Academic literature on the topic 'TEXTILE PREFORMS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TEXTILE PREFORMS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TEXTILE PREFORMS"

1

Ishmael, Natalie, Anura Fernando, Sonja Andrew, and Lindsey Waterton Taylor. "Textile technologies for the manufacture of three-dimensional textile preforms." Research Journal of Textile and Apparel 21, no. 4 (December 4, 2017): 342–62. http://dx.doi.org/10.1108/rjta-06-2017-0034.

Full text
Abstract:
Purpose This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping. Design/methodology/approach The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed. Findings Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns. Originality/value The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.
APA, Harvard, Vancouver, ISO, and other styles
2

Schöfer, S., M. Schmitz, T. Prof Gries, C. Mack, and A. Basler. "Prozesskette zur Herstellung textiler 3D-Preforms/Multi-step production of textile 3D preforms - Use of tufting and particle foam technology for draping textile semi-finished parts." wt Werkstattstechnik online 107, no. 06 (2017): 392–98. http://dx.doi.org/10.37544/1436-4980-2017-06-8.

Full text
Abstract:
Die Umsetzung von Prozessketten zur automatisierten Fertigung von 3D-Preforms im industriell etablierten Stempelumformverfahren ist aufgrund hoher Investitionskosten für kleine und mittlere Unternehmen bisher nicht wirtschaftlich tragbar. Die neuentwickelte Prozesskette wirkt dem entgegen und verspricht, komplexe 3D-Preforms bei geringer Prozesszeit sowohl textil- als auch lastgerecht herzustellen und dabei Ausschussquoten aufgrund von Drapierfehlern sowie den Verschnitt zu senken.   Implementing process chains for the automated manufacturing of 3D textile preforms based on the established industrial stamp forming technology is not economical for small- and medium-sized enterprises due to high investment costs for small batch sizes and variable geometries. The new process chain counteracts by manufacturing complex 3D preforms at low processing times, both textile- and load-conform, while reducing scrap rates from draping errors and offcut.
APA, Harvard, Vancouver, ISO, and other styles
3

Gietl, H., A. v. Müller, JW Coenen, M. Decius, D. Ewert, T. Höschen, Ph Huber, M. Milwich, J. Riesch, and R. Neu. "Textile preforms for tungsten fibre-reinforced composites." Journal of Composite Materials 52, no. 28 (April 27, 2018): 3875–84. http://dx.doi.org/10.1177/0021998318771149.

Full text
Abstract:
Demanding high heat flux applications, as for example plasma-facing components of future nuclear fusion devices, ask for the development of advanced materials. For such components, copper alloys are currently regarded as heat sink materials while monolithic tungsten is foreseen as directly plasma-facing material. However, the combination of these materials in one component is problematic since they exhibit different thermomechanical characteristics and their optimum operating temperatures do not overlap. In this context, an improvement can be achieved by applying composite materials that make use of drawn tungsten fibres as reinforcement. For the manufacturing processes of these composites, suitable tungsten fibre preform production methods are needed. In the following, we will show that tungsten fibres can be processed to suitable preforms by means of well-established textile techniques as studies regarding the production of planar weavings (wire distances of 90–271 µm), circular braidings (multilayered braidings with braiding angle of 60° and 12°) as well as multifilamentary yarns (15 tungsten filaments with 16 µm diameter) are presented. With such different textile preforms tungsten fibre-reinforced tungsten (W f/W) with a density of over 99% and pore-free tungsten fibre-reinforced copper W f/Cu composites were produced which proves their applicability with respect to a composite material production processes.
APA, Harvard, Vancouver, ISO, and other styles
4

Vo, Duy Minh Phuong, Gerald Hoffmann, and Chokri Cherif. "Novel Weaving Technology for the Manufacture of 2D Net Shape Fabrics for Cost Effective Textile Reinforced Composites." Autex Research Journal 18, no. 3 (September 1, 2018): 251–57. http://dx.doi.org/10.1515/aut-2018-0005.

Full text
Abstract:
Abstract Despite significant weight and performance advantages over metal parts, today’s demand for fiber-reinforced polymer composites (FRPC) has been limited mainly by their huge manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. This paper presents an advanced weaving technique developed with the aim to establish a more cost-effective system for the manufacture of dry textile preforms for FRPC. 2D woven fabrics with integrated net shape selvedge can be obtained using the open reed weave (ORW) technology, enabling the manufacture of 2D cut patterns with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D woven fabrics with net shape selvedge helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
5

Adanur, Sabit, and Tianyi Liao. "3D modeling of textile composite preforms." Composites Part B: Engineering 29, no. 6 (November 1998): 787–93. http://dx.doi.org/10.1016/s1359-8368(98)00036-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Wang Qing, Bin Yan Jiang, Lei Xie, and Gerhard Ziegmann. "Experiment and Modeling Study on the Compaction Behavior of Bindered Textile Preforms." Applied Mechanics and Materials 268-270 (December 2012): 148–54. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.148.

Full text
Abstract:
The effect of compaction and preforming parameters on the fiber volume content of bindered textile preforms during a compaction experiment was investigated by using Taguchi method. Four compaction and preforming parameters of compaction temperature, binder activation temperature, binder content and binder activation time were selected and optimized with respect to the fiber volume content at specified compaction pressure (0.2 MPa). The results reveal that the compaction behavior of bindered textile preforms has significantly influenced due to the presence of binder. The fiber volume content during compaction was correlated with the compaction and preforming parameters using a modified four-parameter-compaction-model which has been proposed for describing the compaction behavior of bindered textile preforms.
APA, Harvard, Vancouver, ISO, and other styles
7

Costa, A. Nicolau, Célia Novo, Nuno Correia, António Torres Marques, Mário de Araújo, Raul Manuel Esteves Sousa Fangueiro, Hu Hong, and L. Ciobanu. "Structural Composite Parts Production from Textile Preforms." Key Engineering Materials 230-232 (October 2002): 36–39. http://dx.doi.org/10.4028/www.scientific.net/kem.230-232.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allen, L. E., D. D. Edie, G. C. Lickfield, and J. R. Mccollum. "Thermoplastic Coated Carbon Fibers for Textile Preforms." Journal of Thermoplastic Composite Materials 1, no. 4 (October 1988): 371–79. http://dx.doi.org/10.1177/089270578800100405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, L. E., D. D. Edie, G. C. Lickfield, and J. R. Mccollum. "Thermoplastic Coated Carbon Fibers for Textile Preforms." Journal of Coated Fabrics 19, no. 1 (July 1989): 24–34. http://dx.doi.org/10.1177/152808378901900104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chou, T. W. "Designing of Textile Preforms for Ceramic Matrix Composites." Key Engineering Materials 164-165 (July 1998): 409–14. http://dx.doi.org/10.4028/www.scientific.net/kem.164-165.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "TEXTILE PREFORMS"

1

Thammandra, Vidya Sagar. "Structural mechanics of woven preforms and textile composites." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488976.

Full text
Abstract:
The present work deals with the development of comprehensive mechanical models to predict the mechanical properties of woven fabric structures, namely the tensile, bending and compression behaviour. All the models are based on the Rayleigh-Ritz energy method, which allows handling non-linear mechanical properties of constituent yarns while producing computationally efficient algorithms. The models incorporate all modes of deformation, i.e., yarn elongation, yarn bending and yarn compression. An effort has been made to make the models more general by considering generalised geometry with adequate degrees of freedom to represent the yarn path under all deformed configurations. A new geometric model based on polynomial geometry has been developed and it has been shown that the mechanical models based on the new geometry closely simulate fabric tensile behaviour. The model developed for plain woven fabric has been generalised to predict the tensile behaviour of regular non-plain woven fabrics by specifying the number of crossovers and number of floats in a weave repeat and it was shown to give consistent predictions for different fabric structures. The pure bending behaviour of plain woven fabrics has been studied considering both a single 5th degree polynomial and a piecewise Hermite polynomial geometry. The deformed state is obtained using the principle of stationary potential energy without invoking work-energy theorem and hence they predict the complete moment-curvature relationship of fabric. The compression behaviour of single fabric has been studied by characterising the yam compression behaviour using an inverse method and the compression behaviour of double fabrics has also been modelled. The solution of models using non-linear programming constrained minimisation techniques has been demonstrated using readily available optimisation software. The models have been validated against the data reported in the literature along with the experimental results of glass fabrics. The predictions of models have also been compared against the results of Finite Element Analysis (FEA) using the general purpose FEA software ABAQUS. The compaction of fabric between two rigid plates has been simulated using 3D FEA. The geometry of yarn path derived from the mechanical models has been used to construct 3D FEA models for studying the micro-mechanical behaviour of plain woven fabric composites.
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, Jill Benea. "Three-dimensional multilayer woven fabrics as composite preforms." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/12437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Souter, Benjamin John. "Effects of fibre architecture on formability of textile preforms." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tung, Peter So Wah. "Design and development of three-dimensional multilayer woven preforms for composites." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/8686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Bo. "Sheet forming of woven textile composite preforms : formability and wrinkling /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MECH%202007%20ZHU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Früh, Hans-Christian [Verfasser]. "Produktorientierte Auswahl von Handhabungstechnologien für textile Preforms / Hans-Christian Früh." Düren : Shaker, 2019. http://d-nb.info/1201296080/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saboktakin, Rizi Abbasali. "Integrity assessment of preforms and thick textile reinforced composites for aerospace applications." Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1267/1/SABOKTAKIN_RIZI_Abbasali.pdf.

Full text
Abstract:
Les composites à renforts textiles 3D, contenant des fibres dans le plan et dans la direction de l'épaisseur, offrent certains avantages par rapport aux composites à renforts textiles 2D. Ces avantages comprennent une grande résistance à la délamination et une meilleure tolérance à l'endommagement. La plupart des textiles 3D ont été développés pour des pièces destinées à l'industrie aérospatiale telles que des panneaux d'ailes, des trains d'atterrissage, des tuyères de fusée et la capsule Orion. Cette thèse vise à évaluer l'intégrité structurelle des textiles composites en combinant des techniques d'inspection destructives et non destructives. Dans la première partie de la thèse, des techniques non destructives, y compris les rayons-X (CT) et des techniques basées sur les ultrasons (UT), ont été développées pour détecter les défauts importants comme la rupture des fibres et le désalignement des tissus. La deuxième partie porte sur l'étude de l'influence des défauts de fabrication qui se produisent dans les processus d’ touffetage sur les performances mécaniques. Des résultats expérimentaux ont montré que tomographie rayons-X facilite la détection et la caractérisation de ces deux défauts de fabrication, ainsi que de l'architecture des tissus. En outre, la modélisation méso-échelle d'un composite tissé en 2D a été réalisée avec succès pour l'analyse de l'influence du défaut de rupture des fibres et de l'architecture des fibres de propagation de l'onde. Les résultats expérimentaux montrent que le touffetage des préforme limite ou élimine le mouvement de leurs fils. En plus, la touffetage par des fils de haute résistance à la traction peut améliorer celle de leurs préforme 3D. La touffe d’un préforme fait augmenter la force de compactage des fibres. À cet effet, cette méthode est nécessaire pour augmenter le volume des fibres de plus de 50 % en comparaison d'un préforme non touffeté. La résistance à la déformation d'une préforme est influencée par l’opération de touffetage. En effet, une préforme touffetée est plus résistance à la déformation qu’une préforme non touffetée. La variation de la géométrie de la préforme a été mesurée par balayage laser. En outre, la capacité CT a été étudiée en tant que moyen pour reconnaître les formes et les emplacements des vides dans les matériaux composites. La résistance à la traction des composites avec un touffetage transversale a eu moins de réduction de que celle avec touffetage longitudinal. Les tests de fatigue à haute vitesse de déformation montrent que les composites touffetés ont une durée de vie inférieure à celle des composite non touffetés. L’opération de touffetage permet d'améliorer les propriétés mécaniques des panneaux sandwichs à noyau en nid d'abeilles sollicités en compression locale et en flexion trois points. Les dommages sont souvent initiés dans les régions riches en résine qui entourent le renfort de touffetage. L'acceptation primaire de l’utilisation des composites touffetés 3D dans les structures aérospatiales est très dépendantes de l'exactitude et de la fiabilité des données expérimentales pour identifier le degré auquel les renforts améliorent ou dégradent les propriétés mécaniques. Dans cette thèse, la corrélation entre les préformes touffues, les propriétés des composites et leurs modifications dues au touffetage sont traités pour une configuration spécifique. Les données expérimentales sont présentées à la fois sur un taux faible et à haut débit statique et des forces de fatigue à différents niveaux de contrainte. L'examen microstructural est effectué en utilisant la microscopie à haute résolution et les techniques de CT. Les résultats de cette thèse contribuent à l'enquête sur la tolérance d'intégrité et de dommage dans les matériaux composites tuftés 3D en vue d'une certification pour l'utilisation dans les futurs avions de transport. Cependant, la certification des composites tuftés pour les applications aérospatiales est toujours problématique en raison de l'absence de techniques d'évaluation non destructive fiables pour leur inspection et les facteurs de fabrication peuvent influencer considérablement leur performance, il s'agit d'un problème important auquel on doit s’attaquer dans le domaine de composite pour l’aérospatial.
APA, Harvard, Vancouver, ISO, and other styles
8

Rudov-Clark, Shoshanna Danielle, and srudov-clark@phmtechnology com. "Experimental Investigation of the Tensile Properties and Failure Mechanisms of Three-Dimensional Woven Composites." RMIT University. AEROSPACE, MECHANICAL AND MANUFACTURING ENGINEERING, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080808.115853.

Full text
Abstract:
This PhD thesis presents an experimental investigation into the tensile properties, strengthening mechanics and failure mechanisms of three-dimensional (3D) woven composites with through-the-thickness (z-binder) reinforcement. 3D composites are being developed for the aerospace industry for structural applications in next-generation aircraft, such as wing panels, joints and stiffened components. The use of 3D woven composites in primary aircraft structures cannot occur until there has been a detailed assessment of their mechanical performance, including under tensile loading conditions. The aim of this PhD project is to provide new insights into the in-plane tensile properties, fatigue life, tensile delamination resistance and failure mechanisms of 3D woven composites with different amounts of z-binder reinforcement. Previous research has revealed that excessive amounts of z-binder reinforcement dramatically improves the tensile delamination toughness, but at the expense of the in-plane structural properties. For this reason, this PhD project aims to evaluate the tensile performance of 3D woven composites with relatively small z-binder contents (less than ~1%). The research aims to provide a better understanding of the manufacture, microstructure and tensile properties of 3D woven composites to assist the process of certification and application of these materials to aircraft structures as well as high performance marine and civil structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Verghese, Kandathil Eapen. "Effects of fiber architecture and through-the-thickness stitching on permeability and compaction of textile preforms." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-08292008-063741/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hou, Yi. "Experimental characterization and modeling of the permeability of fibrous preforms using gas for direct processes application." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00848600.

Full text
Abstract:
A methodology to measure in-plane permeability of fibrous media using a transient one dimensional air flow is developed. The method, based on the measurement of gas pressure at the boundaries throughout the transient flow, is convenient, clean and fast, avoids usage of a gas flow meter and offers a way to study the gas transport within fibrous media. The gas transport through fibrous porous media is described by several models to comply with different flow regimes. The permeability, only depending on the fibrous structure, is determined by inverse method, fitting the simulation results to the experimental data obtained using rising or dropping pressure methods. The results of viscous permeability Kv of Glass/Carbon Twill Woven fabrics (viscous permeability Kv ranging from 10-11 to 10-10 m2) measured using gas match well the permeability measured with liquid compression and injection techniques from previous works. The deviation from Darcy's law caused by gas sliding effect on low permeability Carbon Uni-Directional fabrics (Kv from 10-14 to 10-12 m2) is analyzed and a related parameter of fabric material shows a dependence in permeability, with a similar trend as the Klinkenberg sliding parameter in soils and rocks.The experimental errors due to dimensions, thermal effect, pressure variation, sample handling, and trapped gas at boundaries are analyzed. It comes out that the sensitivities of pressure sensors and trapped gas volumes at the boundaries have the most important effects. A design for 2D measurement using gas to obtain 2D permeability tensor in one single test is proposed to avoid the issues of trapped gas at boundaries. Simulated experiments show that the measurements based on pressure measured at three proposed locations could provide robust and accurate results for fabrics of anisotropic permeability ratios (K1/K2) ranging from 0.1 to 10, with various principal permeability direction orientations.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "TEXTILE PREFORMS"

1

Bakar, A. Abu. Resin transfer moulded composites made from textile preforms. Manchester: UMIST, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Suarez J., and Langley Research Center, eds. Novel composites for wing and fuselage applications: Textile reinforced composites and design guidelines. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Masters John, and Langley Research Center, eds. Standard methods for open hole tension testing of textile composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

G, Davis John, Bohon Herman L, and Ames Research Center, eds. Second NASA Advanced Composites Technology Conference: An interim review from the proceedings of a conference held in Lake Tahoe, Nevada, November 4-7, 1991. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

G, Davis John, Bohon Herman L, and Ames Research Center, eds. Second NASA Advanced Composites Technology Conference: An interim review from the proceedings of a conference held in Lake Tahoe, Nevada, November 4-7, 1991. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

G, Davis John, Bohon Herman L, and Ames Research Center, eds. Second NASA Advanced Composites Technology Conference: An interim review from the proceedings of a conference held in Lake Tahoe, Nevada, November 4-7, 1991. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Progress report 1, for the period 01/01/93 to 06/30/93 for the project titled graphite fiber textile preform/copper matrix composites. [Washington, DC: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "TEXTILE PREFORMS"

1

Manjunath, R. N., and Bijoy Kumar Behera. "Emerging Trends in Three-Dimensional Woven Preforms for Composite Reinforcements." In Advanced Textile Engineering Materials, 463–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119488101.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Purohit, Kalpesh, Mujib Rahman, Andrew Price, and Alan Woodside. "Assessment of Preformed 3D-Thermoplastic Road Markings for Long-Term Durability, Skid Resistance and Texture Functionality." In Lecture Notes in Civil Engineering, 965–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48679-2_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ko, Frank K. "Textile Preforms for Carbon-Carbon Composites." In Carbon–Carbon Materials and Composites, 71–104. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-8155-1324-7.50009-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, X., L. W. Taylor, and L. J. Tsai. "Three-dimensional fabric structures. Part 1 – An overview on fabrication of three-dimensional woven textile preforms for composites." In Handbook of Technical Textiles, 285–304. Elsevier, 2016. http://dx.doi.org/10.1016/b978-1-78242-458-1.00013-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Islam, M. Amirul (Amir). "3D woven preforms for E-textiles and composites reinforcements." In Advances in 3D Textiles, 207–63. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-214-3.00009-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Peng, Xavier Legrand, and Damien Soulat. "Three-Dimentional Textile Preform Using Advanced Textile Technologies for Composite Manufacturing." In Textiles for Advanced Applications. InTech, 2017. http://dx.doi.org/10.5772/intechopen.68175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kord, Mohannad Tarsha, Mathias Hüsing, and Burkhard Corves. "Innovative Technik für die kostengünstige Herstellung textiler Preforms." In Unternehmenskybernetik 2020., 121–26. Duncker & Humblot, 2010. http://dx.doi.org/10.2307/j.ctv1q69gt7.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wisner, Gregor, Stefan Böhm, and Klaus Dilger. "Einsatzmöglichkeiten der Klebtechnik bei der Serienherstellung textiler Preforms für Faserverbundbauweisen." In Unternehmenskybernetik 2020., 127–32. Duncker & Humblot, 2010. http://dx.doi.org/10.2307/j.ctv1q69gt7.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brecher, Christian, and Tobias Kempf. "Beitrag zur Qualitätssicherung bei der automatisierten Herstellung textiler Preforms durch Integration von Bildverarbeitung." In Unternehmenskybernetik 2020., 133–38. Duncker & Humblot, 2010. http://dx.doi.org/10.2307/j.ctv1q69gt7.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "TEXTILE PREFORMS"

1

Burns, James S., and Constantin Scheder. "A Non-Continuum Model of Aligned, Long Fiber Composite Textile Preform Tensile Response." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60761.

Full text
Abstract:
Stretch-broken fiber preforms provide composites with post-formable characteristics that may reduce the costs of manufacturing complex shapes. Research into fiber preform production methods provides a fiber length and dispersion predictor that is then used to predict forming inputs required to excite tensile elongation of the preform under the influence of various boundary conditions common to sheet-based forming. Fiber behavior is discussed separately from the influence of liquid-phase matrix material. A comparison is made between model results and tensile response measurements of performs for polyarylate-matrix composites.
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Lai, Daniel Walczyk, Gavin McIntyre, and Ronald Bucinell. "A New Approach to Manufacturing Biocomposite Sandwich Structures: Mycelium-Based Cores." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8864.

Full text
Abstract:
A new approach to manufacturing biocomposite sandwich structures is introduced. Materials used in the biocomposite are natural textile reinforcement, mycelium-bound agricultural waste as core, and bioresin. This paper focuses on three specific steps of the seven-step manufacturing process: filling pre-stamped textile shells with core mixture; allowing the core material to grow thereby binding reinforcement particles and textile skins into a unitized preform; and oven drying said preform to drive off moisture and inactivate the mycelium. Specific process details highlighted include design and thermoforming of growth trays, tray sterilization, filling trays with mycelium-inoculated substrates filling and allowing growth to occur, and finally conduction and convection drying/inactivation of the grown parts. To study the new material’s stiffness using different materials and under different processing conditions, specimen dimensions were based on ASTM D7250 and C393 standards. All dried samples were tested in flexure by three-point bending method to determine the stiffness and strength of the resin-less preforms and to identify optimal material combinations.
APA, Harvard, Vancouver, ISO, and other styles
3

Jackson, A. "Development of textile composite preforms for aircraft primary structures." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Potluri, P., V. S. Thammandra, and R. B. Ramgulam. "Modelling Tow Compression in Textile Preforms During Composites Processing." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61470.

Full text
Abstract:
Fiber assemblies, in the form of woven, braided, nonwoven or knitted structures, are used as reinforcements in composites. These textile structures are subjected to in-plane membrane stresses such as tensile and shear, and out-of-plane stresses such as bending and transverse compression. Amongst various modes of deformation, transverse compaction behaviour is the least understood mode; however this mode is very important for composites processing using vacuum forming, resin transfer moulding, thermoforming and hot compaction methods. The present paper reports a computational approach to predicting the load-deformation behaviour of textile structures under compressive loading. During the compression of a random fiber assembly, fibers are subjected to kinematic displacements, bending and finally transverse compression of individual fibres. In the case of interlaced architectures, such as woven and braided structures, it is convenient to deal with deformations at meso-scale involving yarns or tows, and deal with inter-fiber friction and fibre compression at yarn/tow level. It can be seen from the load deformation graphs that the initial part is dominated by bending energy and the final part by compression energy. A combined yarn bending and compression model was in good agreement with the experimental curve during the entire load-deformation cycle. On the other hand, an elastica-based bending model predicts well during the initial part while tow compression model predicts well during the final part. Inter-fiber friction was initially ignored — this is being introduced in the refined model for both the dry and wet states.
APA, Harvard, Vancouver, ISO, and other styles
5

Kunze, Eckart, Robert Böhm, Sirko Geller, and Maik Gude. "Experimental analysis of process induced draping effects in textile preforms." In PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kordi, M. Tarsha, M. Husing, and B. Corves. "Development of a multifunctional robot end- effector system for automated manufacture of textile preforms." In 2007 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, 2007. http://dx.doi.org/10.1109/aim.2007.4412527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Eric, David Mollenhauer, and Endel Iarve. "Micro-Geometric Modeling of Textile Preforms with Vacuum Bag Compression: An Application of Multi-chain Digital Element Technique." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schmitt, R., C. Niggemann, and C. Mersmann. "Contour scanning of textile preforms using a light-section sensor for the automated manufacturing of fibre-reinforced plastics." In Photonics Europe, edited by Francis Berghmans, Anna G. Mignani, Antonello Cutolo, Patrick P. Meyrueis, and Thomas P. Pearsall. SPIE, 2008. http://dx.doi.org/10.1117/12.779005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmitt, Robert, Alexandre Orth, and Christian Niggemann. "A method for edge detection of textile preforms using a light-section sensor for the automated manufacturing of fibre-reinforced plastics." In Optical Metrology, edited by Wolfgang Osten, Christophe Gorecki, and Erik L. Novak. SPIE, 2007. http://dx.doi.org/10.1117/12.726177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shivakumar, Kunigal, Mannur Sundaresan, and Ivatury Raju. "Failure modes and strength of discontinuous blade stiffened textile preform composite panels." In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography