Academic literature on the topic 'Test temperature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Test temperature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Test temperature"
Lesser, Larry. "Taking the temperature of scale type." Teaching Statistics 37, no. 1 (July 7, 2014): 6. http://dx.doi.org/10.1111/test.12061.
Full textPark, Donghyun, and Tae Sung Oh. "Reliability Characteristics of a Package-on-Package with Temperature/Humidity Test, Temperature Cycling Test, and High Temperature Storage Test." Journal of the Microelectronics and Packaging Society 23, no. 3 (September 30, 2016): 43–49. http://dx.doi.org/10.6117/kmeps.2016.23.3.043.
Full textTOMINAGA, Toshibumi. "High temperature hardness test." Journal of the Japan Society for Precision Engineering 55, no. 8 (1989): 1337–41. http://dx.doi.org/10.2493/jjspe.55.1337.
Full textTakamatsu, Kuniyoshi, Shohei Ueta, and Kazuhiro Sawa. "ICONE19-43224 ANALYSIS OF A LOSS OF FORCED COOLING TEST USING THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR)." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_92.
Full textMeister, Michael, and Marco Reinhard. "A modular application specific active test environment for high-temperature wafer test up to 300 °C." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2019, HiTen (July 1, 2019): 000122–25. http://dx.doi.org/10.4071/2380-4491.2019.hiten.000122.
Full textKerr, R. A. "Shock Test Squeezes Core Temperature." Science 267, no. 5204 (March 17, 1995): 1597–98. http://dx.doi.org/10.1126/science.267.5204.1597.
Full textShin, Soon Gi. "Deformation Behavior of TiC-Mo Composites at High Temperature by Compression Test." Korean Journal Metals and Materials 51, no. 12 (December 5, 2013): 921–28. http://dx.doi.org/10.3365/kjmm.2013.51.12.921.
Full textLe, Quang X., Vinh TN Dao, Jose L. Torero, Cristian Maluk, and Luke Bisby. "Effects of temperature and temperature gradient on concrete performance at elevated temperatures." Advances in Structural Engineering 21, no. 8 (December 8, 2017): 1223–33. http://dx.doi.org/10.1177/1369433217746347.
Full textTANAKA, Toshiyuki, Minoru OHKUBO, Tatsuo IYOKU, Kazuhiko KUNITOMI, Takeshi TAKEDA, Nariaki SAKABA, and Kenji SAITO. "Performance Test of the HTTR (High Temperature Engineering Test Reactor)." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 41, no. 6 (1999): 686–98. http://dx.doi.org/10.3327/jaesj.41.686.
Full textDrehmer, Timothy J. "Crossover test can detect temperature differences." Postgraduate Medicine 113, no. 6 (June 2003): 16. http://dx.doi.org/10.3810/pgm.2003.06.1442.
Full textDissertations / Theses on the topic "Test temperature"
Holm, Perbie. "Temperature monitoring during transport of test samples." Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6993.
Full textQuality is the main focus in management of all laboratories. Accurate results of the analyses are not only determined by the analytical procedure but also by preanalytical factors. In the total analytical process of clinical specimens, there are many possible preanalytical sources of error. Monetoring of temperature on test samples of the transport boxes is one way to reduce the mistakes in the preanalytical phase.
In this study, four laboratories from primary health care were invited to participate. The temperature has been measured on test samples of the transport boxes being delivered to the laboratory.
In three cases the temperature remained within the limits, but in the fourth case the temperature varied more than the allowed interval. Mistakes found in the preanalytical phase, especially in the handling and processing in the process before complete distribution of test samples to laboratory. This suggests that good communication and cooperation among the personnel is the key to improvement of the laboratory quality.
Bonthron, Björn, and Christian Jonsson. "Geogrids in cold climate : Temperature controlled tensile tests & Half-scale installation tests at different temperatures." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63204.
Full textNarri, Vandana. "Performance and Improvement Investigation of Accelerated Temperature Change Test." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16604.
Full textLin, Muh-Ren. "Experimental Investigation of Temperature Effect on Uniaxial Tensile Test." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392371542.
Full textLin, Muh-ren. "Experimental investigation of temperature effect on uniaxial tensile test /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266011224679.
Full textAghaee, Ghaleshahi Nima. "Thermal Issues in Testing of Advanced Systems on Chip." Doctoral thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120798.
Full textChausse, Eric. "Test et modélisation de détecteurs infrarouges microbolométriques à température ambiante." Grenoble INPG, 2000. http://www.theses.fr/2000INPG0021.
Full textBrown, Stephen Wayne. "Time- and Temperature-Dependence of Fracture Energies Attributed to Copper/Epoxy Bonds." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9675.
Full textMaster of Science
Prakash, del Valle Carlos. "Thermal modelling of an FZG test gearbox." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157256.
Full textVäxellådor är ständigt ett forskningsområde för att förbättra deras verkningsgrad. Energiförluster i kuggkontakter omvandlas till värme som sprids i växellådan som sedan värmer upp komponenterna. En termisk modell av växellådan gör det möjligt för djupare förståelse hur värmen sprids i förhållande till energiförlusterna i kuggkontakten. Ett MATLAB-program baserat på ordinära differential-ekvationer utvecklades för att göra en termisk modell av en växellåda i en kuggrigg från FZG. Modellen är baserad på ett termiskt nätverk där varje nod representerar en maskinkomponent. Det termiska nätverket består av resistanser som uppstår på grund av deformation i kuggkontakten, ledning, konvektion och strålning. Med termiska resistanser, energiförluster, termisk tröghet från komponenterna och genom att applicera termodynamikens första grundsats kunde temperatur-genereringen bestämmas. Från temperatur-genereringen kunde värme-ledningen mellan komponenter uppskattas. Testresultat från en FZG-kuggrigg användes för att verifiera modellens noggrannhet. Andra egenskaper till modellen, som ett annat kylsystem och spraysmörjning studerades för att undersöka möjligheteten att adderas till modellen. Resultat visar på en bred användning av modellen i avseende på termisk analys: värmeflödets storlek och riktning, ett visuellt redskap för växellådans temperatur och hur växellådans temperatur varierar under olika driftförhållanden. Med de här redskapen kan den minsta oljemängden som behövs för att smörja kuggkontakten undersökas och hur kylning av kugghjulen kan förbättras. Nyckelord: Termiskt nätverk, FZG kugghjuls-rigg, värmeflöde, temperatur, MATLAB, ODE
He, Zhiyuan. "System-on-Chip test scheduling with defect-probability and temperature considerations." Licentiate thesis, Linköping University, Linköping University, ESLAB - Embedded Systems Laboratory, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-38257.
Full textElectronic systems have become highly complex, which results in a dramatic increase of both design and production cost. Recently a core-based system-on-chip (SoC) design methodology has been employed in order to reduce these costs. However, testing of SoCs has been facing challenges such as long test application time and high temperature during test. In this thesis, we address the problem of minimizing test application time for SoCs and propose three techniques to generate efficient test schedules.
First, a defect-probability driven test scheduling technique is presented for production test, in which an abort-on-first-fail (AOFF) test approach is employed and a hybrid built-in self-test architecture is assumed. Using an AOFF test approach, the test process can be aborted as soon as the first fault is detected. Given the defect probabilities of individual cores, a method is proposed to calculate the expected test application time (ETAT). A heuristic is then proposed to generate test schedules with minimized ETATs.
Second, a power-constrained test scheduling approach using test set partitioning is proposed. It assumes that, during the test, the total amount of power consumed by the cores being tested in parallel has to be lower than a given limit. A heuristic is proposed to minimize the test application time, in which a test set partitioning technique is employed to generate more efficient test schedules.
Third, a thermal-aware test scheduling approach is presented, in which test set partitioning and interleaving are employed. A constraint logic programming (CLP) approach is deployed to find the optimal solution. Moreover, a heuristic is also developed to generate near-optimal test schedules especially for large designs to which the CLP-based algorithm is inapplicable.
Experiments based on benchmark designs have been carried out to demonstrate the applicability and efficiency of the proposed techniques.
2007
Books on the topic "Test temperature"
Knoll, Richard H. Design, development, and test of shuttle/Centaur G-prime cryogenic tankage thermal protection systems. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textLachenbruch, Arthur H. Thermal measurements in Oak Springs Formation at the Nevada Test Site, southern Nevada. [Menlo Park, CA]: U.S. Geological Survey, 1987.
Find full textGillespie, David. Temperature profiles and hydrologic implications from the Nevada Test Site Area. Las Vegas, NV: Desert Research Institute, 2005.
Find full textKehoe, M. W. Thermoelastic vibration test techniques. Edwards, Calif: National Aeronautics and Space Administration, Ames Resarch Center, Dryden Flight Research Facility, 1991.
Find full textKehoe, M. W. Thermoelastic vibration test techniques. Edwards, Calif: National Aeronautics and Space Administration, Ames Resarch Center, Dryden Flight Research Facility, 1991.
Find full textAnderson, Ken. Low temperature pavement performance: An evaluation using C-SHRP test road data. Ottawa: Transportation Association of Canada, 1999.
Find full textC, Moore Thomas. Recommended strain gage application procedures for various Langley Research Center balances and test articles. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textBigl, Susan R. Testing of materials from the Minnesota Cold Regions Pavement Research Test Facility. Hanover, NH: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1996.
Find full textChristensen, Donald W. Evaluation of indirect tensile test (IDT) procedures for low-temperature performance of hot mix asphalt. Washington, D.C: Transportation Research Board, 2004.
Find full textKönnecke, R. EC static high-temperature leach test: Summary report of a European Community interlaboratory round robin. Luxembourg: Commission of the European Communities, 1985.
Find full textBook chapters on the topic "Test temperature"
Brown, Roger. "Effect of Temperature." In Physical Test Methods for Elastomers, 305–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66727-0_21.
Full textGilford, W. E., and A. Acharya. "Low-Temperature Regenerator Test Apparatus." In Advances in Cryogenic Engineering, 436–42. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_54.
Full textTylka, Jonathan M., and Timothy D. Gallus. "Auto Ignition Temperature Test Chamber Fire Investigation." In Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: 14th Volume, 234–45. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2016. http://dx.doi.org/10.1520/stp159620150075.
Full textCarmona, Ricardo. "Temperature Regulation." In The IEA/SSPS Solar Thermal Power Plants — Facts and Figures— Final Report of the International Test and Evaluation Team (ITET), 104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82684-9_44.
Full textZhao, Qiang, and Jilai Xue. "Sintering Test Research of High Proportion Limonite." In 10th International Symposium on High-Temperature Metallurgical Processing, 189–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05955-2_18.
Full textAltet, Josep, and Antonio Rubio. "Temperature as a test observable variable in ICs." In Thermal Testing of Integrated Circuits, 97–138. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3635-9_4.
Full textYongyan, Li, Zhao Weimin, Xue Haitao, and Ding Jian. "Study on Magnesium Alloys Ignition Temperature Test System." In Advances in Intelligent and Soft Computing, 415–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25349-2_55.
Full textWang, Lijuan, Yanfeng Liu, Jiaping Liu, Yuhui Di, and Hao Zhou. "Effects of Test Methods on Human Axillary Temperature." In Lecture Notes in Electrical Engineering, 373–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39584-0_42.
Full textSinnamon, K., G. Ojard, B. Flandermeyer, and R. Miller. "Intermediate Temperature Oxidation: Review and Test Method Refinement." In Ceramic Transactions Series, 287–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470930953.ch27.
Full textSeitz, Mark T., Jason D. Hamilton, Richard K. Voltenburg, Limin Luo, Zhigang Wei, and Robert G. Rebandt. "Practical and Technical Challenges of the Exhaust System Fatigue Life Assessment Process at Elevated Temperature." In Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis, 371–409. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2017. http://dx.doi.org/10.1520/stp159820160084.
Full textConference papers on the topic "Test temperature"
Eick, Thomas, Andre Magi, Olaf Sausemuth, Steffen Biermann, and Patrick Sachse. "I4.2 - High Temperature NDIR Gas Measurement Module." In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/irs09/i4.2.
Full textPfahni, A. C., J. H. Lienhard, and A. H. Slocum. "Temperature control of a handler test interface." In Proceedings International Test Conference 1998. IEEE, 1998. http://dx.doi.org/10.1109/test.1998.743144.
Full textIshisaki, Y., H. Akamatsu, A. Hoshino, T. Numazawa, K. Kamiya, R. Fujimoto, Y. Kojima, et al. "Performance test of Ti∕Au bilayer TES microcalorimeter in combination with continuous ADR." In THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13. AIP, 2009. http://dx.doi.org/10.1063/1.3292373.
Full textHamon, Dominique M., Bernard Y. Damin, and Philippe N. China. "New Diesel Low Temperature Operability Test - Agelfi Filtration Test." In 1994 Subzero Engineering Conditions Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940081.
Full textKühnel, M., F. Hilbrunner, T. Fröhlich, and K. Lieberherr. "P2.4 - Climate Chamber for a High Temperature Stability." In SENSOR+TEST Conferences 2011. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2011. http://dx.doi.org/10.5162/sensor11/sp2.4.
Full textAmrouch, Hussam, Behnam Khaleghi, and Jorg Henkel. "Optimizing temperature guardbands." In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7926978.
Full textYoneda, Tomokazu, Makoto Nakao, Michiko Inoue, Yasuo Sato, and Hideo Fujiwara. "Temperature-Variation-Aware Test Pattern Optimization." In 2011 16th IEEE European Test Symposium (ETS). IEEE, 2011. http://dx.doi.org/10.1109/ets.2011.45.
Full textTitov, D. E., N. Yu Shevschenko, and V. S. Galushak. "Test module temperature measurements were made." In 2014 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2014. http://dx.doi.org/10.1109/apede.2014.6958232.
Full textDoroudian, Mark, Michael Kolich, Gabriella Almasi, Michael Medoro, Ramesh Dwarampudi, Mohsen battoei, and Swapnil Salokhe. "Virtual Temperature Controlled Seat Performance Test." In WCX World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-01-1317.
Full textJagan, Lavanya, Camelia Hora, Bram Kruseman, Stefan Eichenberger, Ananta K. Majhi, and V. Kamakoti. "Impact of Temperature on Test Quality." In 2010 23rd International Conference on VLSI Design: concurrently with the 9th International Conference on Embedded Systems Design (VLSID). IEEE, 2010. http://dx.doi.org/10.1109/vlsi.design.2010.49.
Full textReports on the topic "Test temperature"
Aaron, Adam M., Richard Burns Cunningham, David L. Fugate, David Eugene Holcomb, Roger A. Kisner, Fred J. Peretz, Kevin R. Robb, Dane F. Wilson, and Graydon L. Yoder, Jr. High Temperature Fluoride Salt Test Loop. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1237612.
Full textJ. L. Rempe, K. G. Condie, D. L. Knudson, and L. L. Snead. Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/974782.
Full textBayless, Paul D. RELAP5-3D Pre-test Prediction for High Temperature Test Facility Test PG-26. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1467561.
Full textBayless, Paul D., and J. Hope Forsmann. RELAP5-3D Assessment Using High Temperature Test Facility Test PG-22. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1408761.
Full textEpiney, Aaron. RELAP5-3D Modeling of High Temperature Test Facility (HTTF) Test PG-26. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1676420.
Full textRichard N. WRight. Controlled Chemistry Helium High Temperature Materials Test Loop. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/911785.
Full textOrtensi, J., J. J. Cogliati, M. A. Pope, R. M. Ferrer, and A. M. Ougouag. Deterministic Modeling of the High Temperature Test Reactor. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/989875.
Full textGlanville, P., P. Rowley, D. Schroeder, and L. Brand. Field Test of Boiler Primary Loop Temperature Controller. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1220341.
Full textSterbentz, James William, Paul David Bayless, Lee Orville Nelson, Hans David Gougar, James Carl Kinsey, Gerhard Strydom, and Akansha Kumar. High-Temperature Gas-Cooled Test Reactor Point Design. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1261012.
Full textGlanville, P., P. Rowley, D. Schroeder, and L. Brand. Field Test of Boiler Primary Loop Temperature Controller. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1159356.
Full text