Academic literature on the topic 'Terrestrial Water Storage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Terrestrial Water Storage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Terrestrial Water Storage"
Kuehne, John, and Clark R. Wilson. "Terrestrial water storage and polar motion." Journal of Geophysical Research: Solid Earth 96, B3 (March 10, 1991): 4337–45. http://dx.doi.org/10.1029/90jb02573.
Full textSavin, Igor Yu, and Bakhytnur S. Gabdullin. "Specifics of long-term dynamics of terrestrial water storage detected using GRACE satellite in Belgorod region." RUDN Journal of Agronomy and Animal Industries 15, no. 4 (December 15, 2020): 363–74. http://dx.doi.org/10.22363/2312-797x-2020-15-4-363-374.
Full textHirschi, Martin, and Sonia I. Seneviratne. "Basin-scale water-balance dataset (BSWB): an update." Earth System Science Data 9, no. 1 (March 30, 2017): 251–58. http://dx.doi.org/10.5194/essd-9-251-2017.
Full textTrautmann, Tina, Sujan Koirala, Nuno Carvalhais, Annette Eicker, Manfred Fink, Christoph Niemann, and Martin Jung. "Understanding terrestrial water storage variations in northern latitudes across scales." Hydrology and Earth System Sciences 22, no. 7 (July 27, 2018): 4061–82. http://dx.doi.org/10.5194/hess-22-4061-2018.
Full textTrautmann, Tina, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung. "The importance of vegetation in understanding terrestrial water storage variations." Hydrology and Earth System Sciences 26, no. 4 (February 24, 2022): 1089–109. http://dx.doi.org/10.5194/hess-26-1089-2022.
Full textHatch, Mike. "Environmental geophysics/ Grace mapping of terrestrial water storage." Preview 2019, no. 202 (September 3, 2019): 38–39. http://dx.doi.org/10.1080/14432471.2019.1671159.
Full textBalcerak, Ernie. "Predicting fire activity using terrestrial water storage data." Eos, Transactions American Geophysical Union 94, no. 21 (May 21, 2013): 196. http://dx.doi.org/10.1002/2013eo210015.
Full textChinnasamy, Pennan, and Revathi Ganapathy. "Long-term variations in water storage in Peninsular Malaysia." Journal of Hydroinformatics 20, no. 5 (November 7, 2017): 1180–90. http://dx.doi.org/10.2166/hydro.2017.043.
Full textMeng, Gaojia, Guofeng Zhu, Jiawei Liu, Kailiang Zhao, Siyu Lu, Rui Li, Dongdong Qiu, Yinying Jiao, Longhu Chen, and Niu Sun. "GRACE Data Quantify Water Storage Changes in the Shiyang River Basin, an Inland River in the Arid Zone." Remote Sensing 15, no. 13 (June 21, 2023): 3209. http://dx.doi.org/10.3390/rs15133209.
Full textHe, Yanfeng, Jinghua Xiong, Shenglian Guo, Sirui Zhong, Chuntao Yu, and Shungang Ma. "Using Multi-Source Data to Assess the Hydrologic Alteration and Extremes under a Changing Environment in the Yalong River Basin." Water 15, no. 7 (April 1, 2023): 1357. http://dx.doi.org/10.3390/w15071357.
Full textDissertations / Theses on the topic "Terrestrial Water Storage"
Rodell, Matthew. "Estimating changes in terrestrial water storage /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004367.
Full textHirschi, Martin. "Seasonal variations in terrestrial water storage : diagnosis and climate model analyses /." Zürich : ETH, 2006. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16902.
Full textChen, Yiqun. "Recovery of terrestrial water storage change from low-low satellite-to-satellite tracking." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196098152.
Full textZhang, Liangjing [Verfasser]. "Terrestrial water storage from GRACE gravity data for hydrometeorological applications / Liangjing Zhang." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1127046209/34.
Full textNajmaddin, Peshawa Mustafa. "Simulating river runoff and terrestrial water storage variability in data-scarce semi-arid catchments using remote sensing." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40771.
Full textArciniega-Esparza, Saúl, José Agustín Breña-Naranjo, and Peter A. Troch. "On the connection between terrestrial and riparian vegetation: the role of storage partitioning in water-limited catchments." WILEY-BLACKWELL, 2017. http://hdl.handle.net/10150/622781.
Full textHultin, Eriksson Elin. "Quantification of Terrestrial CO2 Sources to a Headwater Streamin a Boreal Forest Catchment." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305435.
Full textEn signifikant mängd koldioxid (CO2) är lagrad i skog och marken. Marken i barrskogsregionernaförvarar en signifikant mängd CO2 där det partiella trycket av CO2 varierar mellan ~10 000 – 50 000 ppm i jämförelse med atmosfären (400 ppm). Mättnaden av CO2 gör att mycket avdunstar tillbaka till atmosfären. Dock absorberas en del CO2 av grundvattnet; vilket resulterar i en naturlig transport av CO2 vidare till ytvattnen där det kapillära nätverket av bäckar är största recipienten. Det är fortfarande oklart hur transporten av CO2 är distribuerad i ett vattenavrinningsområde vilket medför brister i förståelsen av en viktig processväg som kan komma att spela en större roll i framtidens kolkretslopp på grund av den globala uppvärmningen. Därför är en kvantifiering av olika områdens bidrag av CO2 till bäckarna nödvändig. Två betydande zoner i ett vattenavrinningsområde som troligen bidrar olika är: the riparian zone som är närmast bäcken och består av fina sediment med hög organisk halt och, the hillslope som är resterande område och består av grovkorniga jordar med låg organisk halt. Den förstnämnda misstänks transportera mer CO2 via grundvattnet på grund av dess närhet till bäcken, höga halter av CO2 och höga vattenmättnad men detta är ännu inte verifierat. Jag evaluerar the riparian zone som en viktig källa till CO2 i ett vattenavrinningsområde genom att kvantifiera transporten av CO2 från de två zonerna. För att förklara varför transporten varierar presenterar jag en ny modell (GVR) som beräknar den månatliga fluktuationen av den del av CO2-produktionen som absorberas i grundvattnet i the riparian zone. Mätningar av data utfördes i Västrabäcken, ett mindre vattenavrinningsområde i ett större vid namn Krycklan, i norra Sverige. En transekt av tre mätstationer (i bäcken, the riparian zone och the hillslope) installerades i den förmodade grundvattenströmningsriktningen. Resultaten visar på en hög produktion av CO2 under vårfloden (maj) då en hög grundvattenyta troligen absorberar en signifikant mängd CO2. Detta kan betyda att jordrespiration under våren underskattas då dagens mätmetoder är begränsade till mätningar i jorden av CO2 ovan grundvattenytan. Fortsatta studier rekommenderas där GVR-modellen och andra mätmetoder utförs samtidigt för att vidare utröna den kvantitativa underskattningen under perioder med hög grundvattenyta (speciellt under våren). Bidraget från the riparian zone till den totala laterala transporten av CO2 till bäcken under ett år varierar mellan 58-89 % och det månatliga transportmönstret kunde förklaras med resultaten från GVR-modellen. Resultaten verifierar att oberoende av säsong så är the riparian zone den huvudsakliga laterala koltransporten från landvegetationen; medan the hillslope procentuellt bidrar med mer CO2 under höga grundvattenflöden.
Abelen, Sarah [Verfasser], Florian [Akademischer Betreuer] [Gutachter] Seitz, Wolfgang [Gutachter] Wagner, and Uwe [Gutachter] Stilla. "Signals of Weather Extremes in Soil Moisture and Terrestrial Water Storage from Multi-Sensor Earth Observations and Hydrological Modeling / Sarah Abelen. Betreuer: Florian Seitz. Gutachter: Wolfgang Wagner ; Uwe Stilla ; Florian Seitz." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1107543363/34.
Full textLin, Chin-Cheng, and 林晉丞. "Investigation of Terrestrial Water Storage Using GPS Seasonal Vertical Motion in Taiwan." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/kazzxw.
Full text國立臺灣大學
地質科學研究所
106
Global Positioning System (GPS) is widely used in studying seismic cycle deformation and plate tectonics. In Taiwan, we discover significant seasonal variation in GPS position time series and the seasonality greatly corresponds to hydrological cycle. In this study, we discuss the relation between the surface motion and seasonal water loading in southwestern Taiwan taking advantage of a dense spatial coverage of continuous GPS network. The annual GPS vertical deformation is mostly due to the elastic response to variations of surface loads in the wet and dry seasons, while some plain areas with massive water withdrawal are primary influenced by pore pressure effect. The seasonal vertical deformation on foothills is highly correlated to groundwater level, and is able to detect the occurrence of drought in the early 2010 and 2015 beforehand. We remove stations located in alluvial fan and estimate terrestrial water storage variation using a disk-load model with Green’s functions computed from an elastic earth model, PREM. We divide Taiwan into 0.2 by 0.2 grids and use seasonal GPS vertical displacements to invert the terrestrial water storage. In average, the inverted seasonal water variation is about 2 times larger in southern Taiwan compared to northern Taiwan due to heavy rainfalls during monsoons and typhoons in summer. Comparing soil moisture seasonal variation from GLDAS-Noah, GPS records integrated water storage variation including soil moisture, groundwater, reservoir etc. Consequently, GPS data from a dense array could be used as a tool to map the spatial variation of terrestrial water storage.
Book chapters on the topic "Terrestrial Water Storage"
Yi, Shuang. "Terrestrial Water Storage Changes in Asia." In Springer Theses, 65–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7353-4_5.
Full textFamiglietti, James S. "Remote sensing of terrestrial water storage, soil moisture and surface waters." In Geophysical Monograph Series, 197–207. Washington, D. C.: American Geophysical Union, 2004. http://dx.doi.org/10.1029/150gm16.
Full textAwange, J. L., E. Forootan, K. Fleming, and G. Odhiambo. "Dominant Patterns of Water Storage Changes in the Nile Basin During 2003-2013." In Remote Sensing of the Terrestrial Water Cycle, 367–81. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118872086.ch22.
Full textMilly, P. C. D. Chris, Anny Cazenave, James S. Famiglietti, Vivien Gornitz, Katia Laval, Dennis P. Lettenmaier, Dork L. Sahagian, John M. Wahr, and Clark R. Wilson. "Terrestrial Water-Storage Contributions to Sea-Level Rise and Variability." In Understanding Sea-Level Rise and Variability, 226–55. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444323276.ch8.
Full textLee, Hyongki, Hahn Chul Jung, Ting Yuan, R. Edward Beighley, and Jianbin Duan. "Controls of Terrestrial Water Storage Changes Over the Central Congo Basin Determined by Integrating PALSAR ScanSAR, Envisat Altimetry, and GRACE Data." In Remote Sensing of the Terrestrial Water Cycle, 115–29. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118872086.ch7.
Full textAndersen, O. B., P. E. Krogh, P. Bauer-Gottwein, S. Leiriao, R. Smith, and P. Berry. "Terrestrial Water Storage from GRACE and Satellite Altimetry in the Okavango Delta (Botswana)." In Gravity, Geoid and Earth Observation, 521–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_69.
Full textWu, Luzhen, Ming ShangGuan, and Xu Cheng. "Monitoring of Terrestrial Water Storage Variations and Floods in Sichuan Province Using GNSS and GRACE." In Lecture Notes in Electrical Engineering, 178–89. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2588-7_17.
Full textGirotto, Manuela, and Matthew Rodell. "Terrestrial water storage." In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment, 41–64. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814899-0.00002-x.
Full textYamamoto, K., T. Hasegawa, Y. Fukuda, M. Taniguchi, and T. Nakaegawa. "Improvement of JLG terrestrial water storage model using GRACE satellite gravity data." In From Headwaters to the Ocean, 369–74. CRC Press, 2008. http://dx.doi.org/10.1201/9780203882849.ch55.
Full textYeh, Pat J. F., Qiuhong Tang, and Hyungjun Kim. "Validation of Gravity Recovery and Climate Experiment Data for Assessment of Terrestrial Water Storage Variations." In Multiscale Hydrologic Remote Sensing, 481–506. CRC Press, 2012. http://dx.doi.org/10.1201/b11279-20.
Full textConference papers on the topic "Terrestrial Water Storage"
Cui, Aihong, Jianfeng Li, Qiming Zhou, Guofeng Wu, and Qingquan Li. "Hydrological drought measurement using GRACE terrestrial water storage anomaly." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8898939.
Full textCao, Yanping, and Zhuotong Nan. "Detecting terrestrial water storage variations in northwest China by GRACE." In SPIE Asia-Pacific Remote Sensing, edited by Thomas J. Jackson, Jing Ming Chen, Peng Gong, and Shunlin Liang. SPIE, 2014. http://dx.doi.org/10.1117/12.2067856.
Full textGao, Shuxu, Binbin He, Yuwei Guan, Kaiwei Luo, Ningning Xiao, and Xiaofang Liu. "Correlation Between Grace Terrestrial Water Storage Anomaly and TRMM Precipitation." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8517989.
Full textXie, Zunyi, Alfredo Huete, Natalia Restrepo-Coupe, Rakhesh Devadas, Kevin Davies, and Chris Waston. "Terrestrial total water storage dynamics of Australia's recent dry and wet events." In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7325935.
Full textAhmed, Mohamed, Mohamed Sultan, and Tamer M. Elbayoumi. "PROJECTING GRACE-DERIVED TERRESTRIAL WATER STORAGE (TWS) DATA OVER THE AFRICAN WATERSHEDS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286035.
Full textPengkun Xu and Wanchang Zhang. "Estimation of terrestrial water storage and ice mass changes from GRACE: A review." In 2012 7th International Conference on System of Systems Engineering (SoSE). IEEE, 2012. http://dx.doi.org/10.1109/sysose.2012.6333599.
Full textWei, Haohan, Hongbo Yan, and Xiaoyun Shi. "Global terrestrial water storage variations revealed by gravity mission and hydrologic and climate model." In International Conference on Intelligent Earth Observing and Applications, edited by Guoqing Zhou and Chuanli Kang. SPIE, 2015. http://dx.doi.org/10.1117/12.2207430.
Full textDeng, Shiyu, Mingfang Zhang, Yiping Hou, Enxu Yu, and Yali Xu. "Assessing the Temporal Dynamics of Terrestrial Water Storage in Ten Large River Basins in China." In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883975.
Full textSaini, D. "Candidate Trees for Terrestrial Carbon Storage in Regions with High Air Pollution and High Water Stress." In SPE Western Regional Meeting. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185681-ms.
Full textHaq, M. Anul, Kamal Jain, M. Shoab, and K. P. R. Menon. "Estimation of Terrestrial Water Storage change in the Bhagirathi Ganga and Vishnu Ganga basins using satellite gravimetry." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723153.
Full text