol G. "Introduction to Quantum Mechanics in Computational Chemistry." In Computational Chemistry, 85–173. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_4.
Full textLewars, Errol G. "Ab initio Calculations." In Computational Chemistry, 175–390. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_5.
Full textLewars, Errol G. "Semiempirical Calculations." In Computational Chemistry, 391–444. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_6.
Full textLewars, Errol G. "Density Functional Calculations." In Computational Chemistry, 445–519. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_7.
Full textConference papers on the topic "Theoreical and Computational Chemistry"
Onishi, Taku. "Recent computational chemistry." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938810.
Full textMaroulis, George. "Computational quantum chemistry." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.
Full textCisneros, Gerardo, J. A. Cogordan, Miguel Castro, and Chumin Wang. "Computational Chemistry and Chemical Engineering." In Third UNAM-CRAY Supercomputing Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529426.
Full textAdamov, Dmitri P., Alexey Y. Akhlyostin, Alexandre Z. Fazliev, Eugeni P. Gordov, Alexey S. Karyakin, Sergey A. Mikhailov, and Olga B. Rodimova. "Information-computational system: atmospheric chemistry." In Sixth International Symposium on Atmospheric and Ocean Optics, edited by Gennadii G. Matvienko and Vladimir P. Lukin. SPIE, 1999. http://dx.doi.org/10.1117/12.370548.
Full textWimmer, Erich. "Industrial trends in computational chemistry." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47841.
Full textYeguas, Violeta, and Ruben Casado. "Big Data issues in Computational Chemistry." In 2014 2nd International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2014. http://dx.doi.org/10.1109/ficloud.2014.69.
Full textClementi, Enrico, and Giorgina Corongiu. "Extrapolations on Ab Initio Computational Chemistry." In Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41358.
Full textSukumar, N. "Cellular automata in computational quantum chemistry." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47854.
Full textInfante, Ivan. "Computational Chemistry for Colloidal Semiconductor Nanocrystals." In Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.013.
Full textTill, Stephen, Andrew Heaton, David Payne, Corinne Stone, and Martin Swan. "Computational chemistry studies of phenolic resin." In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-182.
Full textReports on the topic "Theoreical and Computational Chemistry"
Author, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/7376091.
Full textHarrison, R. J., R. Shepard, and A. F. Wagner. Computational chemistry on parallel computers. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132716.
Full textJ. Thomas Mckinnon. Computational Chemistry and Reaction Engineering Workbench. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/820562.
Full textAlexeev, Yuri. Scalable Computational Chemistry: New Developments and Applications. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/806585.
Full textBasak, Subhash C. Predicting Chemical Toxicity from Proteomics and Computational Chemistry. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada576221.
Full textBrown, Katrina, Kim Ferris, and George Irving. Computational Chemistry for the High Power Microwave Initiative. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada376400.
Full textHarrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler, et al. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/15010139.
Full textMillis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332662.
Full textRudd, R., and M. McElfresh. 2004 LLNL Computational Chemistry and Materials Science Summer Institute. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/15014752.
Full textGuest, M. F., E. Apra, and D. E. Bernholdt. High performance computational chemistry: Towards fully distributed parallel algorithms. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10162988.
Full text