Academic literature on the topic 'TensorFlow Object Detection API 2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TensorFlow Object Detection API 2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TensorFlow Object Detection API 2"
Elshin, Кonstantin А., Еlena I. Molchanova, Мarina V. Usoltseva, and Yelena V. Likhoshway. "Automatic accounting of Baikal diatomic algae: approaches and prospects." Issues of modern algology (Вопросы современной альгологии), no. 2(20) (2019): 295–99. http://dx.doi.org/10.33624/2311-0147-2019-2(20)-295-299.
Full textSharma, Rishabh. "Blindfold: A Smartphone based Object Detection Application." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 20, 2021): 1268–73. http://dx.doi.org/10.22214/ijraset.2021.35091.
Full textSalunkhe, Akilesh, Manthan Raut, Shayantan Santra, and Sumedha Bhagwat. "Android-based object recognition application for visually impaired." ITM Web of Conferences 40 (2021): 03001. http://dx.doi.org/10.1051/itmconf/20214003001.
Full textGHIFARI, HUMMAM GHASSAN, DENNY DARLIS, and ARIS HARTAMAN. "Pendeteksi Golongan Darah Manusia Berbasis Tensorflow menggunakan ESP32-CAM." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 2 (April 4, 2021): 359. http://dx.doi.org/10.26760/elkomika.v9i2.359.
Full textSun, Chenfan, Wei Zhan, Jinhiu She, and Yangyang Zhang. "Object Detection from the Video Taken by Drone via Convolutional Neural Networks." Mathematical Problems in Engineering 2020 (October 13, 2020): 1–10. http://dx.doi.org/10.1155/2020/4013647.
Full textGhuli, Poonam, Shashank B. N, and Athri G. Rao. "Development of framework for detecting smoking scene in video clips." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 1 (January 1, 2019): 22. http://dx.doi.org/10.11591/ijeecs.v13.i1.pp22-26.
Full textTrainor-Guitton, Whitney, Leo Turon, and Dominique Dubucq. "Python Earth Engine API as a new open-source ecosphere for characterizing offshore hydrocarbon seeps and spills." Leading Edge 40, no. 1 (January 2021): 35–44. http://dx.doi.org/10.1190/tle40010035.1.
Full textMohd Ariff Brahin, Noor, Haslinah Mohd Nasir, Aiman Zakwan Jidin, Mohd Faizal Zulkifli, and Tole Sutikno. "Development of vocabulary learning application by using machine learning technique." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 362–69. http://dx.doi.org/10.11591/eei.v9i1.1616.
Full textOu, Soobin, Huijin Park, and Jongwoo Lee. "Implementation of an Obstacle Recognition System for the Blind." Applied Sciences 10, no. 1 (December 30, 2019): 282. http://dx.doi.org/10.3390/app10010282.
Full textBalaniuk, Remis, Olga Isupova, and Steven Reece. "Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning." Sensors 20, no. 23 (December 4, 2020): 6936. http://dx.doi.org/10.3390/s20236936.
Full textDissertations / Theses on the topic "TensorFlow Object Detection API 2"
Černil, Martin. "Automatická detekce ovládacích prvků výtahu zpracováním digitálního obrazu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444987.
Full textFurundzic, Bojan, and Fabian Mathisson. "Dataset Evaluation Method for Vehicle Detection Using TensorFlow Object Detection API." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43345.
Full textInom fältet av objektdetektering har ny utveckling demonstrerat stor kvalitetsvariation mellan visuella dataset. Till följd av detta finns det ett behov av standardiserade valideringsmetoder för att jämföra visuella dataset och deras prestationsförmåga. Detta examensarbete har, med ett fokus på fordonsigenkänning, som syfte att utveckla en pålitlig valideringsmetod som kan användas för att jämföra visuella dataset. Denna valideringsmetod användes därefter för att fastställa det dataset som bidrog till systemet med bäst förmåga att detektera fordon. De dataset som användes i denna studien var BDD100K, KITTI och Udacity, som tränades på individuella igenkänningsmodeller. Genom att applicera denna valideringsmetod, fastställdes det att BDD100K var det dataset som bidrog till systemet med bäst presterande igenkänningsförmåga. En analys av dataset storlek, etikettdistribution och genomsnittliga antalet etiketter per bild var även genomförd. Tillsammans med ett experiment som genomfördes för att testa modellerna i verkliga sammanhang, kunde det avgöras att valideringsmetoden stämde överens med de fastställda resultaten. Slutligen studerades TensorFlow Object Detection APIs förmåga att förbättra prestandan som erhålls av ett visuellt dataset. Genom användning av ett modifierat dataset, kunde det fastställas att TensorFlow Object Detection API är ett lämpligt modifieringsverktyg som kan användas för att öka prestandan av ett visuellt dataset.
Horák, Martin. "Sémantický popis obrazovky embedded zařízení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413261.
Full textAgarwal, Kirti. "Object detection in refrigerators using Tensorflow." Thesis, 2018. https://dspace.library.uvic.ca//handle/1828/10464.
Full textGraduate
Book chapters on the topic "TensorFlow Object Detection API 2"
Xin, Chen, Minh Nguyen, and Wei Qi Yan. "Multiple Flames Recognition Using Deep Learning." In Handbook of Research on Multimedia Cyber Security, 296–307. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2701-6.ch015.
Full textConference papers on the topic "TensorFlow Object Detection API 2"
Barba-Guaman, Luis, Jose Eugenio Naranjo, and Anthony Ortiz. "Object detection in rural roads using Tensorflow API." In 2020 International Conference of Digital Transformation and Innovation Technology (Incodtrin). IEEE, 2020. http://dx.doi.org/10.1109/incodtrin51881.2020.00028.
Full textKannan, Raadhesh, Chin Ji Jian, and XiaoNing Guo. "Adversarial Evasion Noise Attacks Against TensorFlow Object Detection API." In 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). IEEE, 2020. http://dx.doi.org/10.23919/icitst51030.2020.9351331.
Full textHsieh, Cheng-Hsiung, Dung-Ching Lin, Cheng-Jia Wang, Zong-Ting Chen, and Jiun-Jian Liaw. "Real-Time Car Detection and Driving Safety Alarm System With Google Tensorflow Object Detection API." In 2019 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2019. http://dx.doi.org/10.1109/icmlc48188.2019.8949265.
Full textKilic, Irfan, and Galip Aydin. "Traffic Sign Detection And Recognition Using TensorFlow’ s Object Detection API With A New Benchmark Dataset." In 2020 International Conference on Electrical Engineering (ICEE). IEEE, 2020. http://dx.doi.org/10.1109/icee49691.2020.9249914.
Full textRosol, Marcin. "Application of the TensorFlow object detection API to high speed videos of pyrotechnics for velocity calculations." In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, edited by Tien Pham, Latasha Solomon, and Katie Rainey. SPIE, 2020. http://dx.doi.org/10.1117/12.2557526.
Full text