Dissertations / Theses on the topic 'The UAV path planning problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'The UAV path planning problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ait, Saadi Amylia. "Coordination of scout drones (UAVs) in smart-city to serve autonomous vehicles." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG064.
Full textThe subject of Unmanned Aerial Vehicles (UAVs) has become a promising study field in bothresearch and industry. Due to their autonomy and efficiency in flight, UAVs are considerablyused in various applications for different tasks. Actually, the autonomy of the UAVis a challenging issue that can impact both its performance and safety during the mission.During the flight, the autonomous UAVs are required to investigate the area and determineefficiently their trajectory by preserving their resources (energy related to both altitude andpath length) and satisfying some constraints (obstacles and axe rotations). This problem isdefined as the UAV path planning problem that requires efficient algorithms to be solved,often Artificial Intelligence algorithms. In this thesis, we present two novel approachesfor solving the UAV path planning problem. The first approach is an improved algorithmbased on African Vultures Optimization Algorithm (AVOA), called CCO-AVOA algorithms,which integrates the Chaotic map, Cauchy mutation, and Elite Opposition-based learningstrategies. These three strategies improve the performance of the original AVOA algorithmin terms of the diversity of solutions and the exploration/exploitation search balance. Asecond approach is a hybrid-based approach, called CAOSA, based on the hybridization ofChaotic Aquila Optimization with Simulated Annealing algorithms. The introduction of thechaotic map enhances the diversity of the Aquila Optimization (AO), while the SimulatedAnnealing (SA) algorithm is applied as a local search algorithm to improve the exploitationsearch of the traditional AO algorithm. Finally, the autonomy and efficiency of the UAVare tackled in another important application, which is the UAV placement problem. Theissue of the UAV placement relays on finding the optimal UAV placement that satisfies boththe network coverage and connectivity while considering the UAV's limitation from energyand load. In this context, we proposed an efficient hybrid called IMRFO-TS, based on thecombination of Improved Manta Ray Foraging Optimization, which integrates a tangentialcontrol strategy and Tabu Search algorithms
MARDANI, AFSHIN. "Communication-Aware UAV Path Planning." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2796755.
Full textJoseph, Jose. "UAV Path Planning with Communication Constraints." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563872872304696.
Full textRoot, Philip J. "Collaborative UAV path planning with deceptive strategies." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32432.
Full textIncludes bibliographical references (p. 87-89).
In this thesis, we propose a strategy for a team of Unmanned Aerial Vehicles (UAVs) to perform reconnaissance of an intended route while operating within aural and visual detection range of threat forces. The advent of Small UAVSs (SUAVs) has fundamentally changed the interaction between the observer and the observed. SUAVs fly at much lower altitudes than their predecessors, and the threat can detect the reconnaissance and react to it. This dynamic between the reconnaissance vehicles and the threat observers requires that we view this scenario within a game theoretic framework. We begin by proposing two discrete optimization techniques, a recursive algorithm and a Mixed Integer Linear Programming (MILP) model, that seek a unique optimal trajectory for a team of SUAVs or agents for a given environment. We then develop a set of heuristics governing the agents' optimal strategy or policy within the formalized game, and we use these heuristics to produce a randomized algorithm that outputs a set of waypoints for each vehicle. Finally, we apply this final algorithm to a team of autonomous rotorcraft to demonstrate that our approach operates flawlessly in real-time environments.
by Philip J. Root.
S.M.
Kamrani, Farzad. "Using on-line simulation in UAV path planning." Licentiate thesis, KTH, Electronic, Computer and Software Systems, ECS, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4529.
Full textIn this thesis, we investigate the problem of Unmanned Aerial Vehicle (UAV) path planning in search or surveillance mission, when some a priori information about the targets and the environment is available. A search operation that utilizes the available a priori information about the initial location of the targets, terrain data, and information from reasonable assumptions about the targets movement can in average perform better than a uniform search that does not incorporate this information. This thesis provides a simulation-based framework to address this type of problem. Search operations are generally dynamic and should be modified during the mission due to new reports from other sources, new sensor observations, and/or changes in the environment, therefore a Symbiotic Simulation method that employs the latest data is suggested. All available information is continuously fused using Particle Filtering to yield an updated picture of the probability density of the target. This estimation is used periodically to run a set of what-if simulations to determine which UAV path is most promising. From a set of different UAV paths the one that decreases the uncertainty about the location of the target is preferable. Hence, the expectation of information entropy is used as a measure for comparing different courses of action of the UAV. The suggested framework is applied to a test case scenario involving a single UAV searching for a single target moving on a road network. The performance of the Symbiotic Simulation search method is compared with an off-line simulation and an exhaustive search method using a simulation tool developed for this purpose. The off-line simulation differs from the Symbiotic Simulation search method in that in the former case the what-if simulations are conducted before the start of the mission. In the exhaustive search method the UAV searches the entire road network. The Symbiotic Simulation shows a higher performance and detects the target in the considerably shorter time than the other two methods. Furthermore, the detection time of the Symbiotic Simulation is compared with the detection time when the UAV has the exact information about the initial location of the target, its velocity and its path. This value provides a lower bound for the optimal solution and gives another indication about the performance of the Symbiotic Simulation. This comparison also suggests that the Symbiotic Simulation in many cases achieves a “near” optimal performance.
Stalmakou, Artsiom. "UAV/UAS path planning for ice management information gathering." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13232.
Full textGrimsland, Lars Arne. "UAV Path Planning for Ice Intelligence Purposes using NLP." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18443.
Full textCaves, Américo De Jesús (Caves Corral). "Human-automation collaborative RRT for UAV mission path planning." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61145.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 105-111).
Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic and complex environments. Human-automation collaboration will be required in order to distribute the increased mission workload that will naturally arise from these interactions. One of the areas of interest in these missions is the supervision of multiple UAVs by a single operator, and it is critical to understand how individual operators will be able to supervise a team of vehicles performing semi-autonomous path planning while avoiding no-fly zones and replanning on the fly. Unfortunately, real time planning and replanning can be a computationally burdensome task, particularly in the high density obstacle environments that are envisioned in future urban applications. Recent work has proposed the use of a randomized algorithm known as the Rapidly exploring Random Tree (RRT) algorithm for path planning. While capable of finding feasible solutions quickly, it is unclear how well a human operator will be able to supervise a team of UAVs that are planning based on such a randomized algorithm, particularly due to the unpredictable nature of the generated paths. This thesis presents the results of an experiment that tested a modification of the RRT algorithm for use in human supervisory control of UAV missions. The experiment tested how human operators behaved and performed when given different ways of interacting with an RRT to supervise UAV missions in environments with dynamic obstacle fields of different densities. The experimental results demonstrated that some variants of the RRT increase subjective workload, but did not provide conclusive evidence for whether using an RRT algorithm for path planning is better than manual path planning in terms of overall mission times. Analysis of the data and behavioral observations hint at directions for possible future work.
by Americo De Jesus Caves.
M.Eng.
Lin, Rongbin Lanny. "UAV intelligent path planning for wilderness search and rescue /." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2906.pdf.
Full textLechliter, Matthew C. "Decentralized control for UAV path planning and task allocation." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3314.
Full textTitle from document title page. Document formatted into pages; contains x, 198 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 134-138).
Lin, Rongbin. "UAV Intelligent Path Planning for Wilderness Search and Rescue." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1759.
Full textEng, Pillar C. S. "Path planning, guidance and control for a UAV forced landing." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/43898/1/Pillar_Eng_Thesis.pdf.
Full textSabo, Chelsea. "UAV Two-Dimensional Path Planning In Real-Time Using Fuzzy Logic." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313755639.
Full textGauthier, Jason A. "Quadrotor UAV Flight Control with Integrated Mapping and Path Planning Capabilities." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1609779989188732.
Full textJerker, Bergström. "Path Planning with Weighted Wall Regions using OctoMap." Thesis, Luleå tekniska universitet, Rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67682.
Full textNguyen, Joseph Luan. "Long-term Informative Path Planning with Autonomous Soaring." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/15364.
Full textEriksson, Urban. "Dynamic Path Planning for Autonomous Unmanned Aerial Vehicles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241243.
Full textDetta examensarbete undersöker metoder för att utföra dynamisk ruttplanering i tre dimensioner, med applicering på obemannade luftfarkoster. Tre olika ruttplaneringsalgoritmer testas, vilka är baserade på snabbt-utforskande slumpmässiga träd (RRT): den ursprungliga RRT, RRT*, och en föreslagen variant, RRT-u, vilken skiljer sig från dom två första algoritmerna genom att ta hänsyn till dynamiska begränsningar och använda konstanta accelerationer över delar av rutten. Ruttplaneraren används också i okända miljöer. För att välja en rutt när det finns outforskade delar mellan farkosten och målet föreslås det att testa rutten till målpunkten från varje nod i som ingår i planeringsträdet för att erhålla en preliminär total kostnad till målpunkten. Rutten med lägsta kostanden kan då väljas, givet tillgänglig information, även om den delvis går genom outforskade delar. För tillfällen när inga preliminära rutter kan erhållas på grund av hinder har dynamisk storleksjustering av samplingsområdet implementerats för att öka området från vilket nya noder samplas. Den här metoden har testats med dom tre olika algoritmvarianterna, RRT, RRT*, och RRT-u, och dom tre varianterna jämförs med avseende på prestanda i ett flertal testfall i en realistisk simuleringsmiljö.
Rathore, Aishvarya. "Quality Analysis of UAV based 3D Reconstruction and its Applications in Path Planning." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627658323958222.
Full textBaker, Chris. "A combined mechanism for UAV explorative path planning, task allocation and predictive placement." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/405212/.
Full textMize, Lloyd B. IV. "Development of a Multiple Vehicle Collaborative Unmanned Aerial System." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2527.
Full textÖst, Gustav. "Search path generation with UAV applications using approximate convex decomposition." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77353.
Full textRadford, Scott Carson. "Real-Time Roadway Mapping and Ground Robotic Path Planning Via Unmanned Aircraft." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/50431.
Full textMaster of Science
Han, Kyung Min. "Collision free path planning algorithms for robot navigation problem." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5021.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 29, 2008) Includes bibliographical references.
Pitre, Ryan R. "An Information Value Approach to Route Planning for UAV Search and Track Missions." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1403.
Full textFan, Jiankun. "Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1417345596.
Full textSinha, Koel. "Path Planning for a UAV in an Agricultural Environment to Tour and Cover Multiple Neighborhoods." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79731.
Full textMaster of Science
Jung, Dongwon Jung. "Hierarchical Path Planning and Control of a Small Fixed-wing UAV: Theory and Experimental Validation." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19781.
Full textCommittee Chair: Tsiotras, Panagiotis; Committee Member: Corban, Eric; Committee Member: Feron, Eric; Committee Member: Johnson, Eric; Committee Member: Vachtsevanos, George.
Morin, Michael. "Multi-Criteria Path Planning with Terrain Visibility Constraints: The Optimal Searcher Path Problem with Visibility." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27495/27495.pdf.
Full textKindl, Mark Richard. "A stochastic approach to path planning in the Weighted-Region Problem." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26789.
Full textWalker, David H. "Coordinated UAV Target Assignment Using Distributed Calculation of Target-Task Tours." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/130.
Full textBishop, Jacob L. "Search Pattern Generation and Path Management for Search over Rough Terrain with a Small UAV." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2275.
Full textGilson, Maximillian Andrew. "Fault-tolerant mapping and localization for Quadrotor UAV." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright157865858408435.
Full textKrawiec, Bryan Michael. "A*-Based Path Planning for an Unmanned Aerial and Ground Vehicle Team in a Radio Repeating Operation." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32545.
Full textMaster of Science
Millar, Brett Wayne. "Multi-Resolution Obstacle Mapping with Rapidly-Exploring Random Tree Path Planning for Unmanned Air Vehicles." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2620.
Full textChristie, Gordon A. "Collaborative Unmanned Air and Ground Vehicle Perception for Scene Understanding, Planning and GPS-denied Localization." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/83807.
Full textPh. D.
Kamrani, Farzad. "Simulation-based Optimization and Decision Making with Imperfect Information." Doctoral thesis, KTH, Programvaru- och datorsystem, SCS, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50171.
Full textQC 20111202
Noonan, Andrea L. "Flight plan generation for unmanned aerial vehicles." Thesis, Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/385.
Full textBradley, Justin, and Breton Prall. "AN UNMANNED AERIAL VEHICLE PROJECT FOR UNDERGRADUATES." International Foundation for Telemetering, 2006. http://hdl.handle.net/10150/604143.
Full textBrigham Young University recently introduced a project for undergraduates in which a miniature unmanned aerial vehicle system is constructed. The system is capable of autonomous flight, takeoff, landing, and navigation through a planned path. In addition, through the use of video and telemetry collected by the vehicle, accurate geolocation of specified targets is performed. This paper outlines our approach and successes in facilitating this accomplishment at the undergraduate level.
Wzorek, Mariusz. "Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems." Licentiate thesis, Linköpings universitet, UASTECH – Teknologier för autonoma obemannade flygande farkoster, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71147.
Full textSkoglar, Per. "Modelling and control of IR/EO-gimbal for UAV surveillance applications." Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1281.
Full textThis thesis is a part of the SIREOS project at Swedish Defence Research Agency which aims at developing a sensor system consisting of infrared and video sensors and an integrated navigation system. The sensor system is placed in a camera gimbal and will be used on moving platforms, e.g. UAVs, for surveillance and reconnaissance. The gimbal is a device that makes it possible for the sensors to point in a desired direction.
In this thesis the sensor pointing problem is studied. The problem is analyzed and a system design is proposed. The major blocks in the system design are gimbal trajectory planning and gimbal motion control. In order to develop these blocks, kinematic and dynamic models are derived using techniques from robotics. The trajectory planner is based on the kinematic model and can handle problems with mechanical constraints, kinematic singularity, sensor placement offset and reference signal transformation.
The gimbal motion controller is tested with two different control strategies, PID and LQ. The challenge is to perform control that responds quickly, but do not excite the damping flexibility too much. The LQ-controller uses a linearization of the dynamic model to fulfil these requirements.
Prusakiewicz, Lukas, and Simon Tönnes. "Comparison of autonomous waypoint navigation methods for an indoor blimp robot." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284458.
Full textDen obemannade luftfarkosten (UAV) har under de senaste åren blivit en teknik vars användning blivit allt vanligare i flera sektorer av det moderna samhället. Olika sorters UAV robotar associeras idag med en omfattande serie användningsområden, från katastrofhjälp till övervakning. Ett nyligen påbörjat initiativ från svenska sjöräddningssällskapet (SSRS) syftar till att implementera drönare i deras utryckningar. Genom att snabbt sända drönare till platsen i fråga, kan en bedömning göras innan personal kommer dit, vilket sparar tid och ökar sannolikheten för en framgångsrik räddningsaktion. En farkost som denna, som kommer att resa långa sträckor, måste förlita sig på ett navigationssystem som inte kräver att en operatör kontinuerligt ser farkosten. För att resa till sitt mål, eller söka av ett område, bör operatören kunna definiera en resväg som drönaren följer genom att ge den en serie vägpunkter. Som ett inledande steg mot den typen av system har denna uppsats utvecklat och testat begreppet vägpunktsnavigering på ett litet och långsamt luftskepp/blimp, i en simulerad inomhusmiljö. Huvudsakligen testades och jämfördes två vanligt förekommande navigationsalgoritmer. En inspirerad av en underkategori till maskininlärning: förstärkningsinlärning (RL), och den andra baserad på rapidly exploring random tree (RRT) algoritmen. Fyra experiment utfördes för jämföra båda metoderna med avseende på färdsträcka, medelhastighet, energieffektivitet samt robusthet gentemot ändringar i färdpunktskonfigurationerna. Resultaten visar att när blimpen kontrollerades av den bästa RL-baserade versionen åkte den generellt en mer avståndsmässigt optimal väg än när den RRT-baserade metoden användes. I de flesta fallen visade sig även RL-metoden vara mer robust mot förändringar i testbanorna, och presterade mer konsekvent över olika vägpunktskonfigurationer. RRT-metoden resulterade dock vanligtvis i en högre medelhastighet och energieffektivitet. RL-algoritmen hade också problem med att navigera banor där den behövde ta sig runt ett hinder. Sammanfattningsvis beror valet av algoritm på vilka parametrar som prioriteras av blimpoperatören för en viss bana. Om en hög hastighet och energieffektivitet är önskvärd rekommenderas den RRT-baserade metoden. Men om det är viktigt att blimpen reser så kort avstånd som möjligt mellan färdpunkterna, och har en jämnare prestanda, bör RL-metoden användas. För att ta nästa steg, mot en framtida implementering av båda metoder i räddningsoperationer, vore det rimligt att analysera deras prestanda under mer realistiska förhållanden. Detta skulle kunna göras inomhus med ett riktigt luftskepp. Författarna rekommenderar att undersöka om hårdvara som inte överstiger blimpens maxlast kan utföra båda metodernas beräkningar och hur blimpen bestämmer sin position och orientering. Det skulle också vara intressant att se hur olika belöningsfunktioner påverkar blimpens prestanda.
Curtis, Andrew B. "Path Planning for Unmanned Air and Ground Vehicles in Urban Environments." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2270.pdf.
Full textAl, Sabban Wesam H. "Autonomous vehicle path planning for persistence monitoring under uncertainty using Gaussian based Markov decision process." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/82297/1/Wesam%20H_Al%20Sabban_Thesis.pdf.
Full textPalmer, Jacob N. "Radio propagation analysis for improved UAV data muling of surfaced underwater sensor nodes." Scholarly Commons, 2015. https://scholarlycommons.pacific.edu/uop_etds/218.
Full textYoung, Stephen Alexander. "Multi-level Control Architecture and Energy Efficient Docking for Cooperative Unmanned Air Vehicles." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/31192.
Full textMaster of Science
Rennu, Samantha R. "Dynamic Mission Planning for Unmanned Aerial Vehicles." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton16082274381124.
Full textLindqvist, Björn. "Combined Control and Path Planning for a Micro Aerial Vehicle based on Non-linear MPC with Parametric Geometric Constraints." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76212.
Full textSPANO', CUOMO LUCA. "Planning and Control Strategies for Collaborative Aerial Autonomous Vehicles." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2932745.
Full textVega-Nevarez, Juan. "Online Path Planning and Control Solution for a Coordinated Attack of Multiple Unmanned Aerial Vehicles in a Dynamic Environment." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5551.
Full textID: 031001316; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Adviser: Houman A. Sadri.; Title from PDF title page (viewed March 26, 2013).; Thesis (M.A.)--University of Central Florida, 2012.; Includes bibliographical references (p. 89-99).
M.S.E.E.
Masters
Electrical Engineering and Computing
Engineering and Computer Science
Electrical Engineering; Controls and Robotics
Cardell, Magnus. "UAV Navigation using Local Computational Resources : Keeping a target in sight." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291229.
Full textNär en obemannade luftfarkost, även kallad drönare, spårar ett rörligt mål, måste drönaren behålla målet inom sensorisk räckvidd medan den håller sig uppdaterad om sin omgivning. Små flygdatorer måste dock ha tillräckligt med information om sin omgivning och nog med beräkningsresurser för att erbjuda realtidskontroll utan kommunikation med en markstation. Genom att använda en Raspberry Pi 4 modell B presenterar denna studie en praktisk applicering utav vägplanerare som utvärderas utifrån deras lämplighet att följa ett rörligt mål. Den praktiska implementationen jämför två vägplaneringsalgoritmer: A* och 3D Vector Field Histogram* (3DVFH*). Vägplaneringsalgoritmernas prestanda utvärderas genom att studera deras hastighet, avstånd från målet och minnesresurser. Vägplaneringsalgoritmerna utvärderas i två situationer. Den första är en simulationsvärld som är gjord för hand där målet rör sig efter en fördefinierad väg. Den andra är en procedurellt genererad värld där målet rör sig slumpmässigt. Studien visar att 3DVFH* producerar vägar som håller drönaren närmare målet när målet rör sig efter en fördefinierad väg. Med en slumpvandring i en procedurell värld är A* närmast målet. Resultaten från Raspberry Pi visar också att A* algoritmen sätter prohibitivt höga minneskrav på Raspberry Pi 4 som bara har 2GBRAM. Studerar man påverkan av synbara objekt på avståndet till målet så ser man ingen för 3DVFH* algoritmens egenskap att hålla sig nära, men man ser snabbare bearbetningshastighet när det är färre objekt att upptäcka. A* algoritmen ser en påverkan på dess distans från målet när fler objekt finns att upptäcka. Denna studie visar också hur en kommunikationslänk mellan vägplaneringsalgoritmer och kartapplikationer som stöds utav Carmenta Engine SDK skall implementeras. Detta används för att studera hur lokal geografisk information kan användas i ett spårningssammanhang. Genom att använda två nivåer av geografisk upplösning från VMap data, jämförs påverkan på vägplaneringarnas prestanda. Studien visar att ingen påverkan på prestandan kan ses men att kartapplikationen kräver mer minnesresurser. Genom att använda geografisk information om en region av intresse visar denna applikation hur vägplaneringsalgoritmerna kan fråga kartapplikationen om legaliteten om sin nuvarande position.