Academic literature on the topic 'Textile surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Textile surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Textile surfaces"
Park, Sohyun, Jooyoun Kim, and Chung Hee Park. "Superhydrophobic Textiles: Review of Theoretical Definitions, Fabrication and Functional Evaluation." Journal of Engineered Fibers and Fabrics 10, no. 4 (December 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000401.
Full textXue, Chao Hua, Wei Yin, Shun Tian Jia, and Jian Zhong Ma. "UV-Durable Superhydrophobic Textiles with UV-Shielding Property by Coating Fibers with ZnO/SiO2 Core/Shell Particles." Advanced Materials Research 441 (January 2012): 351–55. http://dx.doi.org/10.4028/www.scientific.net/amr.441.351.
Full textAkpek, Ali. "Analysis of Surface Properties of Ag and Ti Ion-Treated Medical Textiles by Metal Vapor Vacuum Arc Ion Implantation." Coatings 11, no. 1 (January 18, 2021): 102. http://dx.doi.org/10.3390/coatings11010102.
Full textJang, Hyun-Seok, Min Soo Moon, and Byung Hoon Kim. "Electronic Textiles Fabricated with Graphene Oxide-Coated Commercial Textiles." Coatings 11, no. 5 (April 22, 2021): 489. http://dx.doi.org/10.3390/coatings11050489.
Full textSchaefer-Di Maida, Stefanie. "„Textilkeramik“ – Textileindrücke auf bronzezeitlicher Keramik vom Fundplatz Bruszczewo." Światowit 56, no. 1 (January 14, 2019): 23–42. http://dx.doi.org/10.5604/01.3001.0012.8453.
Full textMakhotkina, Liliia, and Alina Khalilova. "Hydrophobic textile materials with organosilicon impregnation." E3S Web of Conferences 224 (2020): 03025. http://dx.doi.org/10.1051/e3sconf/202022403025.
Full textBanck-Burgess, Johanna. "‘Nothing like Textiles’: Manufacturing Traditions in Textile Archaeology." Światowit 56, no. 1 (January 14, 2019): 13–22. http://dx.doi.org/10.5604/01.3001.0012.8451.
Full textAkbar, Wazir, Ayse Karagoz, G. Bahar Basim, Mohamed Noor, Tofail Syed, Jacob Lum, and Merve Unluagac. "Nano-boron as an Antibacterial Agent for Functionalized Textiles." MRS Proceedings 1793 (2015): 53–57. http://dx.doi.org/10.1557/opl.2015.728.
Full textKim, Yong K., and Armand F. Lewis. "Concepts for Energy-Interactive Textiles." MRS Bulletin 28, no. 8 (August 2003): 592–96. http://dx.doi.org/10.1557/mrs2003.171.
Full textYao, Bao Guo, and Shui Yuan Hong. "Measurement System for Characterizing Liquid Moisture Transfer Difference between Two Surfaces of Textile Materials." Applied Mechanics and Materials 475-476 (December 2013): 573–78. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.573.
Full textDissertations / Theses on the topic "Textile surfaces"
Min, Hyerim Choi. "Encountered surfaces /." Online version of thesis, 1993. http://hdl.handle.net/1850/11971.
Full textBobeck, Malin. "Binary surfaces - ljusemitterande textiler för inredningssammanhang." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-841.
Full textThe thesis Binary surfaces - light-emitting textiles for an interior design context is an investigative work on how optical fibres can be used in woven structures. The work explores the different parameters that affect the interaction between optical fibres and weaving, and the possibilities they create together. The result is two examples of fabrics woven with optical fibres in combination with more traditional textile materials. The examples are designed for an interior context and are shown as a room divider and as outer fabric on seating furnishing.
Praëne, Jean Maurice. "Modélisation phénoménologique du comportement tribologique des surfaces textiles." Mulhouse, 2007. https://www.learning-center.uha.fr/opac/resource/modelisation-phenomenologique-du-comportement-tribologique-des-surfaces-textiles/BUS4032052.
Full textThe objective of this work is to improve the mechanical characterization of the touch of textile surfaces by determining the forces of interaction located at the interface between the probe and the fabric. The study is restricted to the touch flat, without the thermal aspect. The experimental part specially displayed the existence of the hairiness of surface. This parameter neglected in many studies is highlighted by a method allowing to calculate the bending of the hairiness of fabric surface which having a surface whose hairiness is directed and long. This method makes it possible to confront the bending force of hairiness with the force of friction. A second method consists in taking into account the depression of the finger in hairiness shows that the touch is a complex parameter, which cannot be only characterized by one simple friction. To finish a third method consists in to measure acoustic energy allows to classify the fabrics. This method is validated because it follows the results obtained by the human being during the microneurography characterization of the similar fabric touch
Labay, Cédric. "Treatment of textile surfaces by plasma technology for biomedical applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277564.
Full textLas aplicaciones médicas de los textiles técnicos son un campo de investigación en expansión. Uno de los valores añadidos de estos nuevos materiales puede ser su capacidad para contener y liberar principios activos farmacéuticos y cosméticos de una forma controlada y sostenida. La incorporación de fármacos y su liberación a partir de fibras sintéticas está relacionada con la interacción del fármaco con el polímero y puede depender en gran medida de la química de superficie de la fibra. La tecnología de plasma es una herramienta que permite modificar las propiedades físicas y químicas de los primero nanómetros de la superficie de las fibras sin afectar el interior del material. Aplicado al campo de los textiles médicos, el tratamiento con plasma de fibras poliméricas podría conducir al diseño de nuevos sistemas de liberación de fármacos basados en soportes textiles. La novedad de esta Tesis Doctoral se basa en la modificación de las interacciones fármaco / fibra por tratamiento de plasma para permitir la modulación de la incorporación y la liberación de los principios activos (farmacéuticos y cosméticos) a partir de sistemas de administración de fármacos basados en material textil, sin requerir el uso de productos químicos adicionales. Esta Tesis tiene como objetivo el desarrollo de dos familias de sistemas de liberación de fármacos basados en soportes textiles, por funcionalización de la superficie mediante tratamiento de plasma, con características adecuadas bien para uso tópico como dispositivos médicos, bien para aplicación clínica en la reparación de tejidos blandos. Por tanto, esta Tesis se organiza en dos partes bien diferenciadas. En ambas partes de esta Tesis se ha seguido el siguiente esquema general: en primer lugar se ha investigado primero la modificación superficial de los materiales textiles con diferentes tipos de plasmas (plasma corona y plasma de presión atmosférica), caracterizando las modificaciones de la superficie obtenidas mediante diferentes técnicas instrumentales. Los efectos del tratamiento con plasma se han evaluado entonces sobre la incorporación de principios activos farmacéuticos o cosméticos. En el último paso, se ha estudiado la liberación del fármaco mediante ensayos de disolución "in vitro". La primera parte de la Tesis Doctoral se centra en los textiles médicos para aplicación tópica. Para ello, se ha estudiado la modificación de la superficie de tejidos de punto elástico-compresivos de poliamida 66 con plasma corona y plasma de baja presión. En este trabajo experimental se han estudiado en paralelo tejidos preparados en laboratorio y tejidos industrialmente acabados, con vistas a la posible implementación del proceso propuesto en la cadena de producción industrial textil. Se ha observado que el tratamiento con plasma mejora la cinética de liberación de un fármaco anti-inflamatorio (ketoprofeno) y de un principio activo cosmético lipolítico (cafeína), incorporados en los tejidos de poliamida 66 tratados con plasma. Se ha desarrollado un estudio fundamental comparando tres moléculas diferentes de la misma familia química (cafeína, teobromina y pentoxifilina) con respecto a la incorporación al material textil y a la liberación del principio activo. La segunda parte se centra en los textiles utilizados como implantes para la reparación de tejidos blandos (por ejemplo, hernias abdominales). La superficie de la fibra de una malla de polipropileno approvada para su uso clínico ha sido modificada por el plasma corona y plasma de baja presión. Los tratamientos estudiados tuvieron un efecto importante sobre la carga de un antibiótico (ampicilina) mostrando un importante incremento del porcentaje de impregnación. La cinética de liberación in vitro del antibiótico de la malla de polipropileno a un medio líquido isotonico fue rápida. También se investigó la posibilidad de realizar un recubrimiento de la malla de polipropileno cargada con ampicilina mediante polimerización por plasma.
Leroux, Frédéric. "Etude des traitements par plasma à pression atmosphérique : applications à l'industrie textile." Valenciennes, 2007. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/edbbecfc-18d6-4b32-9d6c-b123269222ab.
Full textSurface properties of textile are important factors for the end-use materials properties. These surface properties determine the hydrophilic and hydrophobic behaviour of the materials and also theirs padding and coating adhesion as well as their dyeing behaviours. Atmospheric plasma treatments seem to be a good way to treat quickly, cheaply and ecologically polymeric surfaces. First, the impact of atmospheric air Dielectric Barrier Discharge (D. B. D. ) plasma treatments were studied on a poly(propylene) film. A surface oxidation and a roughness modification were observed. The ageing of these modifications was follow. Then, according with the previews results, plasma treatments were used to treat various poly(ethylene terephthalate)textiles (Film, nonwovens, fabrics). The plasma treatment influences on the surface energy, capillarity and adhesion properties were checked for each textile. This work shows that the polymer chemistry, the porosity and the air permeability have an influence on the final properties and on the plasma treatment power needed to reach them. Plasma treatments were also used as a pre-treatment before dyeing or fluoro-polymer padding processes
Anomasiri, Namkhang. "The Final Cut : Transformations of laser-cut textile surfaces for placemaking." Thesis, Konstfack, Inredningsarkitektur & Möbeldesign, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-7844.
Full textBocquet, Romain. "Etude des mécanismes d’adhésion et de déformation à l’origine du frottement de surfaces textiles." Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH4391/document.
Full textThis work is to study the mechanisms occurring during friction of hairy textile surfaces, especially in terms of human touch. The final aim is to offer a method for designing textile surfaces with the required touch. The first step was to establish a model of friction, and then to validate it by means of a tribometer developed in the laboratory and then apply it to industrial textile surfaces. We have shown that the tangential force in front of the slider is proportional to the width of this one and has essentially a mechanical origin, while the friction under the slider is proportional to the contact area between the slider and the textile surface and is of a mechanical nature (surface deformation) and adhesive. We could then determine and define the friction stress in front and under the slider, characteristic of the textile fabric used for a fixed normal load. The dependence of the frictional force to the sliding velocity was highlighted. A study on the friction of model hairy macro-surfaces was performed to explain this viscosity. Similar tests to those of the friction study on real surfaces were performed. By varying the kinematic parameters of the test and the physico-chemical properties of the fibers, we were able to determine that the origin of the viscosity observed on real textile surfaces mainly comes from inter-fiber friction with physicochemical origin
Ryall, Helen. "An exploration of digital technology over a number of manipulated textile surfaces." Thesis, University of Huddersfield, 2010. http://eprints.hud.ac.uk/id/eprint/8798/.
Full textDontsova, Dariya. "Titania based photocatalytically active layer-by-layer coatings on model surfaces and textile materials." Strasbourg, 2011. http://www.theses.fr/2011STRA6203.
Full textThe photocatalytic properties of commercially available and synthesized catalysts were studied for on-stream decomposition of a model odorous compound hydrogen sulphide (H2S) under UV-A and visible light irradiation. A simplified qualitative model for visualization of the catalyst deactivation is proposed. Further, catalysts were incorporated into multilayer films using different polyelectrolytes. Such films were characterized by ellipsometry, AFM, UV-visible spectroscopy and SEM on model surfaces. These films are homogeneous and transparent, and their porosity allow for almost free mass transport of the volatile compounds within the film. In order to test the photocatalytic activity of LbL films containing catalysts, such films were assembled on tubular glass reactors (with the diameter of 2. 7 cm and the length of 40 cm) and subjected to H2S flow under UV-A irradiation. The activity of films was found to be proportional to the number of film constituent layers of catalyst and dependent on the chemical nature of the film constituent polyelectrolyte. After the film structure was optimized with respect to catalytic component and polyelectrolyte component, the most efficient films were deposited on cotton textiles, and their photocatalytic activity was measured for on-stream decomposition of H2S under visible light irradiation. Further, the potential applications of such LbL-coated textiles for the removal of other common indoor pollutants were exemplified by decomposition of acetaldehyde, methyl ethyl ketone and ammonia gas under visible light irradiation
Kaewprasit, Chongrak. "Contribution a l'estimation de la surface specifique des fibres de coton : relations entre surface et proprietes physiques." Montpellier 2, 1997. http://www.theses.fr/1997MON20099.
Full textBooks on the topic "Textile surfaces"
Blum, C. European Textile Research: Competitiveness Through Innovation. Dordrecht: Springer Netherlands, 1986.
Find full textCrawshaw, G. H. Textile sports surfaces and artificial grass. Oxford: Elsevier Science, 1989.
Find full textauthor, Pagliarulo Rosa, Carullo Rossana, and Carullo Rossana, eds. Interior / design, action on surfaces. Soveria Mannelli: Rubbettino, 2013.
Find full textlibrary, Wiley online, ed. Plasma technology for hyperfunctional surfaces: Food, biomedical and textile applications. Weinheim: Wiley-VCH, 2010.
Find full textJuracek, Judy A. Soft surfaces: Visual research for artists, architects, and designers. New York: W.W. Norton, 1999.
Find full textJuracek, Judy A. Soft surfaces: Visual research for artists, architects, and designers. New York: W.W. Norton, 2000.
Find full textMahall, Karl. Quality Assessment of Textiles: Damage Detection by Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Find full textSurface design for fabric. New York: Fairchild Books, an imprint of Bloomsbury Publishing Inc., 2015.
Find full textBook chapters on the topic "Textile surfaces"
Buyle, Guy, Pieter Heyse, and Isabelle Ferreira. "Tuning the Surface Properties of Textile Materials." In Plasma Technology for Hyperfunctional Surfaces, 133–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630455.ch6.
Full textRapti, Stavroula, Stamatis C. Boyatzis, Shayne Rivers, and Anastasia Pournou. "Siderophores and their Applications in Wood, Textile, and Paper Conservation." In Microorganisms in the Deterioration and Preservation of Cultural Heritage, 301–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69411-1_14.
Full textGadow, R., K. von Niessen, and A. Candel. "Advanced Robot Assisted Process for the Series Production of Optimized Oxide Ceramic Coatings on Textile Surfaces." In Ceramic Transactions Series, 33–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408391.ch4.
Full textGotoh, Keiko. "Surface Functionalization of Synthetic Textiles by Atmospheric Pressure Plasma." In Textile Finishing, 235–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426790.ch6.
Full textBahners, Thomas, Jochen S. Gutmann, and Jochen S. Gutmann. "UV-Based Photo-Chemical Surface Modification of Textile Fabrics." In Textile Finishing, 261–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426790.ch7.
Full textLeach, Richard. "Surface Texture." In CIRP Encyclopedia of Production Engineering, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35950-7_16799-1.
Full textLeach, Richard. "Surface Texture." In CIRP Encyclopedia of Production Engineering, 1672–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_16799.
Full textInui, Shigeru, Kaori Hara, Hidehiko Okabe, and Tomoe Masuda. "Isomorphic Mesh of Human Body Surface for Computerized Apparel Design." In Computational Textile, 129–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-70658-8_8.
Full textDunford, Alan. "Road Surfaces." In Characterisation of Areal Surface Texture, 337–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36458-7_14.
Full textCook, Amber Marisa. "Surface Work." In Digital Design for Custom Textiles, 51–65. New York, NY: Routledge, 2019.: Routledge, 2018. http://dx.doi.org/10.4324/9781315146188-6.
Full textConference papers on the topic "Textile surfaces"
Konik, Hubert, Bernard Laget, Bernard Redortier, and Maurice Calonnier. "Automatic vision system for an objective cotation of textile surfaces." In Electronic Imaging: Science & Technology, edited by A. Ravishankar Rao and Ning Chang. SPIE, 1996. http://dx.doi.org/10.1117/12.232231.
Full textSabou, Adrian, Cristinel Mihai Mocan, and Dorian Gorgan. "Particle based modelling and processing of high resolution and large textile surfaces." In 2012 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2012. http://dx.doi.org/10.1109/iccp.2012.6356213.
Full textScholtes, Dominik, Yannik Goergen, Paul Motzki, Stefan Seelecke, and Philipp Scheiner. "Soft Morphing Buttons Based on Actuator and Sensor Properties of Shape Memory Alloy Wires." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5504.
Full textAILENI, Raluca Maria, Laura CHIRIAC, and Răzvan RĂDULESCU. "Life Cycle Inventory Analysis for Conductive Textile Based on Hydrophobic and Hydrophilic Surfaces." In The 7th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2018. http://dx.doi.org/10.24264/icams-2018.xi.1.
Full textMontilla, M., S. A. Orjuela-Vargas, and W. Philips. "State of the art of 3D scanning systems and inspection of textile surfaces." In IS&T/SPIE Electronic Imaging, edited by Maria V. Ortiz Segovia, Philipp Urban, and Jan P. Allebach. SPIE, 2014. http://dx.doi.org/10.1117/12.2042552.
Full textKatiyar, Priyanka, Shraddha Mishra, M. K. Sinha, Anurag Srivastav, and N. Eswara Prasad. "Fabrication of multi-specialty textile surfaces via. In-situ deposition of metal oxide nanoparticles." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-153.
Full textShah, Hamil, Abdullahi Inshaar, Chengzhe Zou, Shreyas Chaudhari, Saad Alharbi, Asimina Kiourti, and Ryan L. Harne. "Multiphysics Modeling and Experimental Validation of Reconfigurable, E-Textile Origami Antennas." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85603.
Full textGohlke, Kristian, and Eva Hornecker. "A Stretch-Flexible Textile Multitouch Sensor for User Input on Inflatable Membrane Structures & Non-Planar Surfaces." In UIST '18: The 31st Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3266037.3271647.
Full textSharma, Avadhesh K., Mayank Modak, and Santosh K. Sahu. "Experimental Investigation of Rewetting During Quenching of Hot Surface by Round Jet Impingement Using Al2O3–Water Nanofluids." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60732.
Full textHunting, Brad, Stephen Derby, and Raymond Puffer. "A Visualization Model for Printed Woven Textiles." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/cie-5550.
Full textReports on the topic "Textile surfaces"
Underwood, Samuel J., and Justin M. Gorham. Challenges and approaches for particle size analysis on micrographs of nanoparticles loaded onto textile surfaces. Gaithersburg, MD: National Institute of Standards and Technology, May 2017. http://dx.doi.org/10.6028/nist.sp.1200-22.
Full textShamey, Renzo, Traci A. M. Lamar, and Uikyung Jung. Digital Textile Printing with Laser Engraving: Surface Contour Modification and Color Properties. Ames (Iowa): Iowa State University. Library, January 2019. http://dx.doi.org/10.31274/itaa.9459.
Full textHowell, Adrienne, Jenna Matson, Chaise Zahrt, Ellen Carol McKinney, David Bis, Sameul R. Vande Loo, and Colin Willenborg. A Starry Starry Night: Integrating Hand-Painted Textile Surface Design With Wearable Technology. Ames (Iowa): Iowa State University. Library, January 2019. http://dx.doi.org/10.31274/itaa.8398.
Full textWei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li, and Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Full textLast, W. M. Bulk composition, texture, and mineralogy of Lake Winnipeg core and surface grab samples. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207511.
Full textDu, Li-Jen. Segmentation of Synthetic Aperture Radar (SAR) Images of Ocean Surface by the Texture Energy Transform Method. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada199536.
Full textBradley, Linda Arthur, Deborah Christel, Megan Vulcan, and Susan Dunn. The Use of TransDRY® Cotton Fabric as a textile intervention to Reduce Abdominal Skin Infections and Surface Skin Temperature in Post-Bariatric Surgery Patients. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-320.
Full textAnand, L. Design of surface texture for improved control of friction and formability of aluminum sheet products for automotive applications. Final technical report for period September 15, 1996 - July 14, 2000. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/771318.
Full textQuaternary Geology IV, Labrador sea, Isopach and surface texture. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/127160.
Full textValidation of Multispectral Imaging (MSI) technology for food and feed analysis. Food Standards Agency, August 2021. http://dx.doi.org/10.46756/sci.fsa.zcr161.
Full text