Academic literature on the topic 'Terrestrial carbon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Terrestrial carbon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Terrestrial carbon"

1

PEISKER, M., and S. A. HENDERSON. "Carbon: terrestrial C4 plants." Plant, Cell and Environment 15, no. 9 (December 1992): 987–1004. http://dx.doi.org/10.1111/j.1365-3040.1992.tb01651.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keenan, T. F., and C. A. Williams. "The Terrestrial Carbon Sink." Annual Review of Environment and Resources 43, no. 1 (October 17, 2018): 219–43. http://dx.doi.org/10.1146/annurev-environ-102017-030204.

Full text
Abstract:
Life on Earth comes in many forms, but all life-forms share a common element in carbon. It is the basic building block of biology, and by trapping radiation it also plays an important role in maintaining the Earth's atmosphere at a temperature hospitable to life. Like all matter, carbon can neither be created nor destroyed, but instead is continuously exchanged between ecosystems and the environment through a complex combination of physics and biology. In recent decades, these exchanges have led to an increased accumulation of carbon on the land surface: the terrestrial carbon sink. Over the past 10 years (2007–2016) the sink has removed an estimated 3.61 Pg C year−1from the atmosphere, which amounts to 33.7% of total anthropogenic emissions from industrial activity and land-use change. This sink constitutes a valuable ecosystem service, which has significantly slowed the rate of climate change. Here, we review current understanding of the underlying biological processes that govern the terrestrial carbon sink and their dependence on climate, atmospheric composition, and human interventions.
APA, Harvard, Vancouver, ISO, and other styles
3

Baldocchi, Dennis, Youngryel Ryu, and Trevor Keenan. "Terrestrial Carbon Cycle Variability." F1000Research 5 (September 26, 2016): 2371. http://dx.doi.org/10.12688/f1000research.8962.1.

Full text
Abstract:
A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y-1) with respect to a large and uncertain background (123 +/- 4 Pg-C y-1), and detected trends in global primary productivity are even smaller (33 Tg-C y-2). Yet residual carbon balance methods infer that the terrestrial biosphere is experiencing a significant and growing carbon sink. Possible explanations for this large and growing net land sink include roles of land use change and greening of the land, regional enhancement of photosynthesis, and down regulation of plant and soil respiration with warming temperatures. Longer time series of variables needed to provide top-down and bottom-up assessments of the carbon cycle are needed to resolve these pressing and unresolved issues regarding how, why, and at what rates gross and net carbon fluxes are changing.
APA, Harvard, Vancouver, ISO, and other styles
4

Grossman, Jesse Muir. "Carbon in Terrestrial Systems." Journal of Sustainable Forestry 25, no. 1-2 (September 14, 2007): 17–41. http://dx.doi.org/10.1300/j091v25n01_02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lalonde, K., A. V. Vähätalo, and Y. Gélinas. "Revisiting the disappearance of terrestrial dissolved organic matter in the ocean: a <i>δ</i><sup>13</sup>C study." Biogeosciences 11, no. 13 (July 15, 2014): 3707–19. http://dx.doi.org/10.5194/bg-11-3707-2014.

Full text
Abstract:
Abstract. Organic carbon (OC) depleted in 13C is a widely used tracer for terrestrial organic matter (OM) in aquatic systems. Photochemical reactions can, however, change δ13C of dissolved organic carbon (DOC) when chromophoric, aromatic-rich terrestrial OC is selectively mineralized. We assessed the robustness of the δ13C signature of DOC (δ13CDOC) as a tracer for terrestrial OM by estimating its change during the photobleaching of chromophoric DOM (CDOM) from 10 large rivers. These rivers cumulatively account for approximately one-third of the world's freshwater discharge to the global ocean. Photobleaching of CDOM by simulated solar radiation was associated with the photochemical mineralization of 16 to 43% of the DOC and, by preferentially removing compounds depleted in 13C, caused a 1 to 2.9‰ enrichment in δ13C in the residual DOC. Such solar-radiation-induced photochemical isotopic shift could bias the calculations of terrestrial OM discharge in coastal oceans towards the marine end-member. Shifts in terrestrial δ13CDOC should be taken into account when constraining the terrestrial end-member in global calculation of terrestrially derived DOM in the world ocean.
APA, Harvard, Vancouver, ISO, and other styles
6

Lalonde, K., A. V. Vähätalo, and Y. Gélinas. "Revisiting the disappearance of terrestrial dissolved organic matter in the ocean: a <i>δ</i><sup>13</sup>C study." Biogeosciences Discussions 10, no. 11 (November 1, 2013): 17117–44. http://dx.doi.org/10.5194/bgd-10-17117-2013.

Full text
Abstract:
Abstract. Organic carbon (OC) depleted in 13C is a widely used tracer for terrestrial OM in aquatic systems. Photochemical reactions can however change δ13C of dissolved organic carbon (DOC) when chromophoric, aromatic-rich terrestrial OC is selectively mineralized. We assessed the robustness of the δ13C signature of DOC (δ13CDOC) as a tracer for terrestrial OM by estimating its change during the photobleaching of chromophoric DOM (CDOM) from ten large rivers. These rivers cumulatively account for approximately 1/3 of the world's freshwater discharge to the global ocean. Photobleaching of CDOM by simulated solar radiation was associated with the photochemical mineralization of 16 to 43% of the DOC and, by preferentially removing compounds depleted in 13C, caused a 1 to 2.9‰ enrichment in δ13C in the residual DOC. Such solar radiation-induced photochemical isotopic shift biases the calculations of terrestrial OM discharge in coastal oceans towards the marine end-member. Shifts in terrestrial δ13CDOC should be taken into account when constraining the terrestrial end-member in global calculation of terrestrially derived DOM in the world ocean.
APA, Harvard, Vancouver, ISO, and other styles
7

Haverd, V., M. R. Raupach, P. R. Briggs, S. J. Davis, R. M. Law, C. P. Meyer, G. P. Peters, C. Pickett-Heaps, and B. Sherman. "The Australian terrestrial carbon budget." Biogeosciences 10, no. 2 (February 7, 2013): 851–69. http://dx.doi.org/10.5194/bg-10-851-2013.

Full text
Abstract:
Abstract. This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP); net ecosystem production (NEP); fire; land use change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012), a fine-spatial-resolution (0.05°) offline modelling environment in which predictions of CABLE (Wang et al., 2011), a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 &amp;pm; 24 (1σ error on mean) and 68 &amp;pm; 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 26 &amp;pm; 4 TgC yr−1 and 18 &amp;pm; 7 TgC yr−1, respectively. The resultant net biome production (NBP) is 36 &amp;pm; 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 &amp;pm; 6 TgC yr−1) by 38 &amp;pm; 30%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.
APA, Harvard, Vancouver, ISO, and other styles
8

Haverd, V., M. R. Raupach, P. R. Briggs, J. G. Canadell, S. J. Davis, R. M. Law, C. P. Meyer, G. P. Peters, C. Pickett-Heaps, and B. Sherman. "The Australian terrestrial carbon budget." Biogeosciences Discussions 9, no. 9 (September 12, 2012): 12259–308. http://dx.doi.org/10.5194/bgd-9-12259-2012.

Full text
Abstract:
Abstract. This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies being synthesised in RECCAP. In constructing the budget, we estimate the following component carbon fluxes: Net Primary Production (NPP); Net Ecosystem Production (NEP); fire; Land Use Change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 29 (1σ error on mean) and 68 ± 35 Tg C yr−1 respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 31 ± 5 Tg C yr−1 and 18 ± 7 Tg C yr−1 respectively. The resultant Net Biome Production (NBP) of 31 ± 35 Tg C yr−1 offset fossil fuel emissions (95 ± 6 Tg C yr−1) by 32 ± 36%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.
APA, Harvard, Vancouver, ISO, and other styles
9

Long, Steve, G. W. Koch, and H. A. Mooney. "Carbon Dioxide and Terrestrial Ecosystems." Journal of Applied Ecology 34, no. 2 (April 1997): 543. http://dx.doi.org/10.2307/2404900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tranvik, L. J., and M. Jansson. "Terrestrial export of organic carbon." Nature 415, no. 6874 (February 2002): 861–62. http://dx.doi.org/10.1038/415861b.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Terrestrial carbon"

1

Malik, Abdulrahman Ibn. "Terrestrial carbon in Wales." Thesis, Bangor University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glanville, Helen C. "Carbon dynamics in terrestrial ecosystems." Thesis, Bangor University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589388.

Full text
Abstract:
The objective of this thesis was to better understand the mechanistic control of carbon (C) cycling in two terrestrial ecosystems (agricultural grasslands and Arctic tundra), with an aim to identify the contribution of microbial respiration to below-ground C cycling. Firstly, I evaluated different techniques for measuring CO2 evolution from soil. I found that different in-situ chamber-based CO2 gas analyzers gave comparable results across contrasting ecosystems. However, the addition of collars to the CO2 chamber induces variable flux estimates due to the disturbance created upon collar insertion, severing root and mycorrhizal networks. In subsequent studies, I showed that microbial breakdown of individual dissolved organic C (DOC) components demonstrated good reproducibility when performed under either in-situ and ex-situ conditions. After validating the experimental techniques, they were then used to study C turnover in two plant-soil systems. In Arctic tundra, soil temperature was identified as the key driver initiating microbial and vegetation response to snow melt, thereby driving early season CO2 efflux. However, as the growing season progressed, soil water content was hypothesized to become a more important regulator of C turnover with older C compounds becoming more susceptible to decomposition as soil water content increases. In a grassland soil I found that soil microbial community composition does not correlate with increased rates of mineralization across a wide pH gradient. This suggests that abiotic drivers of respiration may directly influence microbial metabolic processes independent of community structure. Further research involving advanced molecular techniques (metabolomics, proteomics, transcriptomics) will help disseminate how metabolic processes are being influenced by different respiration drivers. The application of mathematical models to respiration data provides a more quantitative and mechanistic understanding of processes involved in soil C cycling. I found the fitting of exponential models to respiration data is a reliable proxy for describing substrate mineralization; however, the correct choice of model is critically dependent on the number of measurement points and length of experiment. The modelling approach was subsequently used to quantify the turnover of functional microbial C pools. By combining modelling with experimental measures of soil solution C concentration, we estimated that the microbial contribution to total soil respiration is ea. 18%. This research provides a more detailed understanding of how C constituents are processed by the microbial decomposer community to drive soil respiration. This is crucial to accurately model global terrestrial C fluxes in different ecosystems and to predict how these fluxes are likely to respond to future changes from both natural (e.g. climate change) and anthropogenic (e.g. land-use change) sources.
APA, Harvard, Vancouver, ISO, and other styles
3

Ek, Ella. "Precipitation variability modulates the terrestrial carbon cycle in Scandinavia." Thesis, Uppsala universitet, Luft-, vatten- och landskapslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445453.

Full text
Abstract:
Climate variability and the carbon cycle (C-cycle) are tied together in complex feedback loops and due to these complexities there are still knowledge-gaps of this coupling. However, to make accurate predictions of future climate, profound understanding of the C-cycle and climate variability is essential. To gain more knowledge of climate variability, the study aims to identify recurring spatial patterns of the variability of precipitation anomalies over Scandinavia during spring and summer respectively between 1981 to 2014. These patterns will be related to the C-cycle through changes in summer vegetation greenness, measured as normalized difference vegetation index (NDVI). Finally, the correlation between the patterns of precipitation variability in summer and the teleconnection patterns over the North Atlantic will be investigated. The precipitation data was obtained from ERA5 from the European Centre for Medium-Range Weather Forecasts and the patterns of variability were found through empirical orthogonal function (EOF) analysis. The first three EOFs of the spring and the summer precipitation anomalies together explained 73.5 % and 65.5 % of the variance respectively. The patterns of precipitation variability bore apparent similarities when comparing the spring and summer patterns and the Scandes were identified to be important for the precipitation variability in Scandinavia during both seasons. Anomalous events of the spring EOFs indicated that spring precipitation variability had little impact on anomalies of summer NDVI. Contradictory, summer precipitation variability seemed to impact anomalies of summer NDVI in central- and northeastern Scandinavia, thus indicating that summer precipitation variability modulates some of the terrestrial C-cycle in these regions. Correlations were found between a large part of the summer precipitation variability and the Summer North Atlantic Oscillation and the East Atlantic pattern. Hence, there is a possibility these teleconnections have some impact, through the summer precipitation variability, on the terrestrial C-cycle.
Förändringar och variation i klimatet är sammankopplade med kolcykeln genom komplexa återkopplingsmekanismer. På grund av denna komplexitet är kunskapen om kopplingen mellan klimatvariation och kolcykeln fortfarande bristande, men för att möjliggöra precisa prognoser om framtida klimat är det viktigt att ha kunskap om denna koppling. För att få mer kunskap om klimatvariation syftar därför denna studie till att identifiera återkommande strukturer av nederbördsvariation över Skandinavien under vår respektive sommar från 1981 till 2014. Dessa relateras till förändringar i sommarväxtlighetens grönhet, uppmätt som skillnaden i normaliserat vegetationsindex (NDVI). Även korrelationen mellan sommarstrukturerna av nederbördsvariationen och storskaliga atmosfäriska svängningar, s.k. "teleconnections", över Nordatlanten undersöks. Nederbördsdatan erhölls från ERA5 analysdata från Europacentret för Medellånga Väderprognoser och strukturer av nederbördsvariationen identifierades genom empirisk ortogonal funktionsanalys (EOF) av nederbördsavvikelser. De tre första EOF av vår- respektive sommarnederbördsavvikelser förklarade tillsammans 73,5 % respektive 65,5 % av nederbördsvariationen. Strukturerna av nederbördsvariation under vår respektive sommar uppvisade tydliga likheter sinsemellan. Dessutom identifierades Skanderna vara av stor vikt för nederbördsvariationen i Skandinavien under båda årstider. Avvikande år av nederbördsvariation under våren indikerade att sagda nederbördsvariation haft liten påverkan på NDVI-avvikelser under sommaren. Emellertid verkade nederbördsvariationen under sommaren påverkat NDVI-avvikelser under sommaren i centrala och nordöstra Skandinavien. Detta indikerar att nederbördsvariationen under sommaren till viss del styr den terrestra kolcykeln i dessa regioner. För nederbördsvariationen under sommaren fanns korrelation mellan både Nordatlantiska sommaroscillationen och Östatlantiska svängningen. Det finns således en möjlighet att dessa "teleconnections" har en viss påverkan på den terrestra kolcykeln genom nederbördsvariationen under sommaren.
APA, Harvard, Vancouver, ISO, and other styles
4

Hemingway, Jordon Dennis. "Understanding terrestrial organic carbon export : a time-series approach." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109054.

Full text
Abstract:
Thesis: Ph. D., Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 169-190).
Terrestrial organic carbon (OC) erosion, remineralization, transport through river networks, and burial in marine sediments is a major pathway of the global carbon cycle. However, our ability to constrain these processes and fluxes is largely limited by (i) analytical capability and (ii) temporal sampling resolution. To address issue (i), here I discuss methodological advancements and data analysis techniques for the Ramped PyrOx serial oxidation isotope method developed at WHOI. Ramped-temperature pyrolysis/oxidation coupled with the stable carbon (¹²C, ¹³C) and radiocarbon (¹⁴C) analysis of evolved CO₂ is a promising tool for understanding and separating complex OC mixtures. To quantitatively investigate distributions of OC source, reservoir age, and chemical structure contained within a single sample, I developed a kinetic model linking RPO-derived activation energy, ¹³C composition, and radiocarbon content. This tool provides a novel method to fundamentally address the unknown relationship between OC remineralization rates and chemical structure in various environmental settings. To address issue (ii), I additionally present results from time-series sample sets collected on two end-member systems: the Congo River (Central Africa) and the LiWu River (Taiwan). For the Congo River, bulk and plant-wax-lipid ¹³C compositions indicate that a majority of particulate OC is consistently derived from downstream, C₃-dominated rainforest ecosystems. Furthermore, bulk radiocarbon content and microbial lipid molecular distributions are strongly correlated with discharge, suggesting that pre-aged, swamp-forest-derived soils are preferentially exported when northern hemisphere discharge is highest. Combined, these results provide insight into the relationship between hydrological processes and fluvial carbon export. Lastly, I examined the processes controlling carbon source and flux in a set of soils and time-series fluvial sediments from the LiWu River catchment located in Taiwan. A comparison between bedrock and soil OC content reveals that soils can contain significantly less carbon than the underlying bedrock, suggesting that this material is remineralized to CO₂ prior to soil formation. Both the presence of bacterial lipids and a shift toward lower activation energy of ¹⁴C-free OC contained in soil saprolite layers indicate that this process is microbially mediated and that microbial respiration of rock-derived OC likely represents a larger geochemical flux than previously thought. The results presented in this thesis therefore provide novel insight into the role of rivers in the global carbon cycle as well as their response to environmental perturbations.
by Jordon Dennis Hemingway
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Krakauer, Nir Yitzhak Schneider Tapio. "Characterizing carbon-dioxide fluxes from oceans and terrestrial ecosystems /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05262006-111949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Benktesh D. "Modeling of forest harvest scheduling and terrestrial carbon sequestration." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/10900.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2010.
Title from document title page. Document formatted into pages; contains xi, 160 p. : ill. (some col.), col. map. Vita. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Dan. "Modeling terrestrial carbon cycle during the Last Glacial Maximum." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV077.

Full text
Abstract:
Pendant les transitions glaciaire-interglaciaires,on observe une augmentation en partie abrupte de près de 100 ppm du CO2atmosphérique, indiquant une redistribution majeure entre les réservoirs de carbone des continents, de l'océan et de l'atmosphère.Expliquer les flux de carbone associés à ces transitions est un défi scientifique, qui nécessite une meilleure compréhension du stock de carbone ‘initial’ dans la biosphère terrestre au cours de la période glaciaire. L’objectif de cette thèse est d’améliorer la compréhension du fonctionnement des écosystèmes terrestres et des stocks de carbone au cours du dernier maximum glaciaire (LGM, il y a environ21.000 ans), à travers plusieurs nouveaux développements dans le modèle global de végétation ORCHIDEE-MICT, pour améliorer la représentation de la dynamique de la végétation, la dynamique du carbone dans le sol du pergélisol et les interactions entre les grands herbivores et la végétation dans le modèle de la surface terrestre.Pour la première partie, la représentation de la dynamique de la végétation dans ORCHIDEEMICT pour les régions des moyennes et hautes latitudes, a été calibrée et évaluée avec un ensemble de données spatiales de classes de végétation, production primaire brute, et de biomasse forestière pour la période actuelle.Des améliorations sont obtenues avec la nouvelle version du modèle dans la distribution des groupes fonctionnels de végétation. Ce modèle a ensuite été appliqué pour simuler la distribution de la végétation au cours de laLGM, montrant un accord général avec les reconstructions ponctuelles basées sur des données de pollen et de macro-fossiles de plantes.Une partie du pergélisol (sols gelés en permanence) contient des sédiments épais,riches en glace et en matières organiques appelés Yedoma, qui contiennent de grandes quantités de carbone organique, et sont des reliques des stocks de carbone du Pléistocène.Ces sédiments ont été accumulés sous des climats glaciaires. Afin de simuler l'accumulation du carbone dans les dépôts de Yedoma, j’ai proposé une nouvelle paramétrisation de la sédimentation verticale dans le module de carbone dans le sol de ORCHIDEE-MICT. L'inclusion de ce processus a permis de reproduire la distribution verticale de carbone observée sur des sites de Yedoma. Une première estimation du stock de carbone dans le pergélisol au cours du LGM est obtenue, de l’ordre de ~ 1550 PgC, dont 390 ~446 PgC sous forme de Yedoma encore intacts aujourd’hui (1,3 millions de km2).Potentiellement, une plus grande surface de Yedoma pourrait être présente pendant leLGM, qui a disparue lors de la déglaciation.Pour la troisième partie, à la lumière des impacts écologiques des grands animaux, et le rôle potentiel des méga-herbivores comme une force qui a maintenu les écosystèmes steppiques pendant les périodes glaciaires, j'ai incorporé un modèle de d’herbivores dans ORCHIDEE-MICT, basé sur des équations physiologiques pour l'apport énergétique et les dépenses, le taux de natalité, et le taux de mortalité pour les grands herbivores sauvages.Le modèle a montré des résultats raisonnables de biomasse des grands herbivores en comparaison avec des observations disponibles aujourd’hui sur des réserves naturelles. Nous avons simulé un biome de prairies très étendu pendant le LGM avec une densité importante de grands herbivores. Les effets des grands herbivores sur la végétation et le cycle du carbone du LGM ont été discutés, y compris la réduction de la couverture forestière, et la plus grande productivité des prairies.Enfin, j’ai réalisé une estimation préliminaire du stock total de carbone dans le permafrost pendant le LGM, après avoir tenu compte des effets des grands herbivores et en faisant une extrapolation de l'étendue spatiale des sédiments de type Yedoma basée sur des analogues climatiques et topographiques qui sont similaires à la région de Yedoma actuelle
During the repeated glacialinterglacialtransitions, there has been aconsistent and partly abrupt increase of nearly100 ppm in atmospheric CO2, indicating majorredistributions among the carbon reservoirs ofland, ocean and atmosphere. A comprehensiveexplanation of the carbon fluxes associatedwith the transitions is still missing, requiring abetter understanding of the potential carbonstock in terrestrial biosphere during the glacialperiod. In this thesis, I aimed to improve theunderstanding of terrestrial carbon stocks andcarbon cycle during the Last Glacial Maximum(LGM, about 21,000 years ago), through aseries of model developments to improve therepresentation of vegetation dynamics,permafrost soil carbon dynamics, andinteractions between large herbivores andvegetation in the ORCHIDEE-MICT landsurface model.For the first part, I improved theparameterization of vegetation dynamics inORCHIDEE-MICT for the northern mid- tohigh-latitude regions, which was evaluatedagainst present-day observation-based datasetsof land cover, gross primary production, andforest biomass. Significant improvements wereshown for the new model version in thedistribution of plant functional types (PFTs),including a more realistic simulation of thenorthern tree limit and of the distribution ofevergreen and deciduous conifers in the borealzone. The revised model was then applied tosimulate vegetation distribution during theLGM, showing a general agreement with thepoint-scale reconstructions based on pollen andplant macrofossil data.Among permafrost (perennially frozen) soils,the thick, ice-rich and organic-rich siltysediments called yedoma deposits hold largequantities of organic carbon, which areremnants of late-Pleistocene carbonaccumulated under glacial climates. In order tosimulate the buildup of the thick frozen carbonin yedoma deposits, I implemented asedimentation parameterization in the soilcarbon module of ORCHIDEE-MICT. Theinclusion of sedimentation allowed the modelto reproduce the vertical distribution of carbonobserved at the yedoma sites, leading toseveral-fold increase in total carbon. Simulatedpermafrost soil carbon stock during the LGMwas ~1550 PgC, among which 390~446 PgCwithin today’s known yedoma region (1.3million km2). This result was still anunderestimation since the potentially largerarea of yedoma during the LGM than todaywas not yet taken into account.For the third part, in light of the growingevidence on the ecological impacts of largeanimals, and the potential role of megaherbivoresas a driving force that maintainedthe steppe ecosystems during the glacialperiods, I incorporated a dynamic grazingmodel in ORCHIDEE-MICT, based onphysiological equations for energy intake andexpenditure, reproduction rate, and mortalityrate for wild large grazers. The model showedreasonable results of today’s grazer biomasscompared to empirical data in protected areas,and was able to produce an extensive biomewith a dominant vegetation of grass and asubstantial distribution of large grazers duringthe LGM. The effects of large grazers onvegetation and carbon cycle were discussed,including reducing tree cover, enhancinggrassland productivity, and increasing theturnover rate of vegetation living biomass.Lastly, I presented a preliminary estimation ofpotential LGM permafrost carbon stock, afteraccounting for the effects of large grazers, aswell as extrapolations for the spatial extent ofyedoma-like thick sediments based on climaticand topographic features that are similar to theknown yedoma region. Since these results werederived under LGM climate and constantsedimentation rate, a more realistic simulationwould need to consider transient climate duringthe last glacial period and sedimentation ratevariations in the next step
APA, Harvard, Vancouver, ISO, and other styles
8

Wright, Alison Jane. "Raman spectroscopy of terrestrial analogues for ureilite formation." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=130931.

Full text
Abstract:
This study used Raman spectral analysis to characterise the structural order of carbon in three carbonaceous chondrites and twelve achondrites. The achondrites analysed were a group of carbon-rich meteorites, known as ureilites. These meteorites are composed primarily of olivine and pyroxene and have igneous textures but contain noble gases and primitive oxygen isotopes which appear to contradict their high temperature origin, which has led to the group being described as “enigmatic” by some authors. This study used Raman spectral analysis to show that ureilite carbon is heterogeneous, even at the micrometer scale, and is derived from more than one source. In order to better understand the processes involved in ureilite formation, terrestrial analogues containing carbonaceous material with similar spectral characteristics to the meteorites were identified. Analysis of terrestrial samples showed that the sedimentary carbon can be incorporated into igneous rocks with little structural change, suggesting that the same may be true for carbonaceous material in ureilites. Although the terrestrial carbon is biogenic in origin, it is structurally similar to pre-biotic organic matter found in meteorites. Carbon can be used as an effective tracer for geological events, such as melting and heating, which appear to be ubiquitous in planetary evolution. This study concluded that carbon is a primary component of melts on the ureilite parent body (UPB) and that impact processes have increased the heterogeneity of ureilite carbonaceous material. Carbon is likely to have been remobilised by later impact events, explaining the lack of correlation between carbon content and isotopic values with other geochemical parameters. Spectral analysis suggested that most of the carbon in ureilites is derived from primitive material.
APA, Harvard, Vancouver, ISO, and other styles
9

Borgelt, Jan. "Terrestrial respiration across tundra vegetation types." Thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-132765.

Full text
Abstract:
Large amounts of carbon (C) are stored in tundra soils. Global warming may turn tundra ecosystems from C sinks into sources or vice versa, depending on the balance between gross primary production (GPP), ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). We aimed to quantify the summer season C balance of a 27 km2 tundra landscape in subarctic Sweden. We measured CO2 fluxes in 37 widely distributed plots across five tundra vegetation types and in 7 additional bare soil plots, to assess effects of abiotic and biotic components on C exchange. C fluxes in bare soils were low and differed to all vegetation types. Thus, accounting for differences between bare soils and vegetated parts is crucial for upscaling a C balance using a landcover classification map. In addition, we found that both NEE and ER, varied within and across different tundra vegetation types. The C balance model for the growing season 2016 revealed a net C loss to the atmosphere. Most vegetation types acted as CO2 sources, with highest source strength in dense shrub vegetation at low elevations. The only considerable C sinks were graminoid-dominated upland meadows. In addition, we found a shift in C balance between different heath vegetation types, ranging from C source in dense deciduous shrub vegetation (Mesic Heath and Dry Heath) to C sink in low growing shrub vegetation (Extremely Dry Heath). These results highlight the importance to account for differences between vegetation types when modelling C fluxes from plot to landscape level.
APA, Harvard, Vancouver, ISO, and other styles
10

Boysen, Lena. "Potentials, consequences and trade-offs of terrestrial carbon dioxide removal." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17737.

Full text
Abstract:
Die globalen Mitteltemperaturen könnten bis 2100 um 2◦C bis 4.5◦C über vorindustriellem Wert steigen sollten CO2 Emissionen nicht oder nur unzureichend gesenkt werden. Klima-Engineering befasst sich deshalb mit der gezielten Abkühlung des Klimas, z.B. durch terrestrischen Kohlendioxidentzugs (tCDR). Insbesondere wird der Anbau von großflächigen Biomasseplantagen (BP) in Kombination mit der Erstellung von langlebigen Kohlenstoffprodukten wie Bioenergie oder Biokohle in Betracht gezogen. Die vorliegende Doktorarbeit untersucht die tCDR Potentiale und möglichen Konsequenzen von BP auf Nahrungsmittelproduktion, Ökosysteme und das Klima selbst mit Hilfe der Analyse von Landnutzungszenarien simuliert mit einem Biosphärenmodell. Insgesamt wird das tCDR Potential von BP als gering befunden, unabhängig vom Emissionsszenario und ab wann oder wie flächendeckend BP angebaut werden. Demgegenüber stehen meist die zuvor genannten, ungewünschten Konsequenzen. In einem Szenario mit hohen CO2 Konzentrationen kann selbst unbeschränkte Landverfügbarkeit für tCDR die bisherigen Emissionen nicht ausgleichen. Anders jedoch, wenn gleichzeitig Emissionen eingespart. In beiden Fällen führen diese Landumwandlungen jedoch zu sehr hohen “Kosten” für Ökosysteme und die Nahrungsmittelproduktion. Um deren Schutz zu gewährleisten kann die Landverfügbarkeit für tCDR beschränkt werden, was jedoch die tCDR Potentiale trotz baldiger Etablierung sehr einschränkt. Auch die Potentiale des RCP2.6 bleiben deutlich unter den Anforderungen. Das Potential könnte jedoch durch Erhöhung der Umwandlungseffizienzen von Biomasse, neuen Managementoptionen oder der Aufwertung degradierter Flächen durch BP erhöht werden. Diese Doktorarbeit kann abschließend nicht die Annahme unterstützen, dass tCDR eine effektive und umweltfreundliche Methode der Kohlenstoffsequestrierung, und damit eine Ersetzung von strengen Mitigationspfaden, sein könnte.
Global mean temperatures could change by 2◦C to 4.5◦C above pre-industrial levels until 2100 if mitigation enforcement of CO2 emissions fails. To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth’s climate for example through terrestrial carbon dioxide removal (tCDR). Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. Synthesised, the potential of tCDR to permanently extract CO2 out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario even unlimited area availability for tCDR could not reverse past emissions sufficiently. However, simultaneous emission reductions could result in strong carbon extractions reversing past emissions. In both cases, land transformation for tCDR leads to high “costs” for ecosystems and food production. Restricting the available land for BPs by these trade-off constraints leaves very small tCDR despite a near-future onset. Similarly, simulated tCDR potentials on dedicated BP areas defined in the RCP2.6 scenario stay below the aimed values using current management practices. Some potential may lie the reduction of carbon losses from field to end-products, new management options and the restoration of degraded soils with BPs. This thesis contradicts the assumption that tCDR could be an effective and environmentally friendly way of complementing or substituting strong and rapid mitigation efforts.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Terrestrial carbon"

1

Wisniewski, Joe, and R. Neil Sampson, eds. Terrestrial Biospheric Carbon Fluxes:. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

W, Koch George, and Mooney Harold A, eds. Carbon dioxide and terrestrial ecosystems. San Diego: Academic Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

National Energy Technology Laboratory (U.S.), ed. Terrestrial sequestration of carbon dioxide. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nieder, R., and D. K. Benbi. Carbon and Nitrogen in the Terrestrial Environment. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8433-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghosh, Probir K., Sanat Kumar Mahanta, Debashis Mandal, Biswapati Mandal, and Srinivasan Ramakrishnan, eds. Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9628-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nowakowski, Sonja. Carbon sequestration study: An analysis of geological and terrestrial carbon sequestration regulatory and policy issues : a report to the 61st Legislature. Helena, MT: Legislative Services Division, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lorenz, Klaus, and Rattan Lal. Soil Organic Carbon Sequestration in Terrestrial Biomes of the United States. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95193-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tosi, Joseph A. An ecological model for the prediction of carbon offsets by terrestrial biota. San José, Costa Rica: Tropical Science Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sherman, Geoffrey Guy. Carbon sequestration in the developing terrestrial ecosystem on the remediated Sudbury barrens. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Copp, Robert D. Direct and indirect human contributions to terrestrial carbon fluxes: A workshop summary. Washington, D.C: National Academies Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Terrestrial carbon"

1

Robert, Yves, Sameer Shende, Allen D. Malony, Alan Morris, Wyatt Spear, Scott Biersdorff, Burton Smith, et al. "Terrestrial Ecosystem Carbon Modeling." In Encyclopedia of Parallel Computing, 2034–39. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carter, Martin R., and David O. Hall. "In Terrestrial Ecosystems." In Carbon Sequestration in the Biosphere, 227–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79943-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chapin, F. Stuart, Pamela A. Matson, and Peter M. Vitousek. "Plant Carbon Budgets." In Principles of Terrestrial Ecosystem Ecology, 157–81. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9504-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sampson, R. Neil, Michael Apps, Sandra Brown, C. Vernon Cole, John Downing, Linda S. Heath, Dennis S. Ojima, Thomas M. Smith, Allen M. Solomon, and Joe Wisniewski. "Workshop Summary Statement: Terrestrial Bioshperic Carbon Fluxes Quantification of Sinks and Sources of CO2." In Terrestrial Biospheric Carbon Fluxes:, 3–15. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kurz, Werner A., and Michael J. Apps. "Contribution of Northern Forests to the Global C Cycle: Canada as a Case Study." In Terrestrial Biospheric Carbon Fluxes:, 163–76. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nilsson, Lars Owe. "Carbon Sequestration in Norway Spruce in South Sweden as Influenced by Air Pollution, Water Availability, and Fertilization." In Terrestrial Biospheric Carbon Fluxes:, 177–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kauppi, P. E., and E. Tomppo. "Impact of Forests on Net National Emissions of Carbon Dioxide in West Europe." In Terrestrial Biospheric Carbon Fluxes:, 187–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simpson, Lloyd G., Daniel B. Botkin, and Robert A. Nisbet. "The Potential Aboveground Carbon Storage of North American Forests." In Terrestrial Biospheric Carbon Fluxes:, 197–205. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kolchugina, Tatyana P., and Ted S. Vinson. "Comparison of Two Methods to Assess the Carbon Budget of Forest Biomes in the Former Soviet Union." In Terrestrial Biospheric Carbon Fluxes:, 207–21. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vinson, Ted S., and Tatyana P. Kolchugina. "Pools and Fluxes of Biogenic Carbon in the Former Soviet Union." In Terrestrial Biospheric Carbon Fluxes:, 223–37. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Terrestrial carbon"

1

Kadik, A. A. "Formation of carbon species in terrestrial magmas." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hou, Ning, Ying Zhang, Si-qiao Zhu, and Xue-qun Zhu. "Review on Carbon Cycle of Terrestrial Ecosystem." In 2009 International Symposium on Information Science and Engineering (ISISE). IEEE, 2009. http://dx.doi.org/10.1109/isise.2009.131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tulokhonova, I. S., and V. A. Titov. "NEURAL NETWORK MODEL OF CARBON BALANCE TERRESTRIAL ECOSYSTEM." In ПРОБЛЕМЫ МЕХАНИКИ СОВРЕМЕННЫХ МАШИН. Улан-Удэ: Восточно-Сибирский государственный университет технологий и управления, 2022. http://dx.doi.org/10.53980/9785907599055_633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cremers, David, Mike Ebinger, Monty J. Ferris, David Breshears, and Pat J. Unkefer. "Use of LIBS to determine carbon in soil for terrestrial carbon sequestration programs." In Laser Induced Plasma Spectroscopy and Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/libs.2002.the18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galy, Valier, Timothy Eglinton, Jordon Hemingway, and Xiaojuan Feng. "Basin-Scale Climate Control on Terrestrial Biospheric Carbon Turnover." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qu Jun-feng, Zhang Shao-liang, Ju Jim, and Li Gang. "Coal mining effects on the characteristics of terrestrial carbon." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaminski, T., M. Scholze, W. Knorr, M. Vossbeck, M. Wu, P. Ferrazzoli, Y. Kerr, et al. "Constraining Terrestrial Carbon Fluxes Through Assimilation of SMOS Products." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Plummer, Stephen, Olivier Arino, Franck Ranera, Kevin Tansey, Jing Chen, Gerard Dedieu, Hugh Eva, et al. "The GLOBCARBON initiative global biophysical products for terrestrial carbon studies." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4423327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smittenberg, Rienk, Valier Galy, Timothy Eglinton, Merle Gierga, Axel Birkholz, Irka Hajdas, Lukas Wacker, et al. "Terrestrial carbon dynamics through time - insights from downcore radiocarbon dating." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Junbang, Zheng Niu, Binmin Hu, and Changyao Wang. "Remote sensing application in the carbon flux modelling of terrestrial ecosystem." In Remote Sensing, edited by Manfred Owe, Guido D'Urso, Jose F. Moreno, and Alfonso Calera. SPIE, 2004. http://dx.doi.org/10.1117/12.524332.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Terrestrial carbon"

1

Cihlar, J., A. S. Denning, and J. Gosz. Global Terrestrial Carbon Observation: Requirements, Present Status, and Next Steps. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cihlar, J., S. Denning, and J. Tschirley. Terrestrial Carbon Observation Initiative: an integrated satellite - in situ strategy. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/219784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kolka, R., C. Trettin, W. Tang, K. Krauss, S. Bansal, J. Drexler, K. Wickland, et al. Chapter 13: Terrestrial Wetlands. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leclerc, Monique Y. A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1176910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dai, Zhaohua, Carl, C. Trettin, and Bernard, R. Parresol. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1032504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gary Kronrad. Enhancement of Terrestrial Carbon Sinks throught the Reclamation of Abandoned Mined Lands. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/909176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gary Kronrad. Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/881796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gary Kronrad. Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/881859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gary Kronrad. Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/881864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gary Kronrad. Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/881907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography