Academic literature on the topic 'Temperature of hardening'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temperature of hardening.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Temperature of hardening"
Niitsu, Y., and K. Ikegami. "Effect of Temperature Variation on Cyclic Elastic-Plastic Behavior of SUS 304 Stainless Steel." Journal of Pressure Vessel Technology 112, no. 2 (May 1, 1990): 152–57. http://dx.doi.org/10.1115/1.2928601.
Full textKirakevych, Iryna, Myroslav Sanytsky, and Igor Margal. "Self-Сompacting Сoncretes, which hardening at different temperature conditions." Theory and Building Practice 2020, no. 2 (November 20, 2020): 107–12. http://dx.doi.org/10.23939/jtbp2020.02.107.
Full textRusynko, A. K. "Creep with temperature hardening." Materials Science 33, no. 6 (November 1997): 813–17. http://dx.doi.org/10.1007/bf02355560.
Full textOhno, Nobutada, Ryohei Yamamoto, and Dai Okumura. "Thermo-Mechanical Cyclic Plastic Behavior of 304 Stainless Steel at Large Temperature Ranges." Key Engineering Materials 725 (December 2016): 275–80. http://dx.doi.org/10.4028/www.scientific.net/kem.725.275.
Full textBauer, A., and K. Schreiner. "Dimensional Stability of Low Temperature Surface Hardened Stainless Steel Components*." HTM Journal of Heat Treatment and Materials 77, no. 1 (December 24, 2021): 16–28. http://dx.doi.org/10.1515/htm-2021-0022.
Full textLloyd, David J. "The Work Hardening of some Commercial Al Alloys." Materials Science Forum 519-521 (July 2006): 55–62. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.55.
Full textGeissler, E., and H. W. Bergmann. "Temperature Controlled Laser Transformation Hardening." Key Engineering Materials 46-47 (January 1991): 121–32. http://dx.doi.org/10.4028/www.scientific.net/kem.46-47.121.
Full textLi, L., X. J. Zhu, L. Zhang, and F. Z. Tian. "Damage constitutive model of pure copper at different annealing temperatures." Journal of Physics: Conference Series 2045, no. 1 (October 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/2045/1/012013.
Full textZhu, Jun, and Yin Zhong Shen. "Irradiation Hardening in Ferritic/Martensitic Steel P92 during Ar-Ions Irradiation at Elevated Temperature." Applied Mechanics and Materials 378 (August 2013): 289–92. http://dx.doi.org/10.4028/www.scientific.net/amm.378.289.
Full textOdlum, K. D., and T. J. Blake. "A comparison of analytical approaches for assessing freezing damage in black spruce using electrolyte leakage methods." Canadian Journal of Botany 74, no. 6 (June 1, 1996): 952–58. http://dx.doi.org/10.1139/b96-118.
Full textDissertations / Theses on the topic "Temperature of hardening"
Zangiabadi, Amirali. "Low-temperature interstitial hardening of 15-5 precipitation hardening martensitic stainless steel." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1480769348244855.
Full textMozgovoy, Sergej. "High Temperature Friction and Wear in Press Hardening." Licentiate thesis, Luleå tekniska universitet, Maskinelement, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26232.
Full textGodkänd; 2014; 20140919 (sermoz); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Sergej Mozgovoy Ämne: Maskinelement/Machine Elements Uppsats: High Temperature Friction and Wear in Press Hardening Examinator: Professor Braham Prakash, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Dr Manel Rodriguez Ripoll, AC2T research GmbH, Österrike Tid: Fredag den 21 november 2014 kl 10:00 Plats: E231, Luleå tekniska universitet
Hwang, Kai-Lun H. "Physiological diversity and temperature hardening in adult tick dermacentor variabilis (ACARI: IXODIDAE)." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1149129871.
Full textPADIAL, ARMANDO G. F. "Caracterizacao microestrutural do aco maraging de grau 400 de resistencia mecanica ultra-elevada." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10998.
Full textMade available in DSpace on 2014-10-09T13:56:09Z (GMT). No. of bitstreams: 1 07613.pdf: 5555459 bytes, checksum: 0047c9f052248797761d648268e841ba (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Fan, Yangyang. "Precipitation Strengthening of Aluminum by Transition Metal Aluminides." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/231.
Full textPRASAD, PRASHANTH. "CHARACTERIZATION OF NEW, CAST, HIGH TEMPERATURE ALUMINUM ALLOYS FOR DIESEL ENGINE APPLICATIONS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148315194.
Full textBílková, Lenka. "Nízkoteplotní a kryogenní zpracování cementačních součástí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228073.
Full textDed, Gurdish S. "CHARACTERIZATION OF Ni-RICH NiTiHf BASED HIGH TEMPERATURE SHAPE MEMORY ALLOYS." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/55.
Full textKazi-tani, Zakaria. "Simulation of Hardening of the MahanaKhon Tower Mat Foundation." Thesis, KTH, Betongbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244030.
Full textCementhydratation är resultatet av en serie kemiska reaktioner som sker under tillverkningen av betong. Stora mängder värme genereras, vilket följaktligen kan ge upphov till termiska spänningar och orsaka tidig sprickbildning som påverkar betongens hållfasthet, och bärförmåga. Inkludering av flygaska i betongblandningen har visat sig vara en effektiv metod avsedd att minska temperaturerna som utvecklas under hydratationen i ung betong, särskilt i massiva betongkonstruktioner. Flygaska påverkar också betongens utveckling av tryckhållfasthet, draghållfasthet och elasticitetsmodul. MahanaKhon towers bottenplatta är uppdelad i 14 lager, där flygaska inkluderades i bottenplattans betong. En finit elementmodell av bottenplattan skapades i COMSOL Multiphysics, där de utvecklade temperaturerna och termiska spänningarna i den unga betongen simulerades under bottenplattans härdningsfas. Simuleringarna genomfördes som parameterstudier med olika referenstemperaturer. De simulerade temperaturerna jämfördes vidare med befintliga temperaturmätningar som utfördes i tre olika elevationer i varje gjutetapp. Resultaten av temperaturerna visade att de uppmätta temperaturerna var generellt högre än de simulerade, vilket bland annat kan bero på att betongens värmeledningsförmåga, samt konvektiva värmeöverföringskoefficient inte återspeglade det aktuella fallet. Den numeriska modellen tog inte heller hänsyn till effekten av solinstrålning, som sannolikt skulle ökat betongens temperatur. De maximala temperaturerna hittades mestadels i betongens mittnivå, följt av den lägre nivån och slutligen lägsta nivåerna vid toppen. Det observerades även att de maximala temperaturerna i bottenplattan kunde överstiga 70 °C, vilket generellt anses vara högt då risken för fördröjd ettringitbildning kan uppstå. De höga temperaturerna beror delvis på avsaknad av kylmetoder, såsom kylrör, men även på den höga initialtemperaturen och omgivningstemperaturen. Resultaten av spänningsanalysen påvisade att inga dragspänningar uppstod när referenstemperaturen Tref denierades till 30 °C, som motsvarar den genomsnittliga omgivningstemperaturen. Detta förklaras av att betongen kommer att vara i expansion och följaktligen endast utsättas för tryckspänningar. Efter att Tref ökats till 50 °C, vilken ansågs vara en rimlig estimering i denna studie, uppstod dragspänningar i alla lager i bottenplattan, där vissa utsattes för risk för ytsprickor. De maximala dragspänningarna uppstod vid simuleringarnas slut, vilket var förväntat då temperaturerna var som lägst vid den tidpunkten till följd av att isoleringen avlägsnades. Slutligen höjdes Tref till 70 °C, vilket motsvarar den maximala temperaturen i bottenplattan under härdning. De inducerade dragspänningarna ökade avsevärt på grund av den stora temperaturgradienten mellan Tref och betongtemperaturen. Samtliga lager utsattes i detta fall för risk för genomgående sprickor. De maximala dragspänningarna påträffades på toppnivån och orsakades av inre tvång. De näst största dragspänningarna fanns i mitten av plattan och var också resultatet av inre tvång. De lägsta dragspänningarna påträffades vid plattans lägre nivå, som utsattes för yttre tvång.
Mukarati, Tulani Wadzanai. "Constitutive modelling of the strain hardening behaviour of metastable AISI 301LN austenitic stainless steel as a function of strain and temperature." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/76008.
Full textThesis (PhD)--University of Pretoria, 2020.
1. Columbus Stainless (Pty) Ltd (No grant number) 2. Department of Science and Technology, S.A. Government, through their FMDN (Ferrous Metals Development Network) programme as administered by Mintek
Materials Science and Metallurgical Engineering
PhD
Unrestricted
Books on the topic "Temperature of hardening"
Dawes, William R. Hardening Semiconductor Components Against Radiation and Temperature. Noyes Publications, 1990.
Find full textHardening semiconductor components against radiation and temperature. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1989.
Find full textAlfred, Grill, and United States. National Aeronautics and Space Administration., eds. Protective coatings of metal surfaces by cold plasma treatments. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Find full textOak Ridge National Laboratory. Metals and Ceramics Division., ed. Modeling the influence of irradiation temperature and displacement rate on hardening due to point defect clusters in ferritic steels. Oak Ridge, TN: Metals and Ceramics Division, Oak Ridge National Laboratory, 1992.
Find full textC, Tew Roy, Schwarze Gene E, and Lewis Research Center, eds. Impact of radiation hardness and operating temperatures of silicon carbide electronics on space power system mass. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textUnited States. National Aeronautics and Space Administration., ed. Investigation of strain aging in the ordered intermetallic compound [beta]-NiAl. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textZinn, S., and S. L. Semiatin. Elements of Induction Heating. ASM International, 1988. http://dx.doi.org/10.31399/asm.tb.eihdca.9781627083416.
Full textE, Hicho G., and United States. National Bureau of Standards., eds. Effects of varying preciptiation hardening temperatures and times on the ability of HSLA-80 to achieve a yield strength of 689.5 MPa and impact properties comparable to HSLA-100. Gaithersburg, Md: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textBook chapters on the topic "Temperature of hardening"
Rokugo, Keitetsu, Daichi Hayashi, Koichi Kobayashi, S. C. Lim, and Hiroo Takada. "Effect of Temperature on Tensile Performance of PVA-SHCC." In Strain-Hardening Cement-Based Composites, 333–41. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_39.
Full textSchmidt, Mario, Hannes Spieth, Christian Haubach, and Christian Kühne. "High temperature waste heat recovery from hardening furnaces." In 100 Pioneers in Efficient Resource Management, 286–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-56745-6_56.
Full textGál, Viktor, and Zsolt Lukács. "Effect of Cooling Channels to the Press Hardening Tools Temperature." In Vehicle and Automotive Engineering 3, 312–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9529-5_28.
Full textSlámová, Margarita, Miloš Janeček, Miroslav Cieslar, and Vladimír Šíma. "Effect of Quenching Temperature on Age Hardening of AA6016 Sheets." In Materials Science Forum, 333–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-469-3.333.
Full textShang, Hongchun, Pengfei Wu, and Yanshan Lou. "Strain Hardening of AA5182-O Considering Strain Rate and Temperature Effect." In Forming the Future, 657–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_54.
Full textXiao, Bing, Hong Hua Su, Shu Sheng Li, and Hong Jun Xu. "Research on Grind-Hardening Temperature and Cooling Rate of 48MnV Microalloyed Steel." In Advances in Grinding and Abrasive Technology XIV, 148–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.148.
Full textRowshan, Reza, and Mária Kocsis Baán. "Laser Transformation Hardening of Different Steels and 3D Modelling of Their Temperature Distribution." In Materials Science, Testing and Informatics II, 399–406. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-957-1.399.
Full textLucas, Glenn E., G. Robert Odette, Peter M. Lombrozo, and J. William Sheckherd. "Effects of Composition, Microstructure, and Temperature on Irradiation Hardening of Pressure Vessel Steels." In Effects of Radiation on Materials: 12th International Symposium Volume II, 900–930. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp87019850023.
Full textTrute, Sebastian, Wolfgang Bleck, and Christian Klinkenberg. "Advanced Material and Processing for the High Temperature Carburising of Microalloyed Case Hardening Steels." In THERMEC 2006, 4470–75. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4470.
Full textCáceres, Carlos H., and A. H. Blake. "Solute and Temperature Effects on the Strain Hardening Behaviour of Mg-Zn Solid Solutions." In Materials Science Forum, 45–50. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-469-3.45.
Full textConference papers on the topic "Temperature of hardening"
Shmatov, Alexander A. "Low-Temperature and High-Temperature Thermochemical Hardening Technologies for Hard Alloys." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95092.
Full textCoponen, J., and D. Schueftan. "IR Temperature Measurement to Monitor Induction Hardening Processes." In AISTech 2021. AIST, 2021. http://dx.doi.org/10.33313/382/287-13612-276.
Full textCoponen, J., and D. Schueftan. "IR Temperature Measurement to Monitor Induction Hardening Processes." In AISTech 2021. AIST, 2021. http://dx.doi.org/10.33313/382/187.
Full textNaraikina, N. V. "Transcription of Desaturase Genes in Low-Temperature Potato Hardening." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-304.
Full textVeeravalli, Varadan Savulimedu, and Andreas Steininger. "Performance of radiation hardening techniques under voltage and temperature variations." In 2013 IEEE Aerospace Conference. IEEE, 2013. http://dx.doi.org/10.1109/aero.2013.6497390.
Full textAbdurahman, Shiras, Robert Frysch, Richard Bismark, Michael Friebe, and Georg Rose. "Calibration free beam hardening correction using grangeat-based consistency measure." In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069502.
Full textZhang, Jianhua, Hongsheng Xu, Yang Yu, and Zhi Wei. "FEM Based Numerical Analysis on the Temperature Field in Grind-hardening." In 2009 International Conference on Computational Intelligence and Security. IEEE, 2009. http://dx.doi.org/10.1109/cis.2009.207.
Full textBodner, S. R., and A. M. Rajendran. "On the strain rate and temperature dependence of hardening of copper." In Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50810.
Full textOberste-Lehn, Ulli, Andreas Karl, and Chad Beamer. "Influence of Machining on Low Temperature Surface Hardening of Stainless Steel." In HT2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.ht2019p0343.
Full textYu, Xinghua, Dongxiao Qiao, Zhili Feng, Paul Crooker, and Yanli Wang. "High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and Nickel Alloys." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28869.
Full textReports on the topic "Temperature of hardening"
Wu, A. S., S. G. Torres, J. T. McKeown, D. S. Urabe, D. C. Freeman, J. P. Lotscher, F. J. Ryerson, et al. Low Temperature Age Hardening in Cast Uranium-6 wt. pct. Niobium. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1438735.
Full textRamakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.
Full textConrad, Hans, and Jay Narayan. Grain Size Hardening and Softening in Tungsten Carbide at Low Homologous Temperatures. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada422872.
Full textHicho, G. E., C. H. Brady, L. C. Smith, and R. J. Fields. Effects of varying precipitation hardening temperatures and times on the ability of HSLA-80 to achieve a yield strength of 689.5 MPa and impact properties comparable to HSLA-100. Gaithersburg, MD: National Bureau of Standards, January 1987. http://dx.doi.org/10.6028/nbs.ir.87-3662.
Full text