Academic literature on the topic 'Terahertz gas phase spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Terahertz gas phase spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Terahertz gas phase spectroscopy":

1

Smith, Ryan M., and Mark A. Arnold. "Selectivity of Terahertz Gas-Phase Spectroscopy." Analytical Chemistry 87, no. 21 (October 15, 2015): 10679–83. http://dx.doi.org/10.1021/acs.analchem.5b03028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Jian, Yaqing Zhang, Harold Y. Hwang, Benjamin K. Ofori-Okai, Sharly Fleischer, and Keith A. Nelson. "Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase." Proceedings of the National Academy of Sciences 113, no. 42 (October 4, 2016): 11800–11805. http://dx.doi.org/10.1073/pnas.1609558113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ultrafast 2D spectroscopy uses correlated multiple light−matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field−dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
3

Kilcullen, Patrick, I. D. Hartley, E. T. Jensen, and M. Reid. "Terahertz Time Domain Gas-phase Spectroscopy of Carbon Monoxide." Journal of Infrared, Millimeter, and Terahertz Waves 36, no. 4 (January 16, 2015): 380–89. http://dx.doi.org/10.1007/s10762-014-0139-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hindle, Francis, Lotta Kuuliala, Meriem Mouelhi, Arnaud Cuisset, Cédric Bray, Mathias Vanwolleghem, Frank Devlieghere, Gaël Mouret, and Robin Bocquet. "Monitoring of food spoilage by high resolution THz analysis." Analyst 143, no. 22 (2018): 5536–44. http://dx.doi.org/10.1039/c8an01180j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
High resolution rotational Terahertz (THz) spectroscopy is suited to studies of numerous polar gas phase molecules, and particularly volatile organic compounds (VOCs). Analysis of the headspace gas of packed Salmon fillets indicates the degree of food spoilage.
5

Neumaier, P. F. X., K. Schmalz, J. Borngräber, R. Wylde, and H. W. Hübers. "Terahertz gas-phase spectroscopy: chemometrics for security and medical applications." Analyst 140, no. 1 (2015): 213–22. http://dx.doi.org/10.1039/c4an01570c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vogt, Dominik Walter, Angus Harvey Jones, and Rainer Leonhardt. "Terahertz Gas-Phase Spectroscopy Using a Sub-Wavelength Thick Ultrahigh-Q Microresonator." Sensors 20, no. 10 (May 25, 2020): 3005. http://dx.doi.org/10.3390/s20103005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The terahertz spectrum provides tremendous opportunities for broadband gas-phase spectroscopy, as numerous molecules exhibit strong fundamental resonances in the THz frequency range. However, cutting-edge THz gas-phase spectrometer require cumbersome multi-pass gas cells to reach sufficient sensitivity for trace level gas detection. Here, we report on the first demonstration of a THz gas-phase spectrometer using a sub-wavelength thick ultrahigh-Q THz disc microresonator. Leveraging the microresonator’s ultrahigh quality factor in excess of 120,000 as well as the intrinsically large evanescent field, allows for the implementation of a very compact spectrometer without the need for complex multi-pass gas cells. Water vapour concentrations as low as 4 parts per million at atmospheric conditions have been readily detected in proof-of-concept experiments.
7

Hindle, Francis, Robin Bocquet, Anastasiia Pienkina, Arnaud Cuisset, and Gaël Mouret. "Terahertz gas phase spectroscopy using a high-finesse Fabry–Pérot cavity." Optica 6, no. 12 (November 21, 2019): 1449. http://dx.doi.org/10.1364/optica.6.001449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burmistrov E. R. and Avakyants L. P. "Determination of 2DEG parameters in LED heterostructures with three quantum wells In-=SUB=-x-=/SUB=-Ga-=SUB=-1-x-=/SUB=-N/GaN by terahertz time-domain spectroscopy (THz-TDs)." Physics of the Solid State 65, no. 2 (2023): 179. http://dx.doi.org/10.21883/pss.2023.02.55399.503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Terahertz time-domain spectroscopy (THz-TDs) has been used to record the resonant frequencies of plasmon oscillations excited in samples of heterostructures with three InxGa1-xN/GaN quantum wells (QWs) by laser pulses with a duration of 130 fs in the temperature range from 90 to 170 K. Fast Fourier transform (FFT) of the time dependence of the electric field of THz-pulses made it possible to obtain the frequency spectra of the power and phase shift of THz-radiation, the interpretation of which made it possible to estimate the pulse relaxation time, mobility and effective mass of two-dimensional electron gas (2DEG) in the heterostructures. Using a series of frequency spectra of the power and phase shift of THz-radiation, the temperature dependences of the effective mass and relaxation time of the 2DEG pulse were obtained. Mobility value 2DEG obtained by the THz-TDs is in good agreement with the data of Hall measurements. Keywords: heterostructures, pulse relaxation time, 2DEG, terahertz radiation, terahertz spectroscopy.
9

Mihrin, D., P. W. Jakobsen, A. Voute, L. Manceron, and R. Wugt Larsen. "High-resolution synchrotron terahertz investigation of the large-amplitude hydrogen bond librational band of (HCN)2." Physical Chemistry Chemical Physics 20, no. 12 (2018): 8241–46. http://dx.doi.org/10.1039/c7cp08412a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The high-resolution terahertz absorption spectrum of the large-amplitude intermolecular donor librational band ν18 of the homodimer (HCN)2 has been recorded by means of long-path static gas-phase Fourier transform spectroscopy at 207 K employing a highly brilliant electron storage ring source.
10

Бурмистров, Е. Р., and Л. П. Авакянц. "Исследование параметров двумерного электронного газа в квантовых ямах InGaN/GaN методом терагерцового плазмонного резонанса." Физика и техника полупроводников 55, no. 11 (2021): 1059. http://dx.doi.org/10.21883/ftp.2021.11.51561.9685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new approach to determining the parameters of a two-dimensional electron gas in InGaN/GaN quantum wells is proposed. It is based on the method of terahertz spectroscopy with time resolution, within the framework of which the terahertz frequencies of two-dimensional plasmon resonances excited in the studied samples of InGaN/AlGaN/GaN heterostructures by femtosecond laser pulses at a wavelength of 797 nm were recorded. Oscillating behavior of the output terahertz radiation power with minima in the frequency range 1−5 THz is shown, which is associated with the excitation of plasmon oscillations in a two-dimensional electron gas localized in an InGaN/GaN quantum well. During the processing of terahertz spectra, the effect of renormalization of the effective mass of two-dimensional electron gas, as well as phase modulation near the frequencies of plasmon resonances with an increase in the temperature of the sample from 90 to 170 K, was found. The proposed method is non-contact and can be used in a wide temperature range.

Dissertations / Theses on the topic "Terahertz gas phase spectroscopy":

1

Zhang, Yaqing Ph D. Massachusetts Institute of Technology. "Two-dimensional terahertz rotational spectroscopy in the gas phase." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references.
Two-dimensional (2D) coherent spectroscopy has been developed to study molecular dynamics and structures for decades, but its extension into the terahertz (THz) regime remains rare. In this thesis, I describe several experiments using two-dimensional terahertz rotational spectroscopy. Employing intense THz electromagnetic fields and the differential chopping technique, we have extended multi-dimensional coherent spectroscopy into the THz regime. We have observed rotational dynamics of linear, symmetric-top, and asymmetric-top molecular species, indicating that 2D THz spectroscopy is an incisive tool for investigating collective quantum effects of the rotational degree of freedom. Based on the quantum mechanical rigid rotor model, we have developed simulation and calculation approaches to disentangling spectroscopic signals from molecular rotations.
We have shown ultrafast 2D THz photon echo spectroscopy of gaseous acetonitrile samples, revealing J-state-resolved rotational dynamics in symmetric-top molecular rotors. We have revealed nonlinear rotational couplings and many-body interactions in water vapor, uncovering the strongly correlated nature of rotational quantum states in water molecules. Additionally, experimental evidence of linear and nonlinear THz spectroscopy of stable water dimers in the vicinity of atmospheric conditions has been observed. We have reported dual-type rotational couplings and a propensity for the K-state-dependent cross-peaks in sulfur dioxide, highlighting distinct rotational properties in slightly asymmetric-top molecules. We have measured the quartic THz effect using two-dimensional THz-Raman hybrid spectroscopy, opening the way for understanding and applications of higher-even-order THz-matter coherences beyond the linear and quadratic THz field effects.
Utilizing the density matrix and time propagation approaches, we have developed a set of simulation and calculation methodologies to characterize rotational dynamics in the gas phase based on the quantum mechanical rigid-rotor model. Our work shows the remarkable capability of 2D THz spectroscopy to interrogate rotational dynamics in the gas phase, laying a foundation for understanding and manipulation of nonlinear light-molecule interactions via multi-dimensional coherent THz spectroscopy.
by Yaqing Zhang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemistry
2

Mahé, Jérôme. "Far infrared/Tera-Hertz spectroscopy in the gas phase : experiments and theory." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLE043/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La spectroscopie infrarouge permet d’identifier la structure 3D de systèmes moléculaires, par comparaison des spectres mesurés et simulés. Nous travaillons en phase gazeuse, où les molécules et clusters sont libres d’interactions intermoléculaires. Notre travail combine les expériences IR-UV ion-dip et le calcul de spectres IR anharmoniques par la méthode DFT-MD. Le spectre IR est calculé pour les structures 3D de plus basses énergies,le meilleur accord donnant la connaissance de la structure présente dans les conditions expérimentales.Nous démontrons que le domaine de l’IR lointain/THz (<800 cm-1, <24 THz) permet d’identifier sans ambiguïté la structure 3D de molécules et clusters en phase gazeuse, là ou les signatures du domaine 1000-4000 cm-1 peuvent être limitées. Les systèmes considérés sont des dipeptides, un modèle de feuillet β, dérivés du phénol (et complexés à l’eau) des paires de bases de l’ADN, dont les structures sont bâties sur des liaisons hydrogène intra/intermoléculaires
Infrared spectroscopy allows the assignment of three dimensional structures of molecular systems, by comparing experimental and theoretical spectra. Our investigations take place in the gas phase, where molecules and clusters are free of intermolecular interactions.Our work combines experimental IR-UV ion dip spectroscopy and theoretical DFT-MD anharmonic spectroscopy. The infrared spectrum is calculated for low energy 3Dstructures and the best match between theory and experiment provides the information about the structure present in the experimental conditions.We demonstrate for several systems that far infrared/THz spectroscopy (<800 cm-1, <24THz) allows conformational assignment without ambiguities, contrary to the more traditional 1000-4000 cm-1 range. Systems investigated here are dipeptides, a β-sheet model, phenol derivatives (also complexe dwith water molecules), DNA base pairs, all these structures being built on intra-/intermolecular hydrogen bonds
3

Elmaleh, Coralie. "Développement d’un prototype ultrasensible d’analyse de gaz dans le domaine submillimétrique." Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse explore le développement technologique d'une expérience spectroscopique dans le domaine submillimétrique, aussi connu sous le nom de Terahertz (THz). Cette bande spectrale se distingue par sa capacité à résoudre finement des doublets moléculaires, permettant une identification précise et claire de mélanges gazeux complexes, même lorsque d'autres longueurs d'onde pourraient échouer.Bien que la région THz offre un pouvoir de résolution exceptionnel, les spectromètres qui y opèrent sont souvent confrontés à des défis de sensibilité en raison du développement de la technologie dans cette bande. Grâce à une approche innovante, nous avons mis en œuvre la première expérience de Cavity ring-down Spectroscopy (CRDS) capable de quantifier des composés avec une précision allant jusqu’au ppb. L'étude est concentrée entre 550 GHz et 650 GHz, une fenêtre du spectre THz qui non seulement offre une résolution et une sensibilité moléculaire inégalées, mais possède aussi la capacité de pénétrer des matériaux non conducteurs tout en étant non ionisante. Ces propriétés positionnent cette technologie à la pointe des outils d'analyse, promettant une pléthore d'applications, allant de la recherche fondamentale à des applications industrielles
This thesis explores the technological development of a spectroscopic experiment in the submillimeter range, also known as Terahertz (THz). This spectral band stands out for its ability to precisely resolve molecular doublets, enabling clear and precise identification of complex gas mixtures, even when other wavelengths might fail.Although the THz region offers exceptional resolving power, spectrometers operating in this region often face sensitivity challenges due to the development of technology in this band. Thanks to an innovative approach, we have implemented the first Cavity Ring-Down Spectroscopy (CRDS) experiment capable of quantifying compounds to ppb precision. The study is concentrated between 550 GHz and 650 GHz, a window of the THz spectrum that not only offers unrivalled resolution and molecular sensitivity, but also possesses the ability to penetrate non-conducting materials while being non-ionizing. These properties position this technology at the cutting edge of analysis tools, promising a plethora of applications, from fundamental research to industrial applications
4

Marcinkiewicz, Michal. "Terahertz Spectroscopy of Topological Phase Transitions in HgCdTe-based systems." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS068/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse porte sur l'exploration de différentes phases topologiques présentes dans des hétérostructures à base de mercure, cadmium et tellure (HgCdTe). Ces systèmes sont de parfaits cas d'études des états topologiques dans la matière condensée. En effet, leur structure de bande peut aisément être modifiée d'inversée à non-inversée par le biais de paramètres internes ou externes.Lorsqu'un système présente une structure de bande inversée, il a une topologie non triviale. Il est impossible de modifier cet ordre topologique sans fermer son gap, ce qui inévitablement entraîne l'apparition de particules sans masse dans son volume. Un système présentant une structure de bande inversée et un gap d'énergie finie dans lequel se trouve le niveau de Fermi, est appelé isolant topologique. Ce nouveau type de matériau est isolant dans son volume, mais abrite des états métalliques sans gap sur ses bords. Ces derniers ont une relation de dispersion linéaire et sont protégés des effets liés au désordre et de la rétrodiffusion par des impuretés non magnétiques. Ces états particuliers apparaissent à l'interface de matériaux présentant des ordres topologiques différents. Ainsi, un isolant topologique 2D se caractérise par des canaux 1D de conductance polarisés en spin à ses bords, alors qu'un isolant topologique 3D accueille des fermions de Dirac 2D, polarisés en spin, aux surfaces.L'existence de fermions sans masse 2D et 3D a déjà été démontrée expérimentalement. Cependant, la transition de phase topologique durant laquelle apparaissent les particules sans masse n'a que très peu été explorée. Il est possible de modifier la structure de bande de HgCdTe d'inversée à non inversée par le biais de la composition chimique, la pression, la température ou le confinement quantique. Ces paramètres permettent ainsi de sonder le système au voisinage de différentes transitions de phase topologiques. Dans ce travail, l'utilisation de la température comme paramètre d'ajustement continu du gap permet d'étudier au point de transition de phase l'apparition de fermions semi-relativistes de Dirac (2D) et de Kane (3D) ainsi que leurs propriétés.Les systèmes étudiés au cours de ces travaux de recherche sont des cristaux massifs de Hg1-xCdxTe et des puits quantiques HgTe/CdTe présentant des structures de bandes inversées et non inversées, ainsi que des couches minces de HgTe contraintes pouvant être considérées comme des isolants topologiques 3D ayant un confinement quantique résiduel. Tous ces systèmes possèdent des propriétés topologiques. L'interprétation des résultats s'appuie sur les prédictions théoriques basées sur le modèle de Kane. En annexe, une vue d'ensemble des puits quantiques composites InAs/GaSb, structures également identifiées comme isolants topologiques, est présentée, comportant les résultats préliminaires obtenus sur ces dernières.Toutes les structures ont été étudiées par magnétospectroscopie en transmission dans les domaines de fréquence terahertz et infra-rouge moyen à l'aide d'un dispositif expérimental spécifiquement conçu pour permettre des mesures sur une large plage de températures
This thesis presents an investigation of different topological phases in mercury-cadmium-telluride (HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground to study topological states, as their band structure can be easily varied from inverted to non-inverted, by changing internal or external parameters.If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One cannot change its topological order without closing the band gap, which is inevitably accompanied with the appearance of massless particles in the bulk. A system, that has an inverted band structure and a finite gap in which the Fermi level is positioned, is called a topological insulator. These novel materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation at boundaries, protected against disorder and backscattering on non-magnetic impurities. These states arise at the interfaces between materials characterized by a different topological order. A 2D topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-based heterostructures. However, the topological phase transitions during which the massless particles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to non-inverted using chemical composition, pressure, temperature, or quantum confinement. These parameters therefore allow to probe the system in the vicinity of different topological phase transitions. In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the points of phase transitions.The systems investigated were Hg$_{1-x}$Cd$_x$Te bulk systems and HgTe/CdTe quantum wells characterized by an inverted and regular band order, and strained HgTe films which can be considered as 3D topological insulators with a residual quantum confinement. All these systems exhibit topological properties, and the experimental results are interpreted according to theoretical predictions based on the Kane model. This thesis is complemented by an overview and the preliminary results obtained on a different compound -- a InAs/GaSb broken-gap quantum well, which was also identified as a topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-transmission spectroscopy in a specifically designed experimental system, in which temperature could be tuned in a broad range
5

Colarusso, Pina. "Selected projects in gas-phase spectroscopy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22196.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Puskar, Ljiljana. "Gas phase ligand field photofragmentation spectroscopy." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Phillips, Alexander John. "High resolution and sensitivity gas phase spectroscopy." Thesis, Queen Mary, University of London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faulk, James Donald. "Spectroscopy and photodynamics of gas phase ions." Case Western Reserve University School of Graduate Studies / OhioLINK, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=case1055789262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Keqing. "Infrared spectroscopy of molecules in the gas phase." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21402.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schubert, J. E. "High-resolution spectroscopy of small gas-phase radicals." Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354301.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Terahertz gas phase spectroscopy":

1

Simpson, Matthew J. Two Studies in Gas-Phase Ion Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23129-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rijs, Anouk M., and Jos Oomens, eds. Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19204-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

C, Rhoderick G., Johnson P. A, and National Institute of Standards and Technology (U.S.), eds. Infrared absorptivity temperature dependence of gas phase methanol and sulfur dioxide. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Timothy G. Modern Gas-Phase Photoelectron Spectroscopy. Oxford University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eland, J. H. D. Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase. Elsevier Science & Technology Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rijs, Anouk M., and Jos Oomens. Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Springer London, Limited, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rijs, Anouk M., and Jos Oomens. Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rijs, Anouk M., and Jos Oomens. Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Situmeang, Rudy T. M. Gas phase x-ray photoelectron spectroscopy of some ketone compounds. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Situmeang, Rudy T. M. Gas phase x-ray photoelectron spectroscopy of some ketone compounds. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Terahertz gas phase spectroscopy":

1

Dragoman, Daniela. "Phase-Space Processing of Terahertz Radiation." In Terahertz Spectroscopy and Imaging, 117–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ottinger, Ch. "Workshop “Spectroscopy of Ions”." In Fundamentals of Gas Phase Ion Chemistry, 219–35. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3518-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Vries, Mattanjah S. "Gas-Phase IR Spectroscopy of Nucleobases." In Topics in Current Chemistry, 271–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2014_577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gabelica, Valérie, and Frédéric Rosu. "Gas-Phase Spectroscopy of Nucleic Acids." In Physical Chemistry in Action, 103–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54842-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lichtenberger, Dennis L., and Glen Eugene Kellogg. "Characterization of Metal Complex Positive Ions in the Gas Phase by Photoelectron Spectroscopy." In Gas Phase Inorganic Chemistry, 245–77. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5529-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simpson, Matthew J. "Vacuum Ultraviolet Negative Photoion Spectroscopy of SF5Cl." In Two Studies in Gas-Phase Ion Spectroscopy, 65–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23129-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Le Boiteux, S., P. Simoneau, D. Bloch, and M. Ducloy. "Nonlinear Doppler-free Spectroscopy of Gas-Phase Atoms at Glass-Vapor Interfaces." In Laser Spectroscopy VIII, 267–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-47973-4_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dessent, Caroline E. H., and Mark A. Johnson. "Fundamentals of Negative Ion Photoelectron Spectroscopy." In Fundamentals and Applications of Gas Phase Ion Chemistry, 287–306. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4754-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wolfrum, Jürgen. "Laser Stimulation and Observation of Elementary Reactions in the Gas Phase." In Methods of Laser Spectroscopy, 353–66. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9459-8_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simpson, Matthew J. "Introduction and Background Information." In Two Studies in Gas-Phase Ion Spectroscopy, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23129-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Terahertz gas phase spectroscopy":

1

Neumaier, Philipp, Klaus Schmalz, Johannes Borngraber, Dietmar Kissinger, and Heinz-Wilhelm Hubers. "Terahertz gas-sensors: Gas-phase spectroscopy and multivariate analysis for medical and security applications." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Jian, Yaqing Zhang, Harold Y. Hwang, Benjamin K. Ofori-Okai, Sharly Fleischer, and Keith A. Nelson. "Two-dimensional Terahertz Photon Echo and Rotational Spectroscopy in the Gas Phase." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.utu1a.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neumaier, Philipp F. X., Klaus Schmalz, Johannes Borngraber, and Heinz-Wilhelm Hubers. "Application of multivariate analysis to gas-phase spectroscopy at 245 GHz." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mehta, Yash, Sam Razavian, Kevin Schwarm, R. M. Spearrin, and Aydin Babakhani. "Terahertz Gas-phase Spectroscopy of CO using a Silicon-based Picosecond Impulse Radiator." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sm2f.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hagelschuer, T., M. Wienold, H. Richter, N. Rothbart, and H. W. Hubers. "High-Resolution terahertz gas-phase spectroscopy based on external optical feedback in a quantum cascade laser." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nelson, Keith A. "Nonlinear Terahertz Spectroscopy and Coherent Control in Solid, Liquid, and Gas Phases." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.jf2k.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yian, Liu, Huang Zhiyao, Ji Haifeng, and Li Haiqing. "Solids Volume Fraction Measurement of Gas-Solid Two-Phase Flow Based on Terahertz Time-Domain Spectroscopy Technique." In 2008 IEEE Instrumentation and Measurement Technology Conference - I2MTC 2008. IEEE, 2008. http://dx.doi.org/10.1109/imtc.2008.4547402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hubers, H. W., S. G. Pavlov, H. Richter, A. D. Semenov, A. Tredicucci, L. Mahler, H. E. Beere, and D. A. Ritchie. "High Resolution Gas Phase Spectroscopy with a Quantum Cascade Laser at 2.5 THz." In >2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takeya, K., I. Kawayama, H. Murakami, K. Ohgaki, and M. Tonouchi. "Terahertz spectroscopy of gas hydrates." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harrel, Shayne M., James M. Schleicher, Charles A. Schmuttenmaer, Eric Beaurepaire, and Jean-Yves Bigot. "Probing Condensed Phase Dynamics with THz Emission Spectroscopy." In Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/otst.2005.tub1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Terahertz gas phase spectroscopy":

1

Bozek, J. D., and A. S. Schlachter. Electron spectrometer for gas-phase spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brueck, S. R. Tunable Infrared Lasers for Gas-Phase Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada564682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duncan, M. A. Photodissociation and spectroscopy of gas phase bimetallic clusters. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/6395014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dutta, Jyotsna M. Instrumentation for Millimeter and Submillimeter Gas Phase Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada305462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duncan, M. A. Photodissociation and spectroscopy of gas phase bimetallic clusters. Annual progress report. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/10159061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bozek, J. D., P. A. Heimann, and D. Mossessian. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duncan, Michael A. Infrared Spectroscopy of Transition Metal-Molecular interactions in the Gas Phase. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/951268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duncan, M. A. Photodissociation and spectroscopy of gas phase bimetallic clusters. Progress report for 1990--1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10150072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dyke, J. M. Gas-Phase Photoelectron Spectroscopy of Metals and Metal Oxides of Importance in the Upper Atmosphere. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada187771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duncan, M. A. Photodissociation and spectroscopy of gas phase bimetallic clusters. Final report, September 15, 1990--September 14, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10153770.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography