To see the other types of publications on this topic, follow the link: Tensile test.

Dissertations / Theses on the topic 'Tensile test'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Tensile test.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Yin, Penghai. "Tensile Strength of Unsaturated Soils." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41841.

Full text
Abstract:
Desiccation-induced soil cracking is of significant interest in several engineering disciplines, which include geotechnical and geoenvironmental engineering, mining engineering, and agriculture engineering. The hydraulic, mechanical, thermal and other physico-chemical properties of unsaturated soils can be predominantly influenced due to cracks. Reliable information of these properties is required for the rational design and maintenance of earth structures taking account of the influence the soil-atmosphere interactions (e.g., for expansive soil slopes, earth dams, and embankments). In spite of significant research studies published in the literature on the desiccation-induced cracks during the past century, the fundamental mechanism of crack initiation and propagation of soils induced by drying and shrinkage is still elusive. For this reason, the focus of this thesis is directed towards understanding the tensile strength of unsaturated soils which is associated with soil crack initiation criterion (i.e. maximum tensile stress criterion). Tensile strength is the key property of soils for interpreting the initiation of soil cracking from a macroscopic point of view. A semi-empirical model is proposed for predicting the tensile strength of unsaturated cohesionless soils taking into account the effect of both the negative pore-water pressure in saturated pores and the air-water interfacial surface tension in unsaturated pores. The proposed model is calibrated and validated by providing comparisons between the model predictions and the experimental measurements on 10 cohesionless soils (i.e. five sandy soils and five silty soils) published in the literature. The proposed model is simple and requires only the information of Soil-Water Characteristic Curve (SWCC) and Grain Size Distribution curve (GSD), which can be obtained from conventional laboratory tests. To investigate the influence of microstructure, a practical and reliable estimation approach for predicting the evolution of the microstructural void ratio of compacted clayey soils subjected to wetting and drying paths is proposed. The microstructural evolution of 13 examined soils were investigated quantitatively using the mercury intrusion porosimetry (MIP) results. The investigated soils include four high-plasticity clays, eight low-plasticity clays and a glacial till which is a relatively coarse-grained soil with some fines. Based on this study, a novel criterion has been developed for identifying different pore populations of compacted clayey soils. The “as-compacted state line” (ACSL) was proposed to estimate the initial microstructural void ratio based on the compaction water ratio. A constitutive stress is derived to interpret and predict the volumetric deformation of compacted clay aggregates. The linear elastic constitutive model is used for predicting the microstructural void ratio of the examined compacted soils following monotonic wetting and drying paths. The developed approach (i.e. the ACSL and the linear elastic constitutive model) is validated by providing comparisons between the predicted and interpreted microstructural void ratios for all the examined soils. In addition to the matric suction and microstructure, the confining pressure also influences the tensile strength of unsaturated compacted clayey soils. The tensile strength tests on a compacted clayey soil by both the direct method (i.e. triaxial tensile test) and the indirect method (i.e. Brazilian split test) were performed. It is found that the tensile strength increases as the compaction water content decreases for the range investigated in this study, which could be explained by the variation of the inter-aggregated capillary bonding force and the change in microstructure. The increase in the confining pressure has been found to induce the change in failure mode (i.e. from pure tensile failure mode to combined tensile-shear failure mode). In spite of limitations associated with the Brazilian split test, tensile strength is widely determined using this test due to the simple procedure of specimen preparation and wide availability of test equipment in conventional laboratories. However, the Brazilian tensile strength is found to overestimate the tensile strength of compacted specimens with water content greater than the plastic limit. This is due to the considerable plastic deformation associated with the ductile failure instead of brittle failure. In summary, this thesis is devoted to providing insight into the fundamental mechanisms associated with the desiccation-induced crack initiation by quantitatively investigating the various factors that influence the tensile strength of unsaturated soils, which include the matric suction, the microstructure, and the confining pressure from theoretical studies and laboratory investigations.
APA, Harvard, Vancouver, ISO, and other styles
2

Berry, Carolyn. "DESIGN AND DEVELOPMENT OF TWO TEST FIXTURES TO TEST THE LONGITUDINAL AND TRANSVERSE TENSILE PROPERTIES OF SMALL DIAMETER TUBULAR POLYMERS." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/494.

Full text
Abstract:
Hundreds of thousands of vascular bypass grafts are implanted in the United States every year, but there has yet to be an ideal graft material to substitute for one’s own autologous vessel. Many synthetic materials have been shown to be successful vessel replacements; however, none have been proven to exhibit the same mechanical properties as native vessels, one of the most important criteria in selecting a vascular graft material. Part of this issue is due to the fact that, currently, there is no “gold standard” for testing the longitudinal and transverse tensile properties of small diameter tubular materials. While there are ASTM and ISO standards that suggest ways to test tubes in their original form, many researchers have published tensile strength data based on cutting the tube and testing it as a flat sample. Thus, it was the aim of this thesis to understand, establish, and implement accurate tensile testing methods of small diameter polymers in their original, tubular state on Cal Poly’s campus. Two test fixtures were created based on specified design criteria in order to test materials in their tubular form in both the longitudinal and transverse directions. Both fixtures were successful in testing PLGA and ePTFE samples, and statistical data was gathered for the transverse test fixture. The new transverse test fixture was tested against the current method of testing, and a significant (α = 0.05) difference between methods was established for ultimate tensile strength. This analysis, however, cannot determine which test method is more accurate, thus more extensive testing is required to verify the design of both fixtures. By developing a method for testing small diameter polymers in tubular form on Cal Poly’s campus, it allows for more testing of various small diameter tubes and more comparative data to validate each design. It also demonstrates a need for a more detailed and widespread standardization of testing for small diameter tubes, especially in vascular substitute applications where the ideal vessel replacement has yet to be found.
APA, Harvard, Vancouver, ISO, and other styles
3

Saha, Ujjal kumar, and Adis Avdic. "Simulating a tensile test of a carbon fiber composite test specimen in ABAQUS." Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5173.

Full text
Abstract:
This work aims at providing a numerical tool for the efficient design of the multidirectional carbon fiber reinforced composite material by means of finite element simulations. Abaqus/ CAE v 6.9-1 software has been used to establish a 3D model for simulation of the tensile test on the composite specimen. The aim of this analysis of multidirectional carbon fiber reinforced composite is to predict the strain and stress distribution in different plies through thickness. Tensile test experiment was carried out and the result was analyzed by ARAMIS to calculate the young’s modulus, stress, loads and strain of the composite specimen. The numerical model was compared against the result obtained from tensile test experiment to arrive at meaningful results for validation. This is done in order to understand the mechanical strength and strain at failure of the composite material. In this work three types of CFRP composite specimens are used, all have same 15 no. of ply but stacked in different orientation. It is found out that mechanical strength, failure load and strain differ slightly depending on this different ply orientation. A series of different modeling technique has also been done to verify the best modeling technique. The micromechanics of composite material is complex and the experimental predictions are time consuming and expensive. Though using FEM frequently solves the problem.
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Yufei. "Model of Heat Generation Effects During Uniaxial Tensile Test." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1391590277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Muh-Ren. "Experimental Investigation of Temperature Effect on Uniaxial Tensile Test." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392371542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Muh-ren. "Experimental investigation of temperature effect on uniaxial tensile test /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266011224679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stehn, Lars. "Tensile fracture of ice : test methods and fracture mechanics analysis." Doctoral thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 1993. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18394.

Full text
Abstract:
This thesis is concerned with several aspects of fracture of both brackish (low salinity) sea ice and freshwater ice. The tests and analyses are confined to tensile, or in fracture mechanics language, Mode I, fracture. A large part of this thesis is dedicated to demonstrate that Linear Elastic Fracture Mechanics (LEFM) can be applicable on ice by laboratory and in-situ tests of defined specimens. All interpretations are made using the dicipline of LEFM.First, the development of a field test equipment called FIFT ( a Field Instrument for Fracture toughness Tests on ice) is described. The FIFT is used in both field and laboratory fracture toughness tests on brackish sea ice from the Gulf of Bothnia to describe porosity effects on the apparent fracture toughness, KQ, and estimate crack velocities. An appropriate speciment size, in terms of notch sensitivity, is then provided valid for grain sizes ranging from 1.6 to nearly 100 mm.An augmented use of the FIFT is then described where fracture toughness tests are performed on S1 type freshwater ice to investigate if similarities exist in the local KI fields for three different fracture geometries. The results indicate that, under comparable conditions, KQ is similar for all of the geometries. However, the type of specimen, has a marked influence on the character of the fracture surface.Then, the influence of structural anisotropy on the fracture toughness of S1 ice is investigated by fabricating and testing three different fracture geometries from a single ice core. This approach is suitable for both field and, as in this work, laboratory studies. There is a wide scatter in the KQ values. Possible explanations to the results are discussed in terms of the microstructural influences and specimen size effects.Finally, crack growth resistance measurements on large grained S1 ice is conducted. A new fracture geometry is used which is found to be extremely favorable of promoting stable, stick-slip, crack growth over a large portion of the uncracked ligament. Now a complete characterization of the fracture resistance curve is therefore possible, A negative fracture resistance KR-curve is evaluated for the S1 ice at -16°C.
Godkänd; 1993; 20070426 (ysko)
APA, Harvard, Vancouver, ISO, and other styles
8

Claesson, Filip. "Analysis of length effect dependencies in tensile test for paperboard." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80410.

Full text
Abstract:
Paperboard combined with polymer and aluminium films are widely used in food packages. Paperboard is used for the bulk of the package material, and provides the stiffness. Paperboard is a highly anisotropic material, which is affected by how the fibers are orientated. Most fibers are aligned in the machine direction (MD), which is the stiffest direction, perpendicular is the cross-machine direction (CD) where fewer fibers are aligned, and the thickness direction (ZD) which is considerably weaker than in the MD and CD directions. Continuum models are used to describe the material properties to aid the design of package manufacturing processes. In continuum models there are no inherent length scale effects, and the material behaviour is the same regardless of the geometry. For paperboard there have been experimentally observed effects of the gauge length and width of tensile tests. To calibrate and develop these models it is important to observe which effect is a material property, if there is an inherent length scale, and which properties are from the boundary conditions of the experimental setup. Creasing is a process where the length scale is considerably smaller than at the standard tensile test, where the material deforms plastically to create creasing lines to easier fold the paperboard. The failure properties from standard tensile tests are not a good predictor of failure in creasing, where the length scale is considerably smaller. To investigate if there is an effect of the length scale, as the length gets smaller, tensile tests have been performed at different gauge lengths. The tensile tests were performed with a width of 15mm and the gauge length was varied in the range 3-100mm in MD and CD. The results from the tensile tests were, the failure strain and failure stress increased as the gauge length of the tests specimens decreased, both in MD and in CD. Initial stiffness decreased as the gauge length decrease (more notable in MD), and there was an increase in hardening at large strains with decreasing gauge length (more notable in CD). An analytical calculation of the reduction in measured stiffness as the gauge length get smaller was performed, where the decrease in stiffness deemed to be strongly related to the out-of-plane shear modulus. By fitting the analytical solution the experimental data the shear modulus was approximated to 60MPa. The shear modulus has been measured for the same paperboard to 70±23MPa. Simulations of the tensile tests at 5mm did fit the experimental data when the material model was calibrated from the tensile test at 100mm, except the increase in hardening at large strains in CD. It was noted that it was important to use the shear modulus that was inversely calculated by the analytical calculations to get the right initial slope of the simulations of the 5mm tensile tests. Creasing simulations were performed of a test setup of the creasing procedure. The male die was lowered 0.3mm to perform the creasing, which in the tests setup do not result in failure in the material. From the simulations the stress at the bottom of the paperboard during creasing exceeded the failure stress from the tensile test performed at 100mm. The stress during creasing was biaxial, it has stresses both in MD and CD, with is different compared to the uniaxial tensile tests at 100mm. The stress from the creasing simulation in CD was at a maximum of 40MPa where the 3mm tensile tests in CD resulted in a failure stress at 39MPa. The maximum stress in the MD creasing simulation was 96MPa, where the 3mm tensile test resulted in a failure stress at 69MPa. The properties from a long span tensile test are not good predictors of failure in creasing, where both stress state and length scale are very different. The failure stress at 3mm tensile tests in CD is close to the maximum stress from creasing simulations, and may be a good indication of failure. The 3mm tensile test in MD resulted in a considerably lower failure stress than the maximum stress in the creasing simulations, which indicates that the 3mm long tensile test is not a good predictor of failure in MD for creasing, where the length scale is even smaller.
APA, Harvard, Vancouver, ISO, and other styles
9

Nakao, S., T. Ando, L. Chen, M. Mehregany, K. Sato, and 一雄 佐藤. "Mechanical characterization of SiC film at high temperatures by tensile test." IEEE, 2008. http://hdl.handle.net/2237/11140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kakumani, Akul. "Design of a Tensile Tester to Test an Ant Neck Joint." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500559241684226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gaspar, Tiago Alexandre Valentim. "Investigating the tensile behaviour of unsaturated soils using the Brazilian disc test." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/62773.

Full text
Abstract:
In geotechnical practice, soils are generally assumed to have negligible tensile strength. However, in the context of unsaturated soils, this strength can be significant and important to consider. In contrast to the two-phase soil matrix considered in classical saturated soil mechanics, the presence of a third air phase in unsaturated soils brings about the manifestation of surface tension and matric suction. These phenomena provide unsaturated soils with a certain degree of tensile strength, which in turn affects the overall shear strength behaviour of the soil mass. This dissertation investigates the behaviour of three different unsaturated soils tested using the Brazilian Disc Test (BDT). The soils considered were two types of tailings from South African mines, i.e. gold and iron tailings, and one natural silty, clayey soil from Centurion, south of Pretoria. The tensile strength of 120 samples was determined using displacement controlled Brazilian Disc Tests with sample deformation recorded using Digital Image Correlation (DIC). Through the use of 30° curved loading strips, the BDT was found to consistently result in centrally located crack initiation by reducing compressive stress concentrations close to the points of load application. This modification of the loading conditions prevented the premature ‘crushing’ failures observed by previous authors. It was found that while the testing procedure was suitable for all soils considered, the increased ductility at high moisture contents resulted in a more complex material response upon loading. For these ductile samples, it was found that simply adopting the maximum achieved load as being indicative of the mobilisation of tensile strength is inadequate and can result in a gross overestimation of the tensile strength of these soils. The tensile strengths measured for each soil type, across a range of moisture contents, were subsequently compared to the Soil Water Retention Curves (SWRC) of each material. This comparison allowed for correlations between matric suction and tensile strength to be determined. For both gold and iron tailings, an increase in tensile strength was observed with an increase in suction. The contribution of matric suction to tensile strength was however found to diminish in the pendular regime. In contrast, the tensile strength of the Centurion soil increased with a reduction in saturation, achieved a peak value and decreased in the pendular regime. This trend was attributed to the dependency of both surface tension and matric suction on the contact area between particles, which in turn is affected by particle shape.
Dissertation (MEng)--University of Pretoria, 2017.
Civil Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
12

Grant, Thomas Paul. "Determination of asphalt mixture healing rate using the Superpave Indirect Tensile Test." [Gainesville, Fla.] : University of Florida, 2001. http://purl.fcla.edu/fcla/etd/UFE0000321.

Full text
Abstract:
Thesis (M.E.)--University of Florida, 2001.
Title from title page of source document. Document formatted into pages; contains xii, 82 p.; also contains graphics. Includes vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
13

López, Martínez Juan Ángel. "CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/79740.

Full text
Abstract:
Combining the most recent technologies in concrete, Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC) arises as a promising material for the near future. UHPFRC have shown how flexible concrete can be to adapt to the ever-changing social and environmental demands. With its high flexibility composition and its mechanical properties, UHPFRC is full of both unexplored and unexploited possibilities. Engineers should take responsibility for this task. However, it is fair to acknowledge that this is not an easy task and it requires the development of reliable and widely accepted design standards provided by the scientific community. A major concern about durability, long-lasting structures and reduction of maintenance cost, as well as the development of new concrete technologies, improved knowledge of fibre effect and a huge growth in the fibre industry accompanied by fibre price reduction have led, among other factors, to the development of new types of concrete whose mechanical behaviour substantially differs from conventional fibre-reinforced concrete. This is why current characterisation methodologies and design standards must be reviewed and adjusted to these newer materials. However, design standard revision cannot disregard former milestones achieved thanks to decades of hard work. It must offer an integrated view in which new types of concrete comprise existing ones in a broader group, because at the end of the day and despite having newer and improved properties, new types of concrete are still concrete. That is how it should be understood and how it must be reflected in newer codes and standards. The work presented herein is focused on one of these recently developed materials that embraces major advanced technologies in concrete: Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC). This work is specifically focused on those crucial requirements for the development and widespread use of it, such as constitutive tensile characterisation and classification. This work includes a deep revision of the uniaxial tensile behaviour of concrete and its development as fibre technology has evolved. In addition, traditional characterisation standard methods as well as those recently developed for its specific use on UHPFRC are reviewed and called into question. Throughout the document, the development of different methodologies to determine the uniaxial constitutive tensile behaviour of UHPFRC from bending tests are shown, together with a simplified characterisation proposal specially developed for being included in a standard. All developed methodologies presented herein are checked and validated. These methods are specifically designed for their application on experimental results obtained from a special type of four-point bending test, whose standardisation proposal for UHPFRC is also shown. Finally, a classification proposal is presented as a function of more relevant UHPFRC tensile parameters necessary for design that can be directly obtained from the standard characterisation test method suggested. Proposed classification encompasses the existing classification for conventional reinforced and fibre-reinforced concrete. In it, both plain concrete and fibre-reinforced concrete are presented as a particular case of a more general tensile constitutive response for concrete. Standard methodology and classification proposed are in accordance with the evolution of concrete and unify historic milestones achieved by the international research community.
El Hormigón de Muy Alto Rendimiento (HMAR) combina los últimos avances tecnológicos en hormigón y se erige como un material prometedor para el futuro. El HMAR ha demostrado su gran capacidad para adaptarse a las cada vez más exigentes demandas sociales y medioambientales. Con un gran abanico de posibilidades en su dosificación para conseguir las propiedades mecánicas deseadas, el HMAR es un material lleno de posibilidades aún sin explorar y sin explotar. Los ingenieros tienen la responsabilidad de esta tarea. Sin embargo, es justo reconocer que no se trata de una tarea fácil y que requiere de un desarrollo previo de códigos de diseño adecuados y ampliamente aceptados por parte de la comunidad científica. La aparición de nuevas tecnologías, el mayor conocimiento sobre la aportación de las fibras así como su industrialización y bajada de precios, las mayores preocupaciones sobre la durabilidad estructural, incremento de la vida útil o la reducción de los costes de mantenimiento, entre otros factores, han derivado en el desarrollo de nuevas tipologías de hormigones cuyo comportamiento mecánico difiere de manera sustancial de los tradicionales hormigones con fibras. Es por ello que tanto la readaptación de las metodologías de caracterización como las metodologías de diseño deben ser reformuladas. Y esto debe hacerse de manera no disruptiva, es decir, manteniendo la línea de los hitos alcanzados en los hormigones con fibras convencionales de manera que queden integrados en metodologías de caracterización y de diseño que los engloben, porque al fin y al cabo, y aunque con nuevas y mejores propiedades mecánicas, los nuevos hormigones siguen siendo hormigones. Así debe ser entendido y así debe quedar reflejado en las nuevas normativas. El presente trabajo se centra en uno de esos nuevos materiales desarrollados con el avance de las nuevas tecnologías como es el HMAR. En especial, este documento se centra en ese aspecto tan fundamental para el desarrollo de nuevos hormigones como es la caracterización mecánica y la tipificación. Este trabajo incluye una revisión del comportamiento mecánico uniaxial a tracción del hormigón y de su evolución con la aparición de las diferentes tecnologías. Además, se revisan y se ponen en cuestión los sistemas tradicionales de caracterización, así como los nuevos sistemas desarrollados en los últimos años para su empleo específico en el HMAR. A lo largo del documento se desarrollan diferentes metodologías para la obtención del comportamiento constitutivo a tracción del HMAR, así como la propuesta de una metdología simplificada de caracterización especialmente diseñada para ser incluida en una norma, todas ellas debidamente validadas. Estas metodologías son de aplicación específica a los resultados experimentales obtenidos mediante un ensayo a cuatro puntos sin entalla, cuya propuesta de estandarización para el HMAR ha sido también desarrollada. Finalmente, se presenta una propuesta de tipificación de acuerdo a los parámetros más relevantes del comportamiento a tracción del HMAR que son necesarios para el diseño y que pueden ser directamente obtenidos del ensayo de caracterización propuesto. Esta clasificación engloba a la clasificación existente para el hormigón armado convencional y los actuales hormigones con fibras, de manera que se presenta la actual definición de hormigón con fibras como un caso particular de estos nuevos hormigones, respetando al máximo la evolución de este material y aunando los logros conseguidos por la comunidad científica.
Dins de les combinacions de les tecnologies més recents en el formigó, el formigó de molt alt rendiment (UHPFRC) sorgeix com un material prometedor per al futur pròxim. L'UHPFRC ha demostrat poder ser un formigó flexible per adaptar-se a les sempre canviants demandes socials i mediambientals. Amb una gran flexibilitat en la seua composició i les seues propietats mecàniques, l`UHPFRC està ple de possibilitats de ser explorades i explotades. Els enginyers han de prendre la responsabilitat d'aquesta tasca. No obstant això, és just reconèixer que això no serà fàcil i requerirà el desenvolupament de normes de disseny fiables i àmpliament acceptades per la comunitat científica. Hi ha una gran preocupació al voltant de la durabilitat, la vida útil de les estructures i la reducció del cost de manteniment, juntament amb el desenvolupament de noves tecnologies de formigó, un millor coneixement de l'efecte de la fibra i un enorme creixement en la indústria de la fibra acompanyat per la reducció del preu de la fibra, han conduït, entre altres factors, al desenvolupament de nous tipus de formigons, el comportament mecànic dels quals es diferencia substancialment dels formigons reforçats amb fibres convencionals. És per això que les metodologies de caracterització actuals i les normes de disseny han de ser revisades i ajustades a aquests nous materials. No obstant això, la revisió del codis de disseny no pot prescindir de les antigues fites aconseguides gràcies a dècades de treball dur. S'ha d'oferir una visió integrada en la qual els nous tipus de formigons integren els ja existents en un grup més ampli, ja que, al cap i la fi i malgrat tenir propietats noves i millorades, els nous tipus de formigons són encara un tipus de formigó. Així es com s'hauria d'entendre i reflectir-se en els nous codis i normes. El treball presentat en aquest document es centra en un d'aquests materials que s'han desenvolupat recentment i que abasta les principals tecnologies avançades en el formigó: el Formigó de Molt Alt Rendiment Reforçat amb Fibres (UHPFRC). Aquest treball se centra específicament en els requisits fonamentals per al desenvolupament i l'ús generalitzat d'aquest, com ara la caracterització i classificació del comportament constitutiu a tracció. Aquest treball inclou una revisió profunda del comportament a tracció uniaxial del formigó i els seus canvis al temps que la tecnologia de les fibres ha evolucionat. A més, els mètodes tradicionals estàndard de caracterització, així com els recentment desenvolupats per al seu ús específic en l'UHPFRC són revisats i qüestionats. Al llarg del document, es mostra el desenvolupament de diferents metodologies per a determinar el comportament constitutiu a tracció uniaxial de l'UHPFRC, juntament amb una proposta de caracterització simplificada especialment desenvolupada per poder ser inclosa en normativa. Totes les metodologies desenvolupades presentades en aquest document han estat comprovades i validades. Aquests mètodes estan dissenyats específicament per a la seva aplicació en els resultats experimentals obtinguts a partir d'un tipus especial d'assaig de flexió a quatre punts, a més també s'inclou una proposta d'estandardització per a l'UHPFRC. Finalment, es presenta una proposta de classificació en funció dels paràmetres més rellevants del comportament a tracció de l'UHPFRC que són necessaris per al disseny i que es poden obtindre directament del mètode d'assaig estàndard suggerit per a la caracterització de l'UHPFRC. La classificació proposada té amb compte la classificació existent per al formigó armat convencional i el reforçat amb fibres. En ella, tant el formigó en massa com el formigó reforçat amb fibres es presenten com un cas particular d'una resposta constitutiva a tracció més general per al formigó. La metodologia estàndard i la classificació proposada estan d'acord amb l'evolució de formigó i unifica l
López Martínez, JÁ. (2017). CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79740
TESIS
APA, Harvard, Vancouver, ISO, and other styles
14

Bonthron, Björn, and Christian Jonsson. "Geogrids in cold climate : Temperature controlled tensile tests & Half-scale installation tests at different temperatures." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63204.

Full text
Abstract:
Due to the findings of extensive damage on geogrids used in a road embankment in northern Sweden, the Swedish Transport Administration (TRV) started to investigate the reason of these damages. Since the geogrids were installed at low temperature, below 0°C, it was suspected that the damages were connected the low temperature. To analyse whether low temperatures have an influence on the extent of installation damages, both a half-scale setup and temperature controlled tensile tests have been carried out on geogrids. In total five different types of geogrids have been tested; 3 extruded polypropylene geogrids, 1 woven PET geogrid, and 1 welded PET geogrid. All geogrids had an aperture size of approximately 35 mm and specified tensile strength of approximately 40 kN/m. The Half-scale tests was conducted by building a small road embankment inside a freeze container, at the Luleå University of Technology (LTU). The embankment contained crushed aggregate, type 0-70 mm, and geogrids. The purpose of the half-scale test was to simulate installation of geogrids at different temperatures and thereby investigate whether low temperatures have an influence on the rate of installation damages. The half-scale test was done for each type of geogrid at the temperatures: +20°C, -20°C and -30°C. First, the geogrid was covered by 150 mm of crushed aggregate. Then a vibratory plate (160 kg) was used to compact the crushed aggregate. After each installation, the crushed aggregate was removed carefully by vacuum suction. The geogrid was removed and then analysed by visual control and tensile tests conducted according to ISO 10319:2008 (wide width tensile test). Results from the half-scale tests indicate that 2 out of 5 of the tested geogrids were affected by the testing procedure. The results indicate that: -        one of the geogrids of polyprophylene (here referred to as G2) was more damaged at lower temperatures compared to installation at +20° C. -        the geogrid of woven PET (here referred to as G5) was less damaged at lower temperatures compared to installation at +20° C. Results for the other geogrids are either inconsistent or shows no significant variation of the measured parameters as function of temperature. Hence, these results cannot be interpreted as damage during installation. Temperature controlled tensile tests were done by tensile testing single strands from the geogrids to failure, inside a temperature controlled chamber. The purpose of these tests was to investigate how the strength properties of the geogrids are affected by low temperature. The test was repeated 5 times for each geogrid and temperature (+20°C, 0°C, -10°C and -20°C). Force and strain was measured during the tests. The results from the temperature controlled tensile tests show that the maximum strain decreases with lower temperature for all tested geogrids. The maximum strain decreased by 16% - 49% when the temperature dropped from +20°C to -20°C. The results show that the tensile strength increases with lower temperature for all tested geogrids except for the welded PET geogrid (here referred to as G1). For G1 the tensile strength decreased by approximately 7% at a temperature drop from +20°C to -20°C. For the woven PET geogrid (G5) and the polypropylene geogrids (G2-G3) the tensile strength increased between 13%-45% at a temperature drop from +20°C to -20°C. The E-modulus increased at lower temperature for all tested geogrids. The secant E-modulus at 2% strain increased by 13%-71% at a temperature drop from +20°C to -20°C. Summarized conclusions from the tests: Strength properties changed for all tested geogrids as the temperature decreased. All tested geogrids got stiffer at lower temperatures. The magnitude of the effects is different for different geogrids. The tensile strength increased with lower temperature for all tested geogrids except for the welded PET geogrid, which got lower tensile strength at lower temperature. The half-scale test indicates that the amount of installation damages at geogrids can be dependent of the temperature at installation. However, these indications can only be seen at two out of five tested geogrids. The effect cannot be connected to a specific step in the installation procedure and cannot be explained by the results from the temperature controlled tensile tests. The results from the half-scale test have a statistically low reliability since only one installation for each temperature and geogrid type was done. The compaction equipment used during the test was small, and had low compaction energy compared to a vibratory roller compactor commonly used in construction work. With respect to the discussion above, further studies should be focusing on developing the half-scale test. It is suggested that the test is scaled up to a full-scale test in order to simulate a real installation as close as possible. The test should also be conducted several times for each geogrid at each temperature in order to enable statistical analyses.
APA, Harvard, Vancouver, ISO, and other styles
15

Choi, Young Kyu. "Development of the saturation ageing tensile stiffness (SATS) test for high modulus base materials." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Song, Xiao. "Identification of forming limits of sheet metals with an in-plane biaxial tensile test." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0002/document.

Full text
Abstract:
Les procédés de mise en forme des tôles minces sont largement utilisés dans l'industrie. L’utilisation optimale des alliages légers ou des aciers à haute résistance, propices à des économies d’énergie dans le domaine des transports, nécessite une connaissance approfondie de leurs limites de formabilité. Classiquement, la formabilité d’une tôle est caractérisée par l’apparition d’une striction localisée. Cependant, pour des chargements spécifiques (chemins de déformation complexes ...), la rupture caractérise la formabilité du matériau, la courbe limite de formage à rupture (CLFR) plutôt que celle à striction (CLFS) doit alors être considérée. Pour identifier la CLFS et la CLFR pour des chemins de déformation linéaires et non-linéaires, les méthodes conventionnelles requièrent différents dispositifs expérimentaux et différentes formes d'éprouvette pour atteindre une large gamme de chemins de déformation. L'essai de traction biaxiale, associé à une éprouvette cruciforme, est possible pour la réaliser. De plus, le changement de chemin est activé au cours de l’essai, sans déchargement. Le premier objectif de cette étude est de montrer que l'essai de traction biaxiale, associé à une forme unique d'éprouvette cruciforme, permet de tracer la CLFS et la CLFR pour plusieurs chemins de déformation, qu’ils soient linéaires ou non-linéaires. En premier lieu, des essais ont été réalisés sur des tôles d’alliage d’aluminium 5086 (épaisseur initiale de 4 mm) à partir d’une forme d’éprouvette déjà proposée au laboratoire. Une nouvelle forme d'éprouvette cruciforme a été proposée pour des tôles moins épaisses (2 mm), plus répandues. Cet éprouvette a été validée pour étudier la formabilité d’un acier dual phase DP600 pour plusieurs chemins de déformation. Le deuxième objectif est de discuter la validité de critères classiques de rupture ductile. Pour les deux matériaux, un critère a finalement été identifié pour prédire assez précisément les résultats expérimentaux
Sheet metal forming is very common in industry for producing various components. The optimal use of light alloys or high strength steels in transportation for energy economy, requires in-depth analysis of their formability. Usually, the formability of sheet metal is controlled by the onset of localized necking. However, under specific loadings (complex strain paths...), fracture characterizes the formability and the forming limit curve at fracture (FLCF) instead of the forming limit curve at necking (FLCN) should be considered. For identifying FLCN and FLCF under linear and non-linear strain paths, conventional methods require different experimental devices and geometrical specifications of specimen to cover a wide range of strain paths. However, using the in-plane biaxial tensile test with just one shape of cruciform is sufficient for that, even changes of strain path without unloading can be made during the test. The first objective of this study is to show that the in-plane biaxial tensile test with a single type of cruciform specimen permits to investigate the FLCN and FLCF of sheet metals under different linear and non-linear strain paths. Firstly, the forming limit strains at fracture of AA5086 sheet (t=4 mm) under linear and non-linear strain paths have been characterized, by testing an existed dedicated cruciform specimen. Thinner sheet metals are often used in industry, so a new shape of cruciform specimen with an original thickness of 2 mm was proposed. This specimen is successfully used to investigate the formability of DP600 sheet under linear and two types of non-linear strain paths. The second objective is to discuss the validity of commonly used ductile fracture criteria to predict the onset of fracture. Some ductile fracture criteria were used to produce numerical FLCFs for AA5086 and DP600 sheet. Finally, for the two tested materials, it is possible to find a criterion to predict the experimental FLCFs for either linear or non-linear strain paths
APA, Harvard, Vancouver, ISO, and other styles
17

Erdiller, Emrah Salim. "Experimental Investigation For Mechanical Properties Of Filament Wound Composite Tubes." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605140/index.pdf.

Full text
Abstract:
The aim of this study is to investigate the mechanical properties of continuous fiber reinforced composite tubes, produced by filament winding technique. For this purpose, tensile and split-disk tests were performed with specimens produced with five different fiber materials and two different resin systems. Longitudinal tensile and hoop tensile properties of the selected specimens were determined and the effect of reinforcement direction on the mechanical performance of these composites was investigated. In addition, the effect of a filament-winding processing variable (fiber tension) on longitudinal and hoop tensile properties of the selected composites was obtained. A slight increase in hoop/longitudinal tensile properties of specimens was observed for specimens wounded with tension and with winding angles greater than 60o. The tests were performed according to American Society for Testing and Materials (ASTM) standards. The split-disk tests of selected composite specimens were simulated by the finite element method. For this purpose, a commercial finite element package program was used. Experimental results were used both as input in terms of material data for the finite element study and for comparison purposes. A good agreement was obtained between the simulation results and the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Wenlei. "Mechanical Reliability Enhancement of Single Crystal Silicon Microstructures by Means of Diamond-Like Carbon Film Coating." Kyoto University, 2019. http://hdl.handle.net/2433/236623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Xuan. "Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6110.

Full text
Abstract:
The effect of hydrogen charging current density and tensile strain rate on the mechanical properties of X80 pipeline steel were investigated by slow strain rate test (SSRT), Charpy impact test, and scanning electron microscopy (SEM) in this thesis. The results show that both the ultimate tensile strength and elongation to failure of X80 steel were deteriorated significantly after charging with hydrogen. With a strain rate of 5 x 10-5 s-1, the relative tensile strength and plasticity loss of X80 steel had no significant change within the range of assumed hydrogen partial pressures at room temperature. At room temperature, X80 steel had no apparent variation in ultimate tensile strength and elongation, except at the strain rate of 10-6 s-1. Specimens obtained the greatest relative tensile strength loss and plasticity loss when strained at 10-6 s-1 with a current density of 4.6 mA/cm2. The fracture morphology of two test groups of X80 steel exhibited significant brittle rupture when tested with dynamic hydrogen charging. The impact energy of X80 was not affected by hydrogen charging. Different current density also had no influence on the results of the impact test.
APA, Harvard, Vancouver, ISO, and other styles
20

Campanini, Davide. "Comparison between Direct Tensile and Single Lap Shear for FRCM/SRG composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17203/.

Full text
Abstract:
Negli ultimi decenni sono state sviluppati nuovi materiali e tecnologie per il rinforzo e la riabilitazione delle strutture esistenti. I sistemi più recenti per il rinforzo esterno ed il recupero strutturale sono materiali compositi costituiti da fibre raggruppate in forma di tessuto ed impregnate ed immerse in una matrice inorganica. Quando il tessuto è composto da fibre di aramide, vetro, basalto, PBO o carbonio, questi compositi sono comunemente definiti Fabric Reinforced Cementitious Matrix (FRCM), mentre, quando il tessuto è fatto da micro-trefoli di acciaio, sono definiti Steel Reinforced Grout (SRG). In accordo con le rispettive normative, negli Stati Uniti le proprietà meccaniche dei compositi FRCM/SRG si misurano tramite una prova di tensione diretta su provini caricati utilizzando ancoraggi a forcella (clevis grip). In Europa, invece, si ricorre ad una prova di aderenza o single-lap shear su compositi applicati su un substrato cementizio o in muratura. L’obiettivo di questa tesi è confrontare i risultati ottenuti mediante i due metodi di caratterizzazione sviluppando una campagna sperimentale su due diversi tipi di compositi: un FRCM con fibra di carbonio (CFRCM) e un composito SRG. L’effetto di tre diverse lunghezze di ancoraggio è stato studiato per il sistema CFRCM. L’influenza del numero di strati di tessuto è stata analizzata sia per il sistema CFRCM che SRG considerando uno o due strati. I risultati mostrano che le differenti condizioni al contorno influenzano in modo significativo la caratterizzazione dei compositi. Per ottenere una misura rappresentativa delle proprietà meccaniche dei compositi FRCM/SRG, è richiesta una lunghezza di ancoraggio sufficiente. Questo studio contribuisce a sviluppare un database sperimentale che consenta la definizione di affidabili protocolli di caratterizzazione. Inoltre, fornisce informazioni rilevanti ai fini progettuali riguardo la lunghezza di ancoraggio adeguate e all’efficacia di applicazioni multistrato.
APA, Harvard, Vancouver, ISO, and other styles
21

Stuhlen, Birgit. "The mechanical design of turgid plant tissues." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Makhothe, Kelebohile. "The effect of different parameters on the rupture properties of leather in a tensile test." Thesis, Rhodes University, 1998. http://hdl.handle.net/10962/d1005247.

Full text
Abstract:
This thesis explores the effect of some parameters on the breaking strain, strength and the shape of the stress-strain curve of bovine leather as revealed by uniaxial tensile tests. The parameters explored are fatliquoring, moisture content, strain rate and cyclic stressing. A basic mechanical model of a simple two-dimensional weave is created and used to describe the effect of such a weave on the shape of the stress-strain curve. It is found that fatliquoring lubricates and opens up the fibre structure and thereby makes the weave more extensible. The increase in the extensibility depends on the direction in which samples are cut and therefore the manner in which the fibres are orientated. Patliquoring is observed to increase the degree to which fibres pull out at break. There are indications that the strength of fatliquored leather decreases with time of storage, while the extensibility increases. The effect of the strain rate on the breaking strain, the tensile strength and the shape of the stress-strain curve is not very clear. The stressing and releasing leather decreases the strength of leather when the fibres are orientated preferentially along the direction of the applied stresses, but has an insignificant effect in the transverse direction. It is concluded that the degree of lubrication in a weave and the orientation of the fibre bundles significantly influence the performance of leather in a test. Both moisture and fatliquoring lubricate the weave. In both the cases the degree of fibre adhesions in a weave is decreased. A well lubricated weave allows its constituent fibres to slide and align along the direction of the applied stresses, and this tends to occur before the fibres themselves areextended. Cyclic testing, at low strains, ruptures fibre adhesions and as a result induces permanent set and makes a hide softer. Most of the work done in breaking the fibre adhesion is done in the first cycle.
APA, Harvard, Vancouver, ISO, and other styles
23

Wen, Haifang. "Fatigue Performance Evaluation of WesTrack Asphalt Mixtures Based on Viscoelastic Analysis of Indirect Tensile Test." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010804-014530.

Full text
Abstract:

This dissertation presents the viscoelastic characterization of asphalt concrete in indirect tensile testing and the development of a simple performance test for fatigue cracking. The analytical solutions to calculate creep compliance and center strain from displacements measured on the specimen surface were developed based upon the theory of viscoelasticity. These developments were verified by 3-D finite element viscoelastic analysis and tests. A simple performance test was developed based on these solutions and work potential theory. To evaluate its validity, the indirect tensile tests were performed on WesTrack asphalt mixtures varying aggregate gradations, asphalt contents, and air void contents. Fracture energy obtained from indirect tensile strength testing and creep testing was highly correlated with field performance of these mixtures at WesTrack. A combination of indirect tensile creep and strength testing was proposed as a simple performance test for fatigue cracking. Recommendations for expanding the applicability of the simple performance test developed are provided.

APA, Harvard, Vancouver, ISO, and other styles
24

Milot, Timothy S. "Establishing Correlations for Predicting Tensile Properties Based on the Shear Punch Test and Vickers Microhardness data." Thesis, University of California, Santa Barbara, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1536555.

Full text
Abstract:

A series of mechanical tests was performed on a matrix of pressure vessel alloys to establish correlations between shear punch tests (SPT), microhardness (Hv), and tensile data. The purpose is to estimate tensile properties from SPT and Hv data. Small specimen testing is central to characterization of irradiation-induced changes in alloys used for nuclear applications. SPT have the potential for estimating tensile yield and ultimate strengths, strain hardening and ductility data, by using TEM disks, for example. Additional insight into SPT was gained by performing finite element analysis (FEA) simulations.

APA, Harvard, Vancouver, ISO, and other styles
25

Weise, Christiane. "Beschreibung des Ermüdungsverhaltens von Asphaltgemischen unter Verwendung von ein- und mehraxialen Zugschwellversuchen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1232368978923-01734.

Full text
Abstract:
Für die Ermittlung der Ermüdungsfunktion sowie der E-Modul-Funktion sind in den europäischen Normen verschiedene Versuchsarten vorgesehen. In Deutschland werden bisher der Einaxiale Zugschwellversuch und der Spaltzugschwellversuch angewandt. Diese vergleichsweise einfachen Versuche können das Ermüdungsverhalten eines Asphaltgemisches in situ nur mit Einschränkungen (z.B. hinsichtlich des vorherrschenden Spannungszustandes) wiedergeben. Der Triaxialversuch mit Zug-/Druckschwellbelastung kann zur realitätsnahen Untersuchung des Ermüdungsverhaltens (Ermüdungsfunktion in Verbindung mit der E-Modul-Funktion) angewandt werden, da neben der frei wählbaren Zugbeanspruchung zusätzlich beliebige Druckbeanspruchungen normal zur Zugspannung auf den Probekörper aufgegeben werden können. Aufgrund der aufwändigen Versuchsdurchführung findet der Versuch bisher nur in der Forschung Anwendung. Die für die Dissertation ausgewerteten Daten umfassen die Ergebnisse von Einaxialen Zugschwellversuchen, Spaltzugschwellversuchen und Triaxialversuchen mit Zug-/Druckschwellbelastung an insgesamt sechs verschiedenen Asphaltgemischen. Die Einflüsse aus dem Hohlraumgehalt, der Belastungsfrequenz sowie der Mischgutart und -sorte auf das Ermüdungsverhalten konnten herausgearbeitet werden. Weiterhin gelang aus den Ergebnissen aller Versuchsarten die Aufstellung von Ermüdungsflächenfunktionen in Abhängigkeit von Dehnungsanteilen infolge verschiedener Spannungskomponenten (mehraxialer Spannungszustand) unter Berücksichtigung der in den Probekörpern der verschiedenen Ermüdungsversuche auftretenden Spannungskombinationen Zug- zu Druckspannung. Die Gültigkeit der ermittelten Ermüdungsflächenfunktion für andere, über die in den angewendeten Versuchsarten hinausgehende Spannungskombinationen muss mit Hilfe geeigneter (noch zu entwickelnder) Versuche überprüft werden.
APA, Harvard, Vancouver, ISO, and other styles
26

Spišák, Lukáš. "Analýza plastových materiálů vyrobených aditivní technologií 3D tisku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417125.

Full text
Abstract:
The diploma thesis deals with the influence of colouring additives and setting of the process parameters of 3D printing on the mechanical and surface properties of samples made of PLA material. The work describes the process of filament production, as well as the printing of normalized samples on a 3D printer using the additive method Fused Deposition Modeling. The impact of 3 types of colouring additives is evaluated on the basis of tensile test, hardness test and surface analysis. The evaluated quantities are primarily tensile strength, hardness, surface texture, roughness and corrugation. The work also evaluates the influence of the percentage of sample filling, the direction of the fibres of the inner filling and the orientation of the samples in the printing chamber of the 3D printer on the mechanical properties. The results are evaluated on the basis of the tensile test and the evaluated quantities are mainly the tensile strength, the ultimate stress and the modulus of elasticity in traction. The work is completed by evaluating the results and overall recommendations for filament manufacturers and users.
APA, Harvard, Vancouver, ISO, and other styles
27

Gordiak, Michal. "Použití protlačovacích zkoušek na miniaturních discích pro materiály s vyšší úrovní strukturní nehomogenity." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417140.

Full text
Abstract:
Master's thesis deals with evaluating applicability of correlation relationships between material characteristics determined by Small Punch Test and standard tensile test for material AlSi7Mg0,6 manufactured by casting and technology SLM. Results of Small Punch Tests are correlated with yield strength, tensile strength, elongation, and Young's modulus of elasticity. For each material characteristic various correlation methods are compared, while for each method corresponding coefficients are determined. Consequently, the applicability of individual methods is evaluated by substituting coefficients determined by various studies. Primarily analyzed are correlation methods for which future normalization is expected. The results of master's thesis show that structural inhomogeneity caused by SLM process does not result in high inaccuracies in determining material characteristics. Larger impact on material characteristics has high porosity, which was identified in cast material and led to significant deviations in evaluating tensile strength and elongation.
APA, Harvard, Vancouver, ISO, and other styles
28

Chudoba, Rostislav, Martin Konrad, Markus Schleser, Konstantin Meskouris, and Uwe Reisgen. "Parametric study of tensile response of TRC specimens reinforced with epoxy-penetrated multi-filament yarns." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244043793029-57511.

Full text
Abstract:
The paper presents a meso-scopic modeling framework for the simulation of three-phase composite consisting of a brittle cementitious matrix and reinforcing AR-glass yarns impregnated with epoxy resin. The construction of the model is closely related to the experimental program covering both the meso-scale test (yarn tensile test and double sided pull-out test) and the macro-scale test in the form of tensile test on the textile reinforced concrete specimen. The predictions obtained using the model are validated using a-posteriori performed experiments.
APA, Harvard, Vancouver, ISO, and other styles
29

Guo, Zheying. "Mechanical Investigation of Damage in Ligaments." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77075.

Full text
Abstract:
Sprains are the most common injuries to ligamentous tissues. They are classified as first-degree, second-degree, or third-degree sprains depending upon their severity. First-degree sprains are the result of over-stretching of ligaments. Second-degree sprains involve partial tears of the ligaments. In third-degree sprains, the ligaments are completely torn. Although first- and second-degree sprains are not as severe as third-degree sprains, they occur more frequently. The mechanisms leading to sprains are still not well understood. Therefore, histo-mechanical experiments and theoretical studies are needed to advance our current knowledge on the etiology of sprains. In the first part of this study, a structurally-based constitutive equation is proposed to simulate the damage evolution process in ligaments. The ligament is modeled as a bundle of crimped collagen fibers that are assumed to be oriented along one direction, the physiological loading direction. The gradual straightening of collagen fibers determines the nonlinearity in the toe region of the tensile axial stress-strain curve. Straight collagen fibers behave as a linear elastic material. The gradual damage of collagen fibers determines the nonlinearity in the failure region of the tensile axial stress-strain curve. The parameters in the constitutive equation are estimated by curve fitting experimental data on rat medial collateral ligaments (MCLs) published in the biomechanics literature. In the second part of this study, mechanical experiments are performed in order to identify and quantify damage in ligamentous tissues. MCLs, which are harvested from Sprague-Dawley (SD) rats, are subjected to displacement controlled tensile tests. Specifically, the ligaments are stretched to consecutively increasing stretch values until their complete failure occurs. The elongation of the toe region and decrease in tangent modulus of the linear region of the collected stress-strain data are analyzed and two significantly different damage threshold strains are determined. The effect of age and skeletal maturation on the damage evolution process is also investigated by performing mechanical tests on MCLs isolated from two age groups of SD rats. In the third part of this study, scanning electron microscopy (SEM) is used to determine variations in the microstructure of ligaments that are associated with the elongation of the toe region and decrease in tangent modulus of the linear region of the stress-strain curve. MCLs from SD rats are subjected to different threshold strains that produce damage and, subsequently, examined using SEM. By comparing the morphology of collagen fibers and fibrils in undamaged and damaged MCLs, the microscopic variations induced by strain are determined and correlated to the observed macroscopic mechanical damage.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
30

Demková, Eva. "Polypropylen s řízenou dobou života." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-295673.

Full text
Abstract:
The master´s thesis is focused on the characterization of degradation process of polypropylene and polypropylene with statistic copolymer into which manganese (II) stearate and cobalt (II) stearates were added at 0.05, 0.10 and 0.20 wt.% loadings. The aim of the thesis was to prepare the controlled life-time polypropylene. The degradation was studied at varying temperatures and prodegradant loadings. The prodegradants were synthetized and characterized using the FTIR and DSC techniques. Thermooxidation of the tested samples induced the changes in crystallinity, melting points and melt-flow indexes. Tensile strength and other mechanical properties were determined by means of the tensile test. The carbonyl index was determined using FTIR, the thermooxidation stability test was used to determine the activation energies of reactions. The changes in morphology of degraded samples were observed by SEM analysis.
APA, Harvard, Vancouver, ISO, and other styles
31

Kannan, Manigandan. "The Microstructure, Hardness, Impact Toughness, Tensile Deformation and Final Fracture Behavior of Four Specialty High Strength Steels." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1311884520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bas, Gamze S. "Predictive Modeling For Rate Dependent Toughened-Adhesive Behavior During Impact." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1499078572477787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Weise, Christiane. "Beschreibung des Ermüdungsverhaltens von Asphaltgemischen unter Verwendung von ein- und mehraxialen Zugschwellversuchen." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23558.

Full text
Abstract:
Für die Ermittlung der Ermüdungsfunktion sowie der E-Modul-Funktion sind in den europäischen Normen verschiedene Versuchsarten vorgesehen. In Deutschland werden bisher der Einaxiale Zugschwellversuch und der Spaltzugschwellversuch angewandt. Diese vergleichsweise einfachen Versuche können das Ermüdungsverhalten eines Asphaltgemisches in situ nur mit Einschränkungen (z.B. hinsichtlich des vorherrschenden Spannungszustandes) wiedergeben. Der Triaxialversuch mit Zug-/Druckschwellbelastung kann zur realitätsnahen Untersuchung des Ermüdungsverhaltens (Ermüdungsfunktion in Verbindung mit der E-Modul-Funktion) angewandt werden, da neben der frei wählbaren Zugbeanspruchung zusätzlich beliebige Druckbeanspruchungen normal zur Zugspannung auf den Probekörper aufgegeben werden können. Aufgrund der aufwändigen Versuchsdurchführung findet der Versuch bisher nur in der Forschung Anwendung. Die für die Dissertation ausgewerteten Daten umfassen die Ergebnisse von Einaxialen Zugschwellversuchen, Spaltzugschwellversuchen und Triaxialversuchen mit Zug-/Druckschwellbelastung an insgesamt sechs verschiedenen Asphaltgemischen. Die Einflüsse aus dem Hohlraumgehalt, der Belastungsfrequenz sowie der Mischgutart und -sorte auf das Ermüdungsverhalten konnten herausgearbeitet werden. Weiterhin gelang aus den Ergebnissen aller Versuchsarten die Aufstellung von Ermüdungsflächenfunktionen in Abhängigkeit von Dehnungsanteilen infolge verschiedener Spannungskomponenten (mehraxialer Spannungszustand) unter Berücksichtigung der in den Probekörpern der verschiedenen Ermüdungsversuche auftretenden Spannungskombinationen Zug- zu Druckspannung. Die Gültigkeit der ermittelten Ermüdungsflächenfunktion für andere, über die in den angewendeten Versuchsarten hinausgehende Spannungskombinationen muss mit Hilfe geeigneter (noch zu entwickelnder) Versuche überprüft werden.
APA, Harvard, Vancouver, ISO, and other styles
34

Kasvayee, Keivan Amiri. "Microstructure and deformation behaviour of ductile iron under tensile loading." Licentiate thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Material och tillverkning – Gjutning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-28335.

Full text
Abstract:
The current thesis focuses on the deformation behaviour and strain distribution in the microstructure of ductile iron during tensile loading. Utilizing Digital Image Correlation (DIC) and in-situ tensile test under optical microscope, a method was developed to measure high resolution strain in microstructural constitutes. In this method, a pit etching procedure was applied to generate a random speckle pattern for DIC measurement. The method was validated by benchmarking the measured properties with the material’s standard properties. Using DIC, strain maps in the microstructure of the ductile iron were measured, which showed a high level of heterogeneity even during elastic deformation. The early micro-cracks were initiated around graphite particles, where the highest amount of local strain was detected. Local strain at the onset of the micro-cracks were measured. It was observed that the micro-cracks were initiated above a threshold strain level, but with a large variation in the overall strain. A continuum Finite Element (FE) model containing a physical length scale was developed to predict strain on the microstructure of ductile iron. The materials parameters for this model were calculated by optimization, utilizing Ramberg-Osgood equation. For benchmarking, the predicted strain maps were compared to the strain maps measured by DIC, both qualitatively and quantitatively. The DIC and simulation strain maps conformed to a large extent resulting in the validation of the model in micro-scale level. Furthermore, the results obtained from the in-situ tensile test were compared to a FE-model which compromised cohesive elements to enable cracking. The stress-strain curve prediction of the FE simulation showed a good agreement with the stress-strain curve that was measured from the experiment. The cohesive model was able to accurately capture the main trends of microscale deformation such as localized elastic and plastic deformation and micro-crack initiation and propagation.
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Wenbo. "Failure Analysis of High Nickel Alloy Steel Seal Ring Used in Turbomachinery." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6635.

Full text
Abstract:
The system of upper high nickel alloying steel seal ring and lower high nickel alloying steel seal ring, installed in the grooves of turbine, can extend out and fit with the wall of valve cage, resulting in forming a good seal under the pressure. In the project, the failure steel seal ring is considered. This situation had threatened the safety of the whole steam turbine system. The purpose of this study is to identify the failure cause of the steel seal ring used in nuclear steam turbines. New high nickel steel alloy seal ring was compared with the failed seal ring. The dimensions of macroscopic ring with clearly plastic deformation were measured using calipers. Surface morphology of ring was observed by optical microscopy through metallographic analysis. There is a lot of precipitation in the grain boundaries of used seal ring, along with smaller grain size than the new seal ring. To explore the composition of precipitation, scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDS) were used. The results indicated that the concentration of titanium (Ti) and molybdenum (Mo) was higher in the precipitation of used seal ring. At the same time, the hardness and elastic modulus of used seal ring were reduced, measured by nanoindentation test. In-situ SEM tensile testing were used to record and analyze the generation of crack source and crack development under applied load. The reasons of the seal ring failure can be answered because of these experimental results at both macroscopic and microscopic scales. The main reason of the seal ring failure is a combination of long-term stress and elevated temperature during turbine operation. Complex work environment caused recrystallization and recovery, resulting in grain refinement and secondary phase precipitation. Further embodiment, recrystallization and recovery caused the elastic modulus and hardness of used seal ring decrease. Moreover, a lot of secondary phase precipitates appeared at grain boundaries during use. The appearance of secondary phase precipitates become the weakest part of used seal ring. The applied load lead to seal ring failure from the formation of microvoids to microvoids aggregated becoming microcracks until to the appearance of cracks at macroscopic scale. These changes of microscopic structure ultimately reflected in critical plastic deformation of used seal ring.
APA, Harvard, Vancouver, ISO, and other styles
36

Nguyen, Tom P. "MITIGATING MOISTURE SUSCEPTIBILITY IN HOT-MIX ASPHALT CONCRETE." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/467.

Full text
Abstract:
Moisture damage in asphalt pavement has always been a problem for drivers, bicyclists, and pedestrians. The primary objective of this study is to evaluate moisture susceptibility of Hot-Mix Asphalt (HMA) and to investigate mitigation techniques using different antistripping agents. Three types of antistripping agents were used in this research investigation. Two of which are chemical based and the other is hydrated lime. The two types of liquid antistripping agents used in this study include Arr Maz CC LOF-6500 and Arr Maz CC XL-9000. These two liquid antistripping agents were tested at 0.25%, 0.50%, and 0.75%. Hydrated Lime was tested at 1.0%, 1.5%, and 2.0%. The binder used in this study is Asphalt Performance Grade (PG) 64-16 provided by Oxnard Refinery. The crushed stone aggregate used in this study was provided by Cal Portland. This study follows the guidelines of standardized AASHTO, ASTM, and SuperPave mix design for all preparation and test procedures. A total of 120 4-inch by 2.83-inch core specimens with void ratios between 6 to 8 percent were created to test for moisture susceptibility in accordance with the Modified Lottman Test, which tested for Indirect Tensile Strength and Immersion Compression Test, which tested for Compression Strength and Elasticity. During the test, half of these specimens were placed in a hot water bath for 24 hours to condition the sample to represent field performance and the other half were unconditioned. Based on the results, the best liquid antistripping agent is XL-9000 at 0.50% and hydrated lime is most efficient at a dosage rate of 1.5%. The best performing antistripping additive for the value is hydrated lime at 1.5%.
APA, Harvard, Vancouver, ISO, and other styles
37

Kratochvíl, Tomáš. "3D FDM tiskárna reprap a parametry tisku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232069.

Full text
Abstract:
This master thesis summarizes the current knowledge about non-commercial 3D printing FDM technology. The goal of this thesis is to demonstrate the gained knowledge by building a 3D printer which can partially replicate itself, and to evaluate its technological parameters. The experimental part of this work is focused on the impact of the changes in technological parameters of printing on mechanical properties of printed parts.
APA, Harvard, Vancouver, ISO, and other styles
38

Bertolla, Luca. "Mechanical Reinforcement of Bioglass®-Based Scaffolds." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234586.

Full text
Abstract:
Bioactive glasses exhibit unique characteristics as a material for bone tissue engineering. Unfortunately, their extensive application for the repair of load-bearing bone defects is still limited by low mechanical strength and fracture toughness. The main aim of this work was two-fold: the reinforcement of brittle Bioglass®-based porous scaffolds and the production of bulk Bioglass® samples exhibiting enhanced mechanical properties. For the first task, scaffolds were coated by composite coating constituted by polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC). The addition of PVA/MFC coating led to a 10 fold increase of compressive strength and a 20 fold increase of tensile strength in comparison with non-coated scaffolds. SEM observations of broken struts surfaces proved the reinforcing and toughening mechanism of the composite coating which was ascribed to crack bridging and fracture of cellulose fibrils. The mechanical properties of the coating material were investigated by tensile testing of PVA/MFC stand–alone specimens. The stirring time of the PVA/MFC solution came out as a crucial parameter in order to achieve a more homogeneous dispersion of the fibres and consequently enhanced strength and stiffness. Numerical simulation of a PVA coated Bioglass® strut revealed the infiltration depth of the coating until the crack tip as the most effective criterion for the struts strengthening. Contact angle and linear viscosity measurements of PVA/MFC solutions showed that MFC causes a reduction in contact angle and a drastic increase in viscosity, indicating that a balance between these opposing effects must be achieved. Concerning the production of bulk samples, conventional furnace and spark plasma sintering technique was used. Spark plasma sintering performed without the assistance of mechanical pressure and at heating rates ranging from 100 to 300°C /min led to a material having density close to theoretical one and fracture toughness nearly 4 times higher in comparison with conventional sintering. Fractographic analysis revealed the crack deflection as the main toughening mechanisms acting in the bulk Bioglass®. Time–dependent crack healing process was also observed. The further investigation on the non-equilibrium phases crystallized is required. All obtained results are discussed in detail and general recommendations for scaffolds with enhanced mechanical resistance are served.
APA, Harvard, Vancouver, ISO, and other styles
39

Valavala, Pavan Kumar. "Uniaxial Tensile and Creep Behavior of Omnisil Membranes in Membrane Based Wet Electrostatic Precipitator." Ohio University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1129144907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dinh, Quoc Dan. "Brazilian test on anisotropic rocks." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2011. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-76331.

Full text
Abstract:
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab. A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc. There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material
Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht. Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen. Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen
APA, Harvard, Vancouver, ISO, and other styles
41

Kostková, Jana. "Porovnání vlastností dvou výrobků pro umělá kluziště na bázi kaučuku etylén-propylen-dien." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-217150.

Full text
Abstract:
This master thesis deals with characterization of two black and white products based on ethylene-propylene-diene rubber (EPDM) used for skating rink. Products marked with A and are different in their diameter of circular tubes trough which cooling medium passes and also in the distance of these tubes. Both of materials were characterized in order to determine whether it is the EPDM and how are they different. The characterization methods were used: differential scanning calorimetry, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, tensile test, swelling test, thermooxidative test. The composition of both materials, including fillers and others additives is almost the same but difference is in structure of EPDM and probably also in interaction with fillers, what exhibits different mechanical properties, thermooxidative stability and thermal capacity. These differences which have been found are essential for long-term use properties of both materials.
APA, Harvard, Vancouver, ISO, and other styles
42

Arshad, Mubeen. "Damage tolerance of 3D woven composites with weft binders." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/damage-tolerance-of-3d-woven-composites-with-weft-binders(2b1435bc-fdb7-47c3-b555-ca5ea2883b4b).html.

Full text
Abstract:
3D woven composites, due to the presence of through-thickness fibre bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, the ability to withstand damage depends on weave architecture as well as the geometry of individual tows. A substantial amount of research has been performed to understand in-plane properties as well as the performance of 3D woven composites exposed to impact loads, but there is limited research on the damage tolerance and notch sensitivity of 3D weaves and no work is reported on the damage tolerance of 3D weaves with a weft binding pattern. In view of the recent interest in 3D woven composites, the influence of weft binder on the tensile, open hole tensile, impact resistance and subsequent residual compressive strength properties and failure mechanisms of 3D woven composites was investigated against equivalent UD cross-ply laminate. Four different 3D woven architectures; layer-to-layer, angle interlocked, twill angle interlock and modified angle interlock structures were produced under identical weaving conditions. All the above mentioned tests were performed in both the warp and weft directions on 3D woven and UD cross-ply laminates. Stress concentration and yarn waviness due to through-thickness reinforcement led to lower mechanical properties compared with the UD cross-ply laminate. However, improved in-plane and damage tolerance properties of 3D woven composites under tensile loads were achieved by modifying the weave architecture. The influence of the weave architecture and binder yarn orientation on the notch insensitivity and damage tolerance of 3D woven composites was less significant for compressive loads. Despite the lower undamaged compression strength of 3D woven structures, their residual compressive strength was found to be superior to their equivalent UD cross-ply laminates. The lower rate of strength reduction in the 3D woven fabrics laminates was attributed to a crack bridging mechanism, effectively inhibiting delamination propagation.
APA, Harvard, Vancouver, ISO, and other styles
43

Čermáková, Klára. "Úprava závěsu bočních dveří osobního automobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254288.

Full text
Abstract:
This thesis introduces issues of passenger car side-door hinges. Practical part of this thesis deals with modifying the current low-cost side-door hinge for Edscha Automotive Kamenice s.r.o. First, material was chosen to decrease weight while maintaining the required mechanical properties. Then follows the detail design of the hinge model, which was created in the software program Catia. Heat and surface treatments are described. Both treatments ensures the hinge's final features. To verify the strength of the hinge, tensile and sag test was simulated in Ansys. Subsequently, record from the consultation of the hinge's manufacturability in series and the hinge’s cutting plans are provided. At the end of the thesis, the assembling procedure is suggested. Final part of the thesis compares the developed low-cost hinge against two similar side door hinges.
APA, Harvard, Vancouver, ISO, and other styles
44

Morrone, Angela. "Development and characterization of a new welding process for Al and Cu layers for Lithium ion battery manufacturing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22666/.

Full text
Abstract:
The goal of this thesis project is to characterize and develop a new welding process for two Al and two Cu layers applicated to lithium ion battery manufacturing. To reach this scope two different technology have been tested: a punch system (which has been included in an automated trimmer machine) and a burin system (whose tip has been inserted in a milling machine). Different material thicknesses have been used; for Al: 17 µm, 23 µm, 106 µm and 154 µm and for Cu: 11 µm. Two types of tensile tests, pull-off and peel-off, have been used to evaluate the goodness of the weldings, since there is no evidence in literature. Cu weldings did not give a positive response while Al weldings give really interesting results. Burin system compared to punch system (only for Al 17 µm) has resulted the best one cold welding technology, so that it has been patented. Lastly, a comparison among this technique, Ultrasonic Metal Welding and Laser Beam Welding has been effectuated.
APA, Harvard, Vancouver, ISO, and other styles
45

Shahid, Sharlin, and Widaad Gukhool. "Experimental Testing and MaterialModeling of Anisotropy in InjectionMoulded Polymer Materials." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19720.

Full text
Abstract:
Experimental characterization of the mechanical properties in a thin injection moulded Low-Density Polyethylene (LDPE) plate is per- formed in this work. Anisotropy in LDPE at different material orientations is measured from the Digital Image Correlation (DIC) observation of the specimens during uniaxial tensile test. From the test response and observation from DIC, the studied material is found to be significantly anisotropic. Finite Element simulation (FE-simulation) of in-plane anisotropy of material is carried in AbaqusTM R2020 using available models like Hill48 and Barlat2004. When necessary the simulation plastic potentials for these models are optimized against experimental yield stress ratio (R) and anisotropic ratio (r). To express the nonlinear mechanical behavior, a suitable hardening extrapolation model, namely Swift/Hockett-Sherby is selected from several extrapolation models based on experimental data. To validate the experimental methods, simulation methods and material characterization process, finite element simulation results such as force displacement, strain distribution and different anisotropic related properties are compared with the experimental data. Finally, advantages and disadvantages of different simulation models are discussed.
APA, Harvard, Vancouver, ISO, and other styles
46

Kömi, J. (Jukka). "Hot ductility of austenitic and duplex stainless steels under hot rolling conditions." Doctoral thesis, University of Oulu, 2001. http://urn.fi/urn:isbn:9514265602.

Full text
Abstract:
Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the softening and cracking phenomena under hot rolling conditions. For as-cast, high-alloyed and duplex stainless steels with a low impurity level, the cracking tendency was observed to increase with increasing pass strain and temperature, being minimal for the small strain of 0.1. No cracking occurred in these steels when rolled in the wrought condition. It could be concluded that the cracking problems are only exhibited by the cast structure with the hot ductility of even partially recrystallised steel being perfectly adequate. However, the recrystallisation kinetics of the high-alloyed austenitic stainless steels, determined by stress relaxation and double-pass rolling tests, were found to be so slow that only partial softening can be expected to occur between roughing passes under normal rolling conditions. In the duplex steel, the restoration is fairly fast so that complete softening can occur within typical interpass times in hot rolling, while certain changes in the phase structure take place as well. Sulphur was found to be an extremely harmful element in duplex stainless steel with regard to their hot ductility so that severe cracking can take place with sulphur content above 30 ppm. However, the effect of sulphur can be eliminated by reducing its content and by calcium or Misch metal treatments that significantly increase the number and decrease the average size of the inclusions. It seems that the desulphurisation capacity of an element is the most important property for assessing its usefulness in reducing the detrimental influence of sulphur. The hot ductility of type 316L stainless steel determined by tensile tests was found to be better for nitrogen content of 0.05 wt-% than 0.02%, while in double-hit tensile tests the hot ductility values were identical. The mechanism whereby nitrogen affects hot ductility remains unclear but a retarding effect on static recrystallisation was observed.
APA, Harvard, Vancouver, ISO, and other styles
47

Othman, Alias B. "A novel tensile stress relaxation test : development and applications to a study of non-rubber constituents and fillers in natural rubber." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/26873.

Full text
Abstract:
A novel tensile stress relaxation test has been developed. It measures the residual stress in slender specimens mounted on a simple test frame by creating a small bowstring-like movement and measuring the force required to do so. Unlike the commoner compression tests, it permits a high ratio of exposed surface to volume to be maintained in the specimens, facilitating study of environmental effects. It also avoids suppression of any effects where progress of surface cracking might play an important part. The accuracy of the test is estimated at ±5% and, unlike simple tensile tests, would suffer no further deterioration from friction or adhesion of frame components. The test is cost-effective and the frames can operate in a wide range of temperatures and environments.
APA, Harvard, Vancouver, ISO, and other styles
48

Andersson, Viktor, and Andreas Larsson. "Project ABSS : Adhesive bonding of stainless steels." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13707.

Full text
Abstract:
This report aims to increase the scientific knowledge about long-term prospects for the adhesive and adhesive joints for bonding of stainless steels. The effects of water, temperature and chemicals on the adhesive and adhesive joints are investigated. Stainless steel plates are pretreated with a primer and isopropanol, there after joined together with single lap modeling. The strength of the joint is tested with a tensile test and additionally a watertightness test is performed to determine if the joints are watertight. For this project three versions of stainless steels is used and two different technologies of two- part adhesives, silicone and silane-modified polymer and one technology of tape, a double coated acrylic foam tape are tested. The result shows that all the adhesives fails cohesively and that tape fails partly adhesively. Result shows that all tests are affected by water, temperature and chemicals on different levels but tape is affected the most with a minimum of 40% loss in shear strength. Watertightness test shows that aged tape joints are not watertight. The polymer shows no signs of decreasing in shear strength and is watertight, but does become more viscous by aging. The report shows that a possible combination of adhesive and pretreatment that can withstand the effects of water, temperature and chemicals is found. The polymer presents a possibility to bond stainless steel with a simple pretreatment. Tape didn’t pass the test in a suitable way but presents opportunities if a sufficient pretreatment can be found.
APA, Harvard, Vancouver, ISO, and other styles
49

Černý, Martin. "Stanovení mechanických vlastností materiálů používaných pro 3D tisk." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402542.

Full text
Abstract:
The thesis deals with the determination of mechanical properties of materials used for 3D printing (ABS, nylon and PLA). Standardized samples produced using a 3D printer using the Fused Deposition Modeling method were subsequently used for mechanical testing. The work is also extended to determine the mechanical properties of samples made by Soft Tooling. For the production of Soft Tooling samples, polyurethane resins SG 2000 and SG 145 were used. Individual materials were analyzed by mechanical tests (tensile test and hardness test). Surface integrity parameters have also been determined for 3D-printed materials. Parameters were selected from the individual tests (tensile strength, modulus of elasticity) ductility and hardness), which were subsequently statistically processed. The work is concluded by evaluating the results obtained, which were compared with the values given in material sheets.
APA, Harvard, Vancouver, ISO, and other styles
50

NYSTRÖM, ANNA-KARIN, and JOSEFINE OLSSON. "Changing to polyester in airbags : A study of two test methods used for polyester fabric analyse." Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17364.

Full text
Abstract:
This thesis is part of an on going project within Autoliv Sweden AB to develop the process in changing the material in airbags. Most airbags are today constructed of fabric in polyamide 6.6 (PA6.6) and the thesis view the possibility of changing the material to one of three different polyesters (PET1, PET2, PET3). Both materials have different properties that have been looked into by two test methods, linear testing and dynamic testing with cold gas. The two testing methods were conducted on plain fabric and on fabric with seam to see differences in the materials when subjected to different stress caused by force or pressure. During testing the seam rupture was measured by filming the test sequences, and used for visual analysis. Tensile testing was conducted using a constant-rate-of-extension machine where the material is subjected to linear force until rupture. Dynamic testing was done with a cold nitrogen gas system using vessels to build up pressure that then releases towards the material putting it under stress. Tensile testing results for elongation do not have significant differences between testing in plain fabric or fabric with seam. PET2 have highest elongation in warp and weft. Visual analysis of specimens shows difference in how materials break, where the reference material in PA6.6 breaks more even than in PET materials. Dynamic testing show that the biggest seam opening do not occur at the highest pressure. In order to understand what is happening with the fabric during testing, three different times have been chosen in the pressure-time chart. Results in dynamic testing on fabric with seam show that PET3 have the smallest seam opening while reference material in PA6.6 has the largest opening. All PET materials have similar properties even if these are not always same as reference material in PA6.6. We can neither discard nor confirm our hypothesis of seam slippage and elongation relates equally in the same material independent of test method. From these results PET2 would not be recommended due to seam opens most at maximum force and the material has the biggest elongation. PET3 would be the recommended material, since seam opening is smallest at measured pressure.
Program: Textilingenjörsutbildningen
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography