Dissertations / Theses on the topic 'Text retrieval'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Text retrieval.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kay, Roderick Neil. "Text analysis, summarising and retrieval." Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360435.
Full textLee, Hyo Sook. "Automatic text processing for Korean language free text retrieval." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322916.
Full textAsian, Jelita, and jelitayang@gmail com. "Effective Techniques for Indonesian Text Retrieval." RMIT University. Computer Science and Information Technology, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080110.084651.
Full textShokouhi, Milad, and milads@microsoft com. "Federated Text Retrieval from Independent Collections." RMIT University. Computer Science and Information Technology, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080521.151632.
Full textNwesri, Abdusalam F. Ahmad, and nwesri@yahoo com. "Effective retrieval techniques for Arabic text." RMIT University. Computer Science and IT, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081204.163422.
Full textDe, Luca Ernesto William. "Semantic support in multilingual text retrieval." Aachen Shaker, 2008. http://d-nb.info/990194914/04.
Full textViana, Hugo Henrique Amorim. "Automatic information retrieval through text-mining." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11308.
Full textNowadays, around a huge amount of firms in the European Union catalogued as Small and Medium Enterprises (SMEs), employ almost a great portion of the active workforce in Europe. Nonetheless, SMEs cannot afford implementing neither methods nor tools to systematically adapt innovation as a part of their business process. Innovation is the engine to be competitive in the globalized environment, especially in the current socio-economic situation. This thesis provides a platform that when integrated with ExtremeFactories(EF) project, aids SMEs to become more competitive by means of monitoring schedule functionality. In this thesis a text-mining platform that possesses the ability to schedule a gathering information through keywords is presented. In order to develop the platform, several choices concerning the implementation have been made, in the sense that one of them requires particular emphasis is the framework, Apache Lucene Core 2 by supplying an efficient text-mining tool and it is highly used for the purpose of the thesis.
Krishnan, Sharenya. "Text-Based Information Retrieval Using Relevance Feedback." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53603.
Full textWestmacott, Mike. "Content based image retrieval : analogies with text." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423038.
Full textMurad, Masrah Azrifah Azmi. "Fuzzy text mining for intelligent information retrieval." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416830.
Full textIsbell, Charles L. (Charles Lee). "Sparse multi-level representations for text retrieval." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47513.
Full textIncludes bibliographical references (p. [153]-160).
by Charles Lee Isbell, Junior.
Ph.D.
Kyriakides, Alexandros 1977. "Supervised information retrieval for text and images." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28426.
Full textIncludes bibliographical references (leaves 73-74).
We present a novel approach to choosing an appropriate image for a news story. Our method uses the caption of the image to retrieve a suitable image. We have developed a word-extraction engine called WordEx. WordEx uses supervised learning to predict which words in the text of a news story are likely to be present in the caption of an appropriate image. The words extracted by WordEx are then used to retrieve the image from a collection of images. On average, the number of words extracted by WordEx is 10% of the original story text. Therefore, this word-extraction engine can also be applied to text documents for feature reduction.
by Alexandros Kyriakides.
M.Eng.
Landrin-Schweitzer, Yann. "Algorithmes génétiques interactifs pour le text-retrieval." Paris 11, 2003. http://www.theses.fr/2003PA112303.
Full textThe number and volume of documents available in electronical form has skyrocketed during the '90s. A consequence is the development of archiving and management tools for electronic documents. Among those, textual search engines have taken a major role in the treatment and diffusion of information. Those tools have nowadays very high performances, based on specialized linguistic tools. However, they reach new limits: the particularities of their users, and the complexity of information processing. Statistical approaches, based on cognitive user models, have proven themselves on simple semantical contexts. They still fail to endow textual extraction tools with the capacities of user specificity and adaptability. We attempt to overcome this limitation by specializing the behaviour of text-retrieval tools to the specificities of users. Without an appropriate cognitive model applicable to all users, that would let us constrain the answers that should be given to users, we propose a model of the treatment we may apply to their requests. We dynamically adapt a profile containing this information with an evolutionary algorithm, that maximizes the satisfaction of the user in the results obtained. Applying the parisian approach to this genetic programming core leads to optimise a population of modules, elementary components of transformation rules. We obtain actual result lists through a classical text extraction tool, invisibly for the user. A working prototype, Elise, has been implemented. Evaluating its performance, based on the opinion of users, is tricky, but the tests show that Elise is capable of adaptation and creativity, of which traditional systems are incapable
Sussna, Michael John. "Text retrieval using inference in semantic metanetworks /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9726031.
Full textVinay, V. "The relevance of feedback for text retrieval." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446146/.
Full textHolmes-Higgin, Paul. "Text knowledge : the Quirk Experiments." Thesis, University of Surrey, 1995. http://epubs.surrey.ac.uk/842732/.
Full textSong, Min Song Il-Yeol. "Robust knowledge extraction over large text collections /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/495.
Full textCaviglia, Karen. "Signature file access methodologies for text retrieval : a literature review with additional test cases /." Online version of thesis, 1987. http://hdl.handle.net/1850/10144.
Full textEstall, Craig. "A study in distributed document retrieval." Thesis, Queen's University Belfast, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328342.
Full textKäter, Thorsten. "Evaluierung des Text-Retrievalsystems "Intelligent Miner for Text" von IBM : eine Studie im Vergleich zur Evaluierung anderer Systeme /." [S.l. : s.n.], 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8230685.
Full textKim, Eungi. "Implications of Punctuation Mark Normalization on Text Retrieval." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc500160/.
Full textZhang, Nan. "TRANSFORM BASED AND SEARCH AWARE TEXT COMPRESSION SCHEMES AND COMPRESSED DOMAIN TEXT RETRIEVAL." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3938.
Full textPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
DeLuca, Ernesto W. [Verfasser]. "Semantic Support in Multilingual Text Retrieval / Ernesto W DeLuca." Aachen : Shaker, 2008. http://d-nb.info/1161313745/34.
Full textDe, Luca Ernesto William [Verfasser]. "Semantic Support in Multilingual Text Retrieval / Ernesto W DeLuca." Aachen : Shaker, 2008. http://nbn-resolving.de/urn:nbn:de:101:1-2018061708435800872248.
Full textBrucato, Matteo. "Temporal Information Retrieval." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5690/.
Full textAl, Tayyar Musaid Seleh. "Arabic information retrieval system based on morphological analysis (AIRSMA) : a comparative study of word, stem, root and morpho-semantic methods." Thesis, De Montfort University, 2000. http://hdl.handle.net/2086/4126.
Full textHou, Jun. "Text mining with semantic annotation : using enriched text representation for entity-oriented retrieval, semantic relation identification and text clustering." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/79206/1/Jun_Hou_Thesis.pdf.
Full textBall, Liezl Hilde. "Enhancing digital text collections with detailed metadata to improve retrieval." Thesis, University of Pretoria, 2020. http://hdl.handle.net/2263/79015.
Full textThesis (DPhil (Information Science))--University of Pretoria, 2020.
Information Science
DPhil (Information Science)
Unrestricted
Zhou, Xiaohua Hu Xiaohua. "Semantics-based language models for information retrieval and text mining /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2931.
Full textMick, Alan A. "Knowledge based text indexing and retrieval utilizing case based reasoning /." Online version of thesis, 1994. http://hdl.handle.net/1850/11715.
Full textDick, Judith P. "A conceptual, case-relation representation of text for intelligent retrieval." Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1992. http://books.google.com/books?id=Zh3hAAAAMAAJ.
Full textGreco, Luca. "Text retrieval and categorization through a weighted word pairs approach." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/981.
Full textThe focus of this dissertation is the development and validation of a novel method for supervised text classification to be used effectively when small sized training sets are available. The proposed approach, which relies on a Weighted Word Pairs (WWP) structure, has been validated in two application fields: Query Expansion and Text Categorization. By analyzing the state of the art for supervised text classification, it has been observed that existing methods show a drastic performance decrease when the number of training examples is reduced. This behaviour is essentialy due to the following reasons: the use, common to most existing systems, of the "Bag of Words" model where only the presence and occurrence of words in texts is considered, losing any information about the position; polysemy and ambiguity which are typical of natural language; the performance degradation affecting classification systems when the number of features is much greater than the available training samples. Nevertheless, manual document classification is a boring, costly and slow process: it has been observed that only 100 documents can be hand-labeled in 90 minutes and this number may be not sufficient for achieving good accuracy in real contexts with a standard trained classifier. On the other hand, in Query Expansion problems (in the domain of interactive web search engines), where the user is asked to provide a relevance feedback to refine the search process, the number of selected documents is much less than the total number of indexed documents. Hence, there's a great interest in alternative classification methods which, using more complex structures than a simple list of words, show higher efficiency when learning from a few training documents. The proposed approach is based on a hierarchical structure, called Weighted Word Pairs (WWP), that can be learned automatically from a corpus of documents and relies on two fundamental entities: aggregate roots i.e. the words probabilistically more implied from all others; aggregates which are words having a greater probabilistic correlation with aggregate roots. WWP structure learning takes place through three main phases: the first phase is characterized by the use of probabilistic topic model and Latent Dirichlet Allocation to compute the probability distribution of words within documents: in particular, the output of LDA algorithm consists of two matrices that define the probabilistic relationship between words, topics and the documents. Under suitable assumptions, the probability of the occurrence of each word in the corpus, the conditional and joint probabilities between word pairs can be derived from these matrices. During the second phase, aggregate roots (whose number is selected by the user as an external parameter) are chosen as those words that maximize the conditional probability product between a given word and all others, in line with the definition given above. Once aggregate roots have been chosen, each of them is associated with some aggregates and the coefficient of relationship between aggregate roots and aggregates is calculated thanks to the joint probability between word pairs (previously computed). The number of links between aggregate roots and aggregates depends on another external parameter (Max Pairs) which affects proper thresholds allowing to filter weakly correlated pairs. The third phase is aimed at searching the optimal WWP structure, which has to provide a synthetic representation for the information contained in all the documents (not only into a subset of them). The effectiveness of the WWP structure was initially assessed in Query Expansion problems, in the context of interactive search engines. In this scenario, the user, after getting from the system a first ranking of documents in response to a specific query, is asked to select some relevant documents as a feedback documents in response to a specific query, is asked to select some relevant documents as a feedback, according to his information need. From those documents (relevance feedback), some key terms are extracted to expand the initial query and refine the search. In our case, a WWP structure is extracted from the relevance feedback and is appropriately translated into a query. The experimental phase for this application context was conducted with the use of TREC-8 standard dataset, which consists of approximately 520 thousand pre-classified documents. A performance comparison between the baseline (results obtained with no expanded query), WWP structure and a query expansion method based on the Kullback Leibler divergence was carried out. Typical information retrieval measurement were computed: precision at various levels, mean average precision, binary preference, R-precision. The evaluation of these measurements was performed using a standard evaluation tool used for TREC conferences. The results obtained are very encouraging. A further application field for validating WWP structure is documents categorization. In this case, a WWP structure combined with a standard Information Retrieval module is used to implement a document-ranking text classifier. Such a classifier is able to make a soft decision: it draws up a ranking of documents that requires the choice of an appropriate threshold (Categorization Status Value) in order to obtain a binary classification. In our case, this threshold was chosen by evaluating performance on a validation set in terms of micro-precision, micro-recall and micro-F1. The dataset Reuters-21578, consisting of about 21 thousand newspaper articles, has been used; in particular, evaluation was performed on the ModApte split (10 categories), which includes only manually classified documents. The experiment was carried out by selecting randomly the 1% of the training set available for each category and this selection was made 100 times so that the results were not biased by the specific subset. The performance, evaluated by calculating the F1 measure (harmonic mean of precision and recall), was compared with the Support Vector Machines, in the literature referred as the state of the art in the classification of such a dataset. The results show that when the training set is reduced to 1%, the performance of the classifier based on WWP are on average higher than those of SVM. [edited by author]
Il focus dell’attività di ricerca riguarda lo sviluppo e la validazione di una metodologia alternativa per la classificazione supervisionata di testi mediante impiego di training set di dimensioni ridotte (circa l’1% rispetto a quelli tipicamente impiegati). L’approccio proposto, che si basa su una struttura a coppie di parole pesate (Weighted Word Pairs), è stato validato su due contesti applicativi: Query Expansion e Text Categorization. Da un’accurata analisi dello stato dell’arte in materia di classificazione supervisionata dei testi, si è evinto come le metodologie esistenti mostrino un evidente calo di prestazioni in presenza di una riduzione degli esempi (campioni del data set già classificati) utilizzati per l’addestramento. Tale calo è essenzialmente attribuibile alle seguenti cause: l’impiego, comune a gran parte dei sistemi esistenti, del modello “Bag of Words” dove si tiene conto della sola presenza ed occorrenza delle singole parole nei testi, perdendo qualsiasi informazione circa la posizione; polisemia ed ambiguità tipiche del linguaggio naturale; il peggioramento delle prestazioni che coinvolge i sistemi di classificazione quando il numero di caratteristiche (features) impiegate è molto maggiore degli esempi disponibili per l’addestramento del sistema. Dal punto di vista delle applicazioni, ci si trova spesso di fronte a casi in cui, per la classificazione di un corpus di documenti, si ha a disposizione un insieme limitato di esempi: questo perché il processo di classificazione manuale dei documenti è oneroso e lento. D’altro canto in problemi di Query Expansion, nell’ambito dei motori di ricerca interattivi, dove l’utente è chiamato a fornire un feedback di rilevanza per raffinare il processo di ricerca, il numero di documenti selezionati è molto inferiore al totale dei documenti indicizzati dal motore. Da qui l’interesse verso strategie di classificazione che, usando strutture più complesse rispetto alla semplice lista di parole, mostrino un’efficienza maggiore quando la struttura è appresa da pochi documenti di training. L’approccio proposto si basa su una struttura gerarchica (Weighted Word Pairs) che può essere appresa automaticamente da un corpus di documenti e che è costituita da due entità fondamentali: i termini aggregatori che sono le parole probabilisticamente più implicate da tutte le altre; i termini aggregati che sono le parole aventi maggiore correlazione probabilistica con i termini aggregatori. L’apprendimento della struttura WWP avviene attraverso tre fasi principali: la prima fase è caratterizzata dall’impiego del topic model probabilistico e della Latent Dirichlet Allocation per il calcolo della distribuzione probabilistica delle parole all’interno dei documenti: in particolare, l’output dell’algoritmo LDA è costituito da due matrici che definiscono il legame probabilistico tra le parole, i topic e i documenti analizzati. Sotto opportune ipotesi è possibile derivare da tali matrici le probabilità associate al verificarsi delle singole parole all’interno del corpus e le probabilità condizionate e congiunte tra le coppie di parole; durante la seconda fase vengono scelti i termini aggregatori (il cui numero è selezionato dall’utente come parametro esterno) come quelle parole che massimizzano il prodotto delle probabilità condizionate al verificarsi di tutte le altre, coerentemente con la definizione fornita in precedenza. Una volta scelti i termini aggregatori, a ciascuno di essi sono associati dei termini aggregati e il coefficiente di relazione tra termini aggregatori ed aggregati è calcolato sulla base della probabilità congiunta. Il numero di legami tra aggregatori e tra aggregatori/aggregati dipende da un parametro esterno (Max Pairs) che va ad influire su opportune soglie che filtrano le coppie debolmente correlate. La terza fase ha come obiettivo la ricerca della struttura WWP ottima, che tenga conto dell’informazione presente in tutti i documenti del corpus e che non sia maggiormente caratterizzata da un sottoinsieme di essi. L’efficacia della struttura WWP è stata dapprima valutata in problemi di Query Expansion nell’ambito dei motori di ricerca interattivi. In questo scenario l’utente, dopo aver ottenuto dal sistema un primo ranking di documenti in risposta ad una sua query iniziale, è chiamato a selezionare alcuni documenti da lui giudicati rilevanti che andranno a costituire il relevance feedback da cui estrarre opportunamente nuovi termini per espandere la query iniziale e raffinare la ricerca. Nel caso specifico, la struttura WWP appresa dal relevance feedback viene opportunamente tradotta in una query mediante un linguaggio di interrogazione proprio del modulo di Information Retrieval utilizzato. La sperimentazione in questo contesto applicativo è stata condotta mediante l’utilizzo del dataset standard TREC-8, costituito da circa 520 mila documenti pre-classificati. E’ stato effettuato un confronto di performance tra la baseline ( risultati ottenuti da query priva di espansione), la struttura WWP ed un metodo di espansione basato sulla Divergenza di Kullback Leibler, indicato in letteratura come il metodo di estrazione delle feature più performante nei problemi di query expansion; le misurazioni effettuate sono tipiche dell’information retrieval: precisione a vari livelli, mean average precision, binary preference, R-precision. La valutazione di tali quantità è stata effettuata utilizzando un apposito tool messo a disposizione per la conferenza TREC. I risultati ottenuti sono molto incoraggianti. Un ulteriore campo applicativo in cui la struttura è stata validata è quello della categorizzazione dei documenti. In questo caso, la struttura WWP abbinata ad un modulo di Information Retrieval è utilizzata per implementare un document-ranking text classifier. Un classificatore di questo tipo realizza una soft decision ovvero non fornisce in ouput l’appartenenza di un documento ad una determinata classe ma redige un ranking di documenti che richiede la scelta di un opportuna soglia (Categorization Status Value threshold) per consentire la classificazione vera e propria. Tale soglia è stata scelta valutando le performance del classificatore in termini di micro-precision, micro-recall e micro-F1 rispetto al dataset utilizzato. Quest’ultimo, noto in letteratura come Reuters-21578, è costituito da circa 21 mila articoli di giornale; il sottoinsieme utilizzato, noto come ModApte split, include i soli documenti classificati manualmente da umani (10 categorie). La sperimentazione è stata condotta selezionando l’1% in maniera random del training set di ciascuna categoria e tale selezione è stata effettuata 100 volte in modo che i risultati non fossero polarizzati dallo specifico sottoinsieme. Le performance, valutate mediante calcolo della misura F1 (media armonica di precisione e richiamo), sono state confrontate con le Support Vector Machines, in letteratura indicate come stato dell’arte nella classificazione del dataset impiegato. I risultati ottenuti mostrano che quando il training set è ridotto al 1%, le performance del classificatore basato su WWP sono mediamente superiori a quelle delle SVM. I risultati ottenuti dall'impiego della struttura WWP nei campi di Text Retrieval e Text Mining sono molto interessanti e stanno ottenendo buon riscontro da parte della comunità scientifica. Dal punto di vista delle prospettive future, essendo attualmente la struttura appresa dai soli esempi positivi, potrebbe essere interessante valutare l'incremento di performance ottenuto impiegando 2 strutture WWP apprese rispettivamente da esempi positivi e negativi. Naturalmente, trattandosi di un classificatore soft decision, diventa cruciale stabilire una corretta politica di combinazione tra i ranking ottenuti dall'impiego del WWP "positivo" e quello negativo e la scelta della soglia CSV. Un altro interessante spunto futuro riguarda la costruzione di ontologie complete da strutture WWP, che richiederebbe l'identificazione delle tipologie di relazioni esistenti tra i termini mediante ausilio di conoscenza esogena (WordNet, etc...). [a cura dell'autore]
XI n.s.
Miller, Daniel. "A System for Natural Language Unmarked Clausal Transformations in Text-to-Text Applications." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/137.
Full textMcMurtry, William F. "Information Retrieval for Call Center Quality Assurance." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587036885211228.
Full textWatanabe, Yasuhiko. "Integrated Analysis of Image, Diagram, and Text for Multimedia Document Retrieval." 京都大学 (Kyoto University), 2002. http://hdl.handle.net/2433/149384.
Full textNag, Chowdhury Sreyasi [Verfasser]. "Text-image synergy for multimodal retrieval and annotation / Sreyasi Nag Chowdhury." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1240674139/34.
Full textLeng, Chun-Wu. "Design and performance evaluation of signature files for text retrieval systems /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487685204967976.
Full textMoreno, José G. "Text-Based Ephemeral Clustering for Web Image Retrieval on Mobile Devices." Caen, 2014. http://www.theses.fr/2014CAEN2036.
Full textIn this thesis, we present a study about Web image results visualization on mobile devices. Our main findings were inspired by the recent advances in two main research areas - Information Retrieval and Natural Language Processing. In the former, we considered different topics such as search results clustering, Web mobile interfaces, query intent mining, to name but a few. In the latter, we were more focused in collocation measures, high order similarity metrics, etc. Particularly in order to validate our hypothesis, we performed a great deal of different experiments with task specific datasets. Many characteristics are evaluated in the proposed solutions. First, the clustering quality in which classical and recent evaluation metrics are considered. Secondly, the labeling quality of each cluster is evaluated to make sure that all possible query intents are covered. Thirdly and finally, we evaluate the user's effort in exploring the images in a gallery-based interface. An entire chapter is dedicated to each of these three aspects in which the datasets - some of them built to evaluate specific characteristics - are presented. For the final results, we can take into account two developed algorithms, two datasets and a SRC evaluation tool. From the algorithms, Dual C-means is our main product. It can be seen as a generalization of our previously developed algorithm, the AGK-means. Both are based in text-based similarity metrics. A new dataset for a complete evaluation of SRC algorithms is developed and presented. Similarly, a new Web image dataset is developed and used together with a new metric to measure the users effort when a set of Web images is explored. Finally, we developed an evaluation tool for the SRC problem, in which we have implemented several classical and recent SRC metrics. Our conclusions are drawn considering the numerous factors that were discussed in this thesis. However, additional studies could be motivated based in our findings. Some of them are discussed in the end of this study and preliminary analysis suggest that they are directions that have potential
Larsson, Jimmy. "Taxonomy Based Image Retrieval : Taxonomy Based Image Retrieval using Data from Multiple Sources." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180574.
Full textMed den mängd bilder som nu finns tillgänglig på Internet, hur kan vi fortfarande hitta det vi letar efter? Denna uppsats försöker avgöra hur mycket bildprecision och bildåterkallning kan öka med hjälp av appliceringen av en ordtaxonomi på traditionell Text-Based Image Search och Content-Based Image Search. Genom att applicera en ordtaxonomi på olika datakällor kan ett starkt ordfilter samt en modul som förlänger ordlistor skapas och testas. Resultaten pekar på att beroende på implementationen så kan antingen precisionen eller återkallningen förbättras. Genom att använda en liknande metod i ett verkligt scenario är det därför möjligt att flytta bilder med hög precision längre fram i resultatlistan och samtidigt behålla hög återkallning, och därmed öka den upplevda relevansen i bildsök.
Williams, Ken. "A framework for text categorization." Thesis, The University of Sydney, 2003. https://hdl.handle.net/2123/27951.
Full textKatsarona, Stavros. "SCANTRAX - an associative string processor for relational database management and text retrieval." Thesis, Brunel University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292397.
Full textMartins, Bruno. "Geographically Aware Web Text Mining." Master's thesis, Department of Informatics, University of Lisbon, 2009. http://hdl.handle.net/10451/14301.
Full textDunning, Ted Emerson. "Finding structure in text, genome and other symbolic sequences." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310811.
Full textTursun, Osman. "Missing ingredients in optimising large-scale image retrieval with deep features." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227803/1/Osman_Tursun_Thesis.pdf.
Full textLeidner, Jochen Lothar. "Toponym resolution in text." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/1849.
Full textAlbathan, Mubarak Murdi M. "Enhancement of relevant features for text mining." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/90072/1/Mubarak%20Murdi%20M_Albathan_Thesis.pdf.
Full textAlsaad, Amal. "Enhanced root extraction and document classification algorithm for Arabic text." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13510.
Full textLu, Zhiyong. "Text mining on GeneRIFs /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.
Find full textTypescript. Includes bibliographical references (leaves 174-182). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Goyal, Pawan. "Analytic knowledge discovery techniques for ad-hoc information retrieval and automatic text summarization." Thesis, Ulster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543897.
Full textSmith, Owen John Robert. "An experiment on integration of Hypertext within a multi-user text retrieval system." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317527.
Full text