Journal articles on the topic 'Terminal chalcogenides'

To see the other types of publications on this topic, follow the link: Terminal chalcogenides.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 42 journal articles for your research on the topic 'Terminal chalcogenides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Volkov, Pavel A., Anton A. Telezhkin, Kseniya O. Khrapova, Nina I. Ivanova, Alexander I. Albanov, Nina K. Gusarova, and Boris A. Trofimov. "Metal-free SHN cross-coupling of pyridines with phosphine chalcogenides: polarization/deprotonation/oxidation effects of electron-deficient acetylenes." New Journal of Chemistry 45, no. 14 (2021): 6206–19. http://dx.doi.org/10.1039/d1nj00245g.

Full text
Abstract:
Terminal acylacetylenes act as trimodal auxiliaries in SHN cross-coupling of pyridines with phosphine chalcogenides. The reaction proceeds via phosphorylation of the pyridine 2 position followed by 2 → 4-migration of phosphoryl moieties.
APA, Harvard, Vancouver, ISO, and other styles
2

Vrána, Jan, Roman Jambor, Aleš Růžička, Antonín Lyčka, Frank De Proft, and Libor Dostál. "N→As intramolecularly coordinated organoarsenic(III) chalcogenides: Isolation of terminal As–S and As–Se bonds." Journal of Organometallic Chemistry 723 (January 2013): 10–14. http://dx.doi.org/10.1016/j.jorganchem.2012.10.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, Jessie L., Skye Fortier, Richard A. Lewis, Guang Wu, and Trevor W. Hayton. "A Complete Family of Terminal Uranium Chalcogenides, [U(E)(N{SiMe3}2)3]−(E = O, S, Se, Te)." Journal of the American Chemical Society 134, no. 37 (September 6, 2012): 15468–75. http://dx.doi.org/10.1021/ja305712m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerlach, Christopher P., Victor Christou, and John Arnold. "Synthesis and Reactivity of Group 4 Homoleptic Selenolates and Tellurolates: Lewis Base Induced Conversion to Terminal and Bridging Chalcogenides." Inorganic Chemistry 35, no. 10 (January 1996): 2758–66. http://dx.doi.org/10.1021/ic9600689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Christou, Victor, and John Arnold. "Formation of Monomeric Terminal Chalcogenides by Template-Induced Disilylchalcogenide Elimination; the Crystal Structures of [ETa{(Me3SiNCH2CH2)3N}] (E ? Se, Te)." Angewandte Chemie International Edition in English 32, no. 10 (October 1993): 1450–52. http://dx.doi.org/10.1002/anie.199314501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Godoi, Marcelo, Daiane G. Liz, Eduardo W. Ricardo, Manuela S. T. Rocha, Juliano B. Azeredo, and Antonio L. Braga. "Magnetite (Fe3O4) nanoparticles: an efficient and recoverable catalyst for the synthesis of alkynyl chalcogenides (selenides and tellurides) from terminal acetylenes and diorganyl dichalcogenides." Tetrahedron 70, no. 20 (May 2014): 3349–54. http://dx.doi.org/10.1016/j.tet.2013.09.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Godoi, Marcelo, Daiane G. Liz, Eduardo W. Ricardo, Manuela S. T. Rocha, Juliano B. Azeredo, and Antonio L. Braga. "ChemInform Abstract: Magnetite (Fe3O4) Nanoparticles: An Efficient and Recoverable Catalyst for the Synthesis of Alkynyl Chalcogenides (Selenides and Tellurides) from Terminal Acetylenes and Diorganyl Dichalcogenides." ChemInform 45, no. 39 (September 11, 2014): no. http://dx.doi.org/10.1002/chin.201439213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohammadi, Elmira, and Barahman Movassagh. "Cryptand-22 as an efficient ligand for the copper-catalyzed cross-coupling reaction of diorgano dichalcogenides with terminal alkynes leading to the synthesis of alkynyl chalcogenides." Tetrahedron Letters 55, no. 9 (February 2014): 1613–15. http://dx.doi.org/10.1016/j.tetlet.2014.01.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saenz, Gustavo A., Carlos de Anda Orea, and Anupama B. Kaul. "Single and Few-Layer MoS2: CVD Synthesis, Transference, and Photodetection Application." MRS Advances 2, no. 60 (2017): 3709–14. http://dx.doi.org/10.1557/adv.2017.396.

Full text
Abstract:
ABSTRACTTwo-dimensional layered materials, materials with weak out-of-plane van der Waals bonding and strong in-plane covalent bonding, have attracted special attention in recent years since the isolation and characterization of monolayer graphite, the graphene. The electrical bandgap in Transition Metal Di-Chalcogenides (TMDCs), non-existent in graphene, make them a good alternative family of materials for novel electronic and optoelectronic applications. 2H- MoS2, one of the most stable TMDCs, has been extensively studied, including the synthesis methods, and its potential applications in photodetection. The chemical vapor deposition (CVD) synthesis method has increased its potential over the years. The advantages of this method are scalability compared to micromechanical exfoliation, common process used in research laboratories, and the maintenance of the quality and intrinsic properties of the material compared to the liquid exfoliation methods. In this work, we synthesized high quality pristine 2H-MoS2 via atmospheric pressure chemical vapor deposition (APCVD) by vapor phase reaction of MoO3 and S powder precursors. The samples were characterized via Raman and photoluminescence (PL) spectroscopy and compared to mechanically exfoliated MoS2 crystal by measuring the full-width half maxima (FWHM) of monolayer and few-layer mesoscopic flakes. In addition, the CVD synthesized single and few-layered MoS2 domains were transferred to different substrates using a high yield process, including a flexible substrate, preserving the quality of the material. Finally, and mechanically exfoliated MoS2 two-terminal photodetector was designed, fabricated, and measured. Demonstrating thus the capability of heterostructure fabrication and the quality of our synthesis and device fabrication process.
APA, Harvard, Vancouver, ISO, and other styles
10

Mohammadi, Elmira, and Barahman Movassagh. "ChemInform Abstract: Cryptand-22 as an Efficient Ligand for the Copper-Catalyzed Cross-Coupling Reaction of Diorgano Dichalcogenides with Terminal Alkynes Leading to the Synthesis of Alkynyl Chalcogenides." ChemInform 45, no. 31 (July 17, 2014): no. http://dx.doi.org/10.1002/chin.201431193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Piers, Warren E., Tom Ziegler, Jason M. Fischer, Leonard R. Macgillivray, and Michael J. Zaworotko. "Permethyltitanocene Derivatives with Naked Chalcogen Ligands: Synthesis of [(Cp*2Ti)2(μ-E)] and [Cp*2Ti(μ2-E2)] and the Role of the Terminal Chalcogenides [Cp*2Ti(E)] in Their Interconversion (E = Se, Te)." Chemistry - A European Journal 2, no. 10 (October 1996): 1221–29. http://dx.doi.org/10.1002/chem.19960021007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rosenzweig, Michael W., Julian Hümmer, Andreas Scheurer, Carlos Alvarez Lamsfus, Frank W. Heinemann, Laurent Maron, Marinella Mazzanti, and Karsten Meyer. "A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te." Dalton Transactions 48, no. 29 (2019): 10853–64. http://dx.doi.org/10.1039/c9dt00530g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Savina, Iulia V., Anton A. Ivanov, Darya V. Evtushok, Yakov M. Gayfulin, Andrey Y. Komarovskikh, Mikhail M. Syrokvashin, Mariia N. Ivanova, et al. "Unusual Square Pyramidal Chalcogenide Mo5 Cluster with Bridging Pyrazolate-Ligands." International Journal of Molecular Sciences 24, no. 4 (February 8, 2023): 3440. http://dx.doi.org/10.3390/ijms24043440.

Full text
Abstract:
The family of chalcogenide molybdenum clusters is well presented in the literature by a series of compounds of nuclearity ranging from binuclear to multinuclear articulating octahedral fragments. Clusters actively studied in the last decades were shown to be promising as components of superconducting, magnetic, and catalytic systems. Here, we report the synthesis and detailed characterization of new and unusual representatives of chalcogenide clusters: square pyramidal complexes [{Mo5(μ3-Se)i4(μ4-Se)i(μ-pz)i4}(pzH)t5]1+/2+ (pzH = pyrazole, i = inner, t = terminal). Individually obtained oxidized (2+) and reduced (1+) forms have very close geometry (proven by single-crystal X-ray diffraction analysis) and are able to reversibly transform into each other, which was confirmed by cyclic voltammetry. Comprehensive characterization of the complexes, both in solid and in solution, confirms the different charge state of molybdenum in clusters (XPS), magnetic properties (EPR), and so on. DFT calculations complement the diverse study of new complexes, expanding the chemistry of molybdenum chalcogenide clusters.
APA, Harvard, Vancouver, ISO, and other styles
14

Rabanal-León, Walter A., Juliana A. Murillo-López, Dayán Páez-Hernández, and Ramiro Arratia-Pérez. "Exploring the nature of the excitation energies in [Re6(μ3-Q8)X6]4− clusters: a relativistic approach." Physical Chemistry Chemical Physics 17, no. 27 (2015): 17611–17. http://dx.doi.org/10.1039/c5cp02003d.

Full text
Abstract:
This contribution is focused on the characterization of the electronic transitions of the [Re63-Q8)X6]4− clusters, with the aim of understanding the substitution effect of the terminal and chalcogenide ligands, and the significance of the spin–orbit coupling over the description of excitation energies.
APA, Harvard, Vancouver, ISO, and other styles
15

Peters, Bertram, Silke Santner, Carsten Donsbach, Pascal Vöpel, Bernd Smarsly, and Stefanie Dehnen. "Ionic liquid cations as methylation agent for extremely weak chalcogenido metalate nucleophiles." Chemical Science 10, no. 20 (2019): 5211–17. http://dx.doi.org/10.1039/c9sc01358j.

Full text
Abstract:
Imidazolium-based ionic liquids served to selectively methylate terminal chalcogenide ligands of chalcogenidometalate clusters [Sn10S16O4(SMe)4]4−, [Mn4Sn4Se13(SeMe)4]6−, and [Hg6Te10(TeMe)2]6−.
APA, Harvard, Vancouver, ISO, and other styles
16

Kuchta, Matthew C., and Gerard Parkin. "Terminal chalcogenido complexes of Group 13 and 14 elements." Coordination Chemistry Reviews 176, no. 1 (September 1998): 323–72. http://dx.doi.org/10.1016/s0010-8545(98)00123-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

PARKIN, G. "ChemInform Abstract: Terminal Chalcogenido Complexes of the Transition Metals." ChemInform 29, no. 22 (June 22, 2010): no. http://dx.doi.org/10.1002/chin.199822184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nørby, Peter, Jacob Overgaard, Bo Iversen, and Simon Johnsen. "Expanding the Chemical Versatility of Thiostannate Anions." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C555. http://dx.doi.org/10.1107/s2053273314094443.

Full text
Abstract:
Soluble tin(IV) chalcogenide complexes play a major role in solution processing synthesis of macroelectronic tin(IV) chalcogenide based devices, e.g. thin film transistors (TFTs) and the technological interesting photovoltaic material, Cu2ZnSnS4 (CZTS). The synthesis and study of new soluble thiostannate(IV) complexes without electronic impurity atoms and with low decomposition temperature are of key importance for the further development of tin(IV) chalcogenide based devices. We have from the same aqueous ammonium tin(IV) sulfide solution, synthesized and characterized four new crystal structures with different sized thiostannate(IV) complexes (i.e. monomeric [SnS4]4-, dimeric [Sn2S6]4-, pyramids of [Sn3S9]6- and the linear chain [SnS3]2-). Hirshfeld surface analysis for the anionic dimeric [Sn2S6]4- complex in (NH4)4Sn2S6·3H2O shows that water bound hydrogens interact equally well as the ammonium bound hydrogens with the anionic complex. The elongation of the terminal Sn-S bond depends only on the number of hydrogen atoms which interact with the sulfur atom (regardless of the hydrogen atom is bound in water molecules or in ammonium cations). We present the results for the application of the as-synthesized thiostannate(IV) crystals in solution processing of SnS2 thin films. Crystallographic and electron microscopic methods have established that all films are highly textured with the high mobility ab-plane parallel to the substrate surface. This is ideal for e.g. TFT devices where high mobility is required parallel to the substrate surface.
APA, Harvard, Vancouver, ISO, and other styles
19

Kuchta, Matthew C., and Gerard Parkin. "ChemInform Abstract: Terminal Chalcogenido Complexes of Group 13 and 14 Elements." ChemInform 30, no. 11 (June 17, 2010): no. http://dx.doi.org/10.1002/chin.199911302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Park, Young Sam, and Seung-Yun Lee. "Fabrication of SiGeSb heating electrodes and their application for four-terminal chalcogenide programmable switches." Japanese Journal of Applied Physics 54, no. 3 (January 28, 2015): 031301. http://dx.doi.org/10.7567/jjap.54.031301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tetteh, Samuel, and Ruphino Zugle. "Theoretical Study of Terminal Vanadium(V) Chalcogenido Complexes Bearing Chlorido and Methoxido Ligands." Journal of Chemistry 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/6796321.

Full text
Abstract:
Solvent (methanol) coordinated vanadium(V) chalcogenido complexes bearing chlorido and methoxido ligands have been studied computationally by means of density functional (DFT) methods. The gas phase complexes were fully optimized using B3LYP/GEN functionals with 6-31+G⁎⁎ and LANL2DZ basis sets. The optimized complexes show distorted octahedral geometries around the central vanadium atom. The ligand pπ-vanadium dπ interactions were analyzed by natural bond order (NBO) and natural population analyses (NPA). These results show strong stabilization of the V=O bond as was further confirmed by the analyses of the frontier molecular orbitals (FMOs). Second-order perturbation analyses also revealed substantial delocalization of lone pair electrons from the oxido ligand into vacant non-Lewis (Rydberg) orbitals as compared to the sulfido and seleno analogues. These results show significant ligand-to-metal charge transfer (LMCT) interactions. Full interaction map (FIM) of the reference complex confirms hydrogen bond interactions involving the methanol (O-H) and the chlorido ligand.
APA, Harvard, Vancouver, ISO, and other styles
22

Foley, Stephen R., Corinne Bensimon, and Darrin S. Richeson. "Facile Formation of Rare Terminal Chalcogenido Germanium Complexes with Alkylamidinates as Supporting Ligands." Journal of the American Chemical Society 119, no. 43 (October 1997): 10359–63. http://dx.doi.org/10.1021/ja9719891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ali, Munsaf, Avinash K. Srivastava, Nitinkumar Satyadev Upadhyay, Naveen Satrawala, and Raj K. Joshi. "Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster." Organics 4, no. 2 (May 25, 2023): 251–64. http://dx.doi.org/10.3390/org4020020.

Full text
Abstract:
In this report, the catalytic potential of chalcogen-stabilized iron carbonyl clusters [Fe3E2(CO)9 (E = S, Se, Te)] for the photolytic hydration of alkynes has been explored. The iron chalcogenide clusters bring excellent transformations of terminal and internal alkynes to their respective keto products in just 25 min photolysis at −5 °C in inert free and aqueous conditions. After the completion of the reaction, the product can be extracted from organic solvent, and due to the lower solubility of the catalyst in water, it can also be isolated and further reused several times prior to any activation. The catalyst was also found to be active in thermal conditions and bring about the desired transformations with average to good catalytic efficiency. Moreover, during the thermal reaction, the catalyst decomposed and formed the nanoparticles of iron selenides, which worked as a single-source precursor for FeSe nanomaterials. The presented photolysis methodology was found to be most feasible, economical, instantly produce the desired product, and work for a wide range of internal and terminal alkynes; hence, all these features made this method superior to the other reported ones. This report also serves as the first catalytic report of chalcogen-stabilized iron carbonyl clusters for alkyne hydrations.
APA, Harvard, Vancouver, ISO, and other styles
24

El-Hinnawy, Nabil, Pavel Borodulin, Brian Wagner, Matthew R. King, John S. Mason, Evan B. Jones, Sean McLaughlin, et al. "A Four-Terminal, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation." IEEE Electron Device Letters 34, no. 10 (October 2013): 1313–15. http://dx.doi.org/10.1109/led.2013.2278816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Howard, William A., Tina M. Trnka, Marcey Waters, and Gerard Parkin. "Terminal chalcogenido complexes of zirconium: Syntheses and reactivity of Cp2*Zr(E)(NC5H5) (E = O, S, Se, Te)." Journal of Organometallic Chemistry 528, no. 1-2 (February 1997): 95–121. http://dx.doi.org/10.1016/s0022-328x(96)06584-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kuchta, Matthew C., and Gerard Parkin. "Comparison of the reactivity of germanium and tin terminal chalcogenido complexes: the syntheses of chalcogenolate and dichalcogenidostannacyclopentane derivatives." Chemical Communications, no. 14 (1996): 1669. http://dx.doi.org/10.1039/cc9960001669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kuchta, Matthew C., and Gerard Parkin. "Terminal Chalcogenido Complexes of Gallium Supported by Tris(3,5-di-tert-butylpyrazolyl)hydroborato Ligation: [TpBut2]GaE (E = Se, Te)." Inorganic Chemistry 36, no. 12 (June 1997): 2492–93. http://dx.doi.org/10.1021/ic970208u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Moro, Angélica Venturini, Cristina W. Nogueira, Nilda B. V. Barbosa, Paulo Henrique Menezes, João Batista Teixeira da Rocha, and Gilson Zeni. "Highly Stereoselective One-Pot Procedure To Prepare Bis- and Tris-chalcogenide Alkenes via Addition of Disulfides and Diselenides to Terminal Alkynes." Journal of Organic Chemistry 70, no. 13 (June 2005): 5257–68. http://dx.doi.org/10.1021/jo050448o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Steiner, Thomas. "Chloroform molecules donate hydrogen bonds to S, Se, and Te acceptors: evidence from a published series of terminal chalcogenido complexes." Journal of Molecular Structure 447, no. 1-2 (June 1998): 39–42. http://dx.doi.org/10.1016/s0022-2860(98)00295-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Radkov, Emil, Ying-Jie Lu, and Robert H. Beer. "A Hydrolysis-Resistant Terminal ME Bond (M = Nb; E = S, Se: M = Ta; E = S) in a Chalcogenido-Substituted Mixed-Metal Polyoxoanion." Inorganic Chemistry 35, no. 3 (January 1996): 551–52. http://dx.doi.org/10.1021/ic951053y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Trnka, Tina M., and Gerard Parkin. "A survey of terminal chalcogenido complexes of the transition metals: trends in their distribution and the variation of their ME bond lengths." Polyhedron 16, no. 7 (January 1997): 1031–45. http://dx.doi.org/10.1016/s0277-5387(96)00411-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ruppa, Kamalesh B. P., Nathalie Desmangles, Sandro Gambarotta, Glenn Yap, and Arnold L. Rheingold. "Preparation and Characterization of a Homoleptic Vanadium(III) Amide Complex and Its Transformation into Terminal Chalcogenide Derivatives [(3,5-Me2Ph)AdN]3VE (E = S, Se; Ad = Adamantyl)." Inorganic Chemistry 36, no. 6 (March 1997): 1194–97. http://dx.doi.org/10.1021/ic961168h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

RADKOV, E., Y. J. LU, and R. H. BEER. "ChemInform Abstract: A Hydrolysis-Resistant Terminal ME Bond (M: Nb; E: S, Se; M: Ta; E: S) in a Chalcogenido-Substituted Mixed-Metal Polyoxoanion." ChemInform 27, no. 19 (August 5, 2010): no. http://dx.doi.org/10.1002/chin.199619018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cummins, Christopher C., Richard R. Schrock, and William M. Davis. "Synthesis of Terminal Vanadium(V) Imido, Oxo, Sulfido, Selenido, and Tellurido Complexes by Imido Group or Chalcogenide Atom Transfer to Trigonal Monopyramidal V[N3N] (N3N = [(Me3SiNCH2CH2)3N]3-)." Inorganic Chemistry 33, no. 7 (March 1994): 1448–57. http://dx.doi.org/10.1021/ic00085a038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

A. Howard, William, and Gerard Parkin. "Multiple bonds between hafnium and the chalcogens: syntheses and structures of the terminal chalcogenido complexes (η15-C5Me4R)2Hf(E)(NC5 H5) (E  O, S, Se, Te)." Journal of Organometallic Chemistry 472, no. 1-2 (June 1994): c1—c4. http://dx.doi.org/10.1016/0022-328x(94)80226-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

d'Arbeloff–Wilson, Sarah E., Peter B. Hitchcock, John F. Nixon, Hiroyuki Kawaguchi, and Kazuyuki Tatsumi. "[2+2] Cyclo-addition reactions of bis-pentamethylcyclopentadienyl zirconium metal complexes containing terminal chalcogenide ligands with the phospha-alkyne PCtBu. Syntheses, crystal and molecular structures of the four complexes [Zr(η5-(C5Me5)2(SC(tBu)P))], [Zr(η5-(C5Me5)2(SeC(tBu)P))], [Zr(η5-(C5Me5)2(SC(tBu)PSe))] and [Zr(η5-(C5Me5)2(SC(tBu)PC(Ph)N))]." Journal of Organometallic Chemistry 672, no. 1-2 (April 2003): 1–10. http://dx.doi.org/10.1016/s0022-328x(03)00047-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vetri, Palani, Francisxavier Paularokiadoss, Christian A. Celaya, L. Mary Novena, Jisha Mary Thomas, and Thayalaraj Christopher Jeyakumar. "A DFT Study on Structural and Bonding Analysis of Transition-Metal Carbonyls [M(CO)4] with terminal Silicon Chalcogenides Complexes [M(CO)3SiX] (M=Ni, Pd, and Pt; X= O, S, Se, and Te)." Computational and Theoretical Chemistry, June 2023, 114214. http://dx.doi.org/10.1016/j.comptc.2023.114214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jang, Gabriel, Mihyun Park, Da Seul Hyeon, WooJong Kim, JungYup Yang, and JinPyo Hong. "Bidirectional-nonlinear threshold switching behaviors and thermally robust stability of ZnTe selectors by nitrogen annealing." Scientific Reports 10, no. 1 (October 1, 2020). http://dx.doi.org/10.1038/s41598-020-73407-3.

Full text
Abstract:
Abstract Three-dimensional stackable memory frames involving the integration of two-terminal scalable crossbar arrays are expected to meet the demand for high-density memory storage, fast switching speed, and ultra-low power operation. However, two-terminal crossbar arrays introduce an unintended sneak path, which inevitably requires bidirectional nonlinear selectors. In this study, the advanced threshold switching (TS) features of ZnTe chalcogenide material-based selectors provide bidirectional threshold switching behavior, nonlinearity of 104, switching speed of less than 100 ns, and switching endurance of more than 107. In addition, thermally robust ZnTe selectors (up to 400 ℃) can be obtained through the use of nitrogen-annealing treatment. This process can prevent possible phase separation phenomena observed in generic chalcogenide materials during thermal annealing which occurs even at a low temperature of 250 ℃. The possible characteristics of the electrically and thermally advanced TS nature are described by diverse structural and electrical analyses through the Poole–Frankel conduction model.
APA, Harvard, Vancouver, ISO, and other styles
39

Campbell, Kris, Morgan G. Davis, and Jeffrey M. Peloquin. "Characterization of Sn, Zn, In, and Sb-Containing GeSe Alloys for Phase-Change Electronic Memory Applications." MRS Proceedings 997 (2007). http://dx.doi.org/10.1557/proc-0997-i12-10.

Full text
Abstract:
AbstractTwo-terminal electronic devices consisting of stacks of chalcogenide layers containing GeTe, Ge40Se60, SnTe, or SnSe have shown promise for application as electronic phase-change memories (Campbell, K.A. and Anderson, C.M., Microelectronics Journal 38, 52–59 (2007)). Here, we report the synthesis of (Ge40Se60)100−zMz alloys where M = Sn, In, Sb, and Zn, and the corresponding bulk material Raman spectra and differential scanning calorimetry data in order to explore material compositions that might be useful for producing a multi-state phase-change memory device.
APA, Harvard, Vancouver, ISO, and other styles
40

Ovshinsky, Stanford R., and Boil Pashmakov. "Innovation Providing New Multiple Functions in Phase-Change Materials To Achieve Cognitive Computing." MRS Proceedings 803 (2003). http://dx.doi.org/10.1557/proc-803-hh1.1.

Full text
Abstract:
ABSTRACTThis paper describes a basic new scientific and technological approach for information and computing use. It is based on Ovonic cognitive devices that utilize an atomically engineered Ovonic chalcogenide material as the active medium. We demonstrate how such a device possesses many unique functions including an intrinsic neurosynaptic functionality that permits the processing of information in a manner analogous to that of biological neurons and synapses. Our Ovonic cognitive devices can not only accomplish conventional binary computing, but are capable of non-binary generation of information, storage, encryption, higher mathematics, modular arithmetic and factoring. Uniquely, almost all of these functions can be accomplished in a single nanosized device. These devices and systems are robust at room temperature (and above). They are non-volatile and also can include other volatile devices such as the Ovonic Threshold Switch and Ovonic multi-terminal threshold and memory devices that can replace transistors.
APA, Harvard, Vancouver, ISO, and other styles
41

Venturini Moro, Angelica, Cristina W. Nogueira, Nilda B. V. Barbosa, Paulo Henrique Menezes, Joao Batista Teixeira da Rocha, and Gilson Zeni. "Highly Stereoselective One-Pot Procedure to Prepare Bis- and Tris-chalcogenide Alkenes via Addition of Disulfides and Diselenides to Terminal Alkynes." ChemInform 36, no. 45 (November 8, 2005). http://dx.doi.org/10.1002/chin.200545191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

 Школьников, Е. В. "Synthesis and vibrational spectra of glass-forming semiconducting compounds TlAsS2 and TlAsSe2." Известия СПбЛТА, no. 219() (September 14, 2017). http://dx.doi.org/10.21266/2079-4304.2017.219.222-232.

Full text
Abstract:
Стекла синтезировали методом вакуумной плавки из особо чистых элементных веществ при температуре 700 °С с последующей закалкой ампул с расплавами в воздухе от 500 °С, а также из соединений Tl2X и As2X3 при 500 °С в течение 5 ч с закалкой в воздухе. Рентгеноаморфность, отсутствие кристаллических микровключений при просмотре шлифов в микроскопах МИМ-8 и МИК-1 свидетельствовали о стеклообразном состоянии и однородности полученных стекол. В соответствии с молекулярной моделью правильная тригональная пирамида AsX3 имеет симметрию C3v с 4 колебательными модами: две симметричные моды растяжения ν1(А1) и изгиба связи ν2(А1), две асимметричные, дважды вырожденные моды растяжения ν3(Е) и изгиба связи ν4(Е). Неправильная пирамида XtAsX2 с двумя одинаковыми мостиковыми связями As−X и одной немостиковой короткой связью имеет более низкую симметрию Cs. При этом вырождение колебаний ν3(Е) и ν4(Е) снимается, и все 6 колебательных мод становятся активными в инфракрасных спектрах. С учетом вышеизложенного можно ожидать, что из-за понижения симметрии С3v → Cs при переходе от тригонально-пирамидальных структурных единиц (с.е.) AsX3/2 с тремя мостиковыми связями As−X в кристалле As2X3 к цепочечным с.е. Tlq+Xq−AsX2/2(X− S,Se) с двумя мостиковыми и короткой немостиковой связью As−Xt полосы поглощения ν3(Е) и ν4(Е) в колебательном ИК-спектре кристаллов TlAsX2 расщепляются на две полосы соответственно ν2(А', νs) и ν5(А'', νa) симметричных и асимметричных валентных колебаний связей As−X внутри пирамид XtAsX2 с симметрией Сs, ν4(А', s) и ν6(А'', a) симметричных X−As−X и асимметричных X−As−Xt деформационных колебаний (для монокристалла TlAsS2 ν1=334, ν2=312, ν3=141, ν4=190, ν5=287, ν6= 178 см−1). Высокочастотные полосы νcb и νca в спектрах кристаллов TlAsS2 (403 и 383 см−1) и TlAsSе2 (277 и 260 см−1) и широкие полосы поглощения при 370−395 и 240−270 см−1 в спектрах стекол соответственно TlAsS2 и TlAsSе2 можно отнести к колебаниям растяжения мостиков As−Х−As между двумя пирамидами АsХ3, которые возникают при снятии вырождения моды межмолекулярного сцепления (с) и различаются по частоте (а, b). В ИК колебательных спектрах стекол TlAsХ2 из-за исчезновения дальнего порядка и наличия дисперсии длины химических связей As−X, характерной также для моноклинных кристаллов TlAsX, наблюдаются лишь четыре широкие полосы поглощения в диапазоне волновых чисел 60−400 см−1. Эти полосы являются наложением 2–3 интенсивных полос поглощения в спектрах кристаллов и свидетельствуют о сохранении в стеклах цепочечных с.е. Tlq+Xq−AsX2/2(X−S,Se). На основании результатов ДТА и термодинамических расчетов предложен мягкий режим синтеза однородных по составу и структуре стекол TlAsS2 и TlAsSe2 из халькогенидов таллия и мышьяка. Исследованы колебательные ИК-спектры полимерно-цепочечных стекол и кристаллов TlAsХ2, впервые выполнено вероятное отнесение наблюдаемых полос поглощения и установлено наличие в стеклах и кристаллах пирамидальной структурной единицы Tlq+Xq−AsX2/2 с двумя мостиковыми и одной концевой более короткой связью As−X. Glasses were synthesized by the vacuum melting method from highly pure elemental substances at a temperature of 700 °C followed by quenching of the ampoules with melts in air ranging from 500 °C, and from Tl2X and As2X3 compounds at 500 °C for 5 hours with quenching in air. X-ray amorphism, the lack of crystalline microinclusions when thin sections are viewed in the MIM-8and MIK-1 microscopes showed the glassy state and homogeneity of the obtained glasses. According to the molecular model, the correct trigonal pyramid AsX3has C3v symmetry with four vibrational modes: two symmetrical modes of stretching ν1(А1) and bond bending ν2(А1), as well as two asymmetric double-degenerate modes of stretching ν3(Е) and bond bending ν4(Е). The improper pyramid XtAsX2 with two identical bridge As–X bonds and one unbridged (terminal) short bond has lower symmetry Cs. Moreover,the degeneration of vibrations ν3(Е) and ν4(Е) is removed, and all six vibrational modes become active in the infrared spectra. Then, it can be expected that due to the lowering of symmetry С3v → Cs during the transition from the trigonal-pyramidal AsX3/2 structural units (s.u.) with the three bridge As–X bonds in the As2X3 crystals to the chained s.u. Tlq+Xq–AsX2/2(X = S, Se) with two bridge bonds and the short unbridged As–Xt bond, the absorption bands ν3(Е) and ν4(Е) in the vibrational IR spectrum of the TlAsX2 crystals are split into two bands: ν2(А', νs) and ν5(А'', νa) of the corresponding symmetric and asymmetric stretching vibrations of the As–X bonds inside theXtAsX2 pyramids with symmetry Сs,ν4(А', δs), and ν6(А'', δa) of the symmetric X–As–X and asymmetrical X–As–Xt bending vibrations(for single crystal TlAsS2 ν1 = 334, ν2 = 312, ν3 = 141, ν4 = 190, ν5 = 287, ν6 = 178 cm–1). The high frequency bands νcb and νca in the spectra of the crystals and broad absorption bands at 370–395 and 240–270 cm–1 in the spectra of glass of the corresponding TlAsSe2 and TlAsS2 can be related to the stretching vibrations of the As–Х–As bridges between the two АsХ3 pyramids, which arise during the removal of the degeneration of the intermolecular coupling mode (c) and differ in frequency(a ,b). In the IR vibrational spectra of TlAsX2 glasses, due to the disappearance of the long-range order and the presence of the dispersion of the lengths of the As–X chemical bonds, characteristic also for monoclinic crystals of TlAsX2, there are only four broad absorption bands in the wave number range of 60–400 cm–1.These bands are a superposition of 2–3 intense absorption bands in the spectra of the crystals and indicate the persistence of chained s.u. Tlq+Xq–AsX2/2 (X = S, Se) in the glass. Based on the results of DTA and thermodynamic calculations, the soft mode of synthesis of TlAsS2 and TlAsSe2 glasses uniform in composition and structure is proposed from thallium and arsenic chalcogenides. The vibrational IR spectra of polymer-chain glasses and TlAsX2 crystals are studied, the probable assignment of the observed absorption bands is performed, and the presence of a pyramidal structural unit Tlq+Xq–AsX2/2 in glasses and crystals with two bridge bonds and a shorter As–X unbridged bond is established.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography