To see the other types of publications on this topic, follow the link: Temperature-modulated DSC.

Journal articles on the topic 'Temperature-modulated DSC'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Temperature-modulated DSC.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mesquida, Patrick, Andrä le Coutre, and Jan K. Krüger. "Temperature modulated DSC at intermediate-low temperatures." Thermochimica Acta 330, no. 1-2 (May 1999): 137–44. http://dx.doi.org/10.1016/s0040-6031(99)00028-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fraga, Iria, S. Montserrat, and J. M. Hutchinson. "TOPEM, a new temperature modulated DSC technique." Journal of Thermal Analysis and Calorimetry 87, no. 1 (January 2007): 119–24. http://dx.doi.org/10.1007/s10973-006-7969-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schawe, J. E. K., T. Hütter, C. Heitz, I. Alig, and D. Lellinger. "Stochastic temperature modulation: A new technique in temperature-modulated DSC." Thermochimica Acta 446, no. 1-2 (July 2006): 147–55. http://dx.doi.org/10.1016/j.tca.2006.01.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kanari, Katsuhiko, and Takeo Ozawa. "Simulation of temperature modulated DSC of temperature dependent heat capacity." Thermochimica Acta 304-305 (November 1997): 201–7. http://dx.doi.org/10.1016/s0040-6031(97)00173-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, W. "Study of crystallization kinetics by temperature-modulated DSC." Polymer 41, no. 11 (May 2000): 4119–25. http://dx.doi.org/10.1016/s0032-3861(99)00621-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Righetti, Maria. "Crystallization of Polymers Investigated by Temperature-Modulated DSC." Materials 10, no. 4 (April 24, 2017): 442. http://dx.doi.org/10.3390/ma10040442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boller, A., I. Okazaki, K. Ishikiriyama, G. Zhang, and B. Wunderlich. "Determination of cell asymmetry in temperature-modulated DSC." Journal of thermal analysis 49, no. 2 (August 1997): 1081–88. http://dx.doi.org/10.1007/bf01996796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MENG, F., S. SCHRICKER, W. BRANTLEY, D. MENDEL, R. RASHID, H. FIELDSJR, K. VIG, and S. ALAPATI. "Differential scanning calorimetry (DSC) and temperature-modulated DSC study of three mouthguard materials☆." Dental Materials 23, no. 12 (December 2007): 1492–99. http://dx.doi.org/10.1016/j.dental.2007.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kotera, M., T. Nishino, and K. Nakamae. "Imidization processes of aromatic polyimide by temperature modulated DSC." Polymer 41, no. 10 (May 2000): 3615–19. http://dx.doi.org/10.1016/s0032-3861(99)00546-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boller, A., Y. Jin, and B. Wunderlich. "Heat capacity measurement by modulated DSC at constant temperature." Journal of Thermal Analysis 42, no. 2-3 (August 1994): 307–30. http://dx.doi.org/10.1007/bf02548519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Androsch, R., and B. Wunderlich. "Temperature-modulated DSC using higher harmonics of the Fourier transform." Thermochimica Acta 333, no. 1 (July 1999): 27–32. http://dx.doi.org/10.1016/s0040-6031(99)00090-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schawe, J. E. K. "Modulated temperature DSC measurements: the influence of the experimental conditions." Thermochimica Acta 271 (January 1996): 127–40. http://dx.doi.org/10.1016/0040-6031(95)02562-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schawe, J. E. K. "A comparison of different evaluation methods in modulated temperature DSC." Thermochimica Acta 260 (August 1995): 1–16. http://dx.doi.org/10.1016/0040-6031(95)90466-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schawe, J. E. K., and W. Winter. "The influence of heat transfer on temperature-modulated DSC measurements." Thermochimica Acta 298, no. 1-2 (September 1997): 9–16. http://dx.doi.org/10.1016/s0040-6031(97)00161-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mustapa, Izan R., Robert A. Shanks, and Ing Kong. "Multiple melting behavior of poly(lactic acid)-hemp-silica composites using modulated-temperature differential scanning calorimetry." Journal of Polymer Engineering 34, no. 9 (December 1, 2014): 895–903. http://dx.doi.org/10.1515/polyeng-2013-0161.

Full text
Abstract:
Abstract Poly(lactic acid) (PLA)-hemp-nanosilica (PHS) composites were prepared by impregnation of hemp woven fabric with PLA solution. Nanosilica was dispersed in the PLA solution to introduce a matrix reinforcing nanophase within the composite. The melting behavior of PLA composites was obtained by using differential scanning calorimetry (DSC) and modulated-temperature DSC (mT-DSC). Multiple melting which appeared in the non-isothermal heating curve showed that the temperature of a low melting peak increased when using a slower scanning rate. The incorporation of nanosilica in PLA composites affected the melting temperature (Tm) and sufficiently formed nucleation sites that promoted the growth of PLA crystals. Composites analyzed by a temperature-modulated program showed a broad exothermic peak before the melting peak in the non-reversing heat capacity and endothermic melting in the reversing heat capacity curve. This behavior was explained by a process of partial melting, recrystallization and remelting (mrr). The mT-DSC resolved that hemp fiber induced recrystallization and nanosilica acted as an effective nucleating agent, which promoted small and imperfect crystals that changed successively into more stable crystals through a melt-recrystallization process.
APA, Harvard, Vancouver, ISO, and other styles
16

Brantley, William A., Masahiro Iijima, and Thomas H. Grentzer. "Temperature-modulated DSC provides new insight about nickel-titanium wire transformations." American Journal of Orthodontics and Dentofacial Orthopedics 124, no. 4 (October 2003): 387–94. http://dx.doi.org/10.1016/s0889-5406(03)00570-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hutchinson, J. M., and S. Montserrat. "The application of temperature-modulated DSC to the glass transition region." Thermochimica Acta 377, no. 1-2 (October 2001): 63–84. http://dx.doi.org/10.1016/s0040-6031(01)00542-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tonchev, D., and S. O. Kasap. "Effect of aging on glass transformation measurements by temperature modulated DSC." Materials Science and Engineering: A 328, no. 1-2 (May 2002): 62–66. http://dx.doi.org/10.1016/s0921-5093(01)01668-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bechgaard, Tobias K., Ozgur Gulbiten, John C. Mauro, Yuanzheng Yue, Mathieu Bauchy, and Morten M. Smedskjaer. "Liquid fragility determination of oxide glass‐formers using temperature‐modulated DSC." International Journal of Applied Glass Science 10, no. 3 (March 7, 2019): 321–29. http://dx.doi.org/10.1111/ijag.13105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Toda, Akihiko, Takeshi Arita, Chiyoko Tomita, and Masamichi Hikosaka. "Temperature-Modulated DSC Applied to the Transformation Kinetics of Polymer Crystallization." Polymer Journal 31, no. 9 (September 1999): 790–94. http://dx.doi.org/10.1295/polymj.31.790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Peng, Cai Qin Gu, Qing Zhu Zeng, and Hao Huai Liu. "The Extrapolation Method for Hyper Differential Scanning Calorimetry." Advanced Materials Research 554-556 (July 2012): 1994–98. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.1994.

Full text
Abstract:
In order to eliminate the temperature lag effect and obtain the accurate temperature results from hyper differential scanning calorimetry (Hyper-DSC) operated at high heating rate, an adjustable method, namely “Extrapolation Method”, had been introduced by us in former papers. And in this paper, we wanted to support the accuracy of this method by other instruments. Specifically, the extrapolated glass transition temperatures (Tg, 61.5 °C) of PLA film, which was obtained by Hyper-DSC, was close to the value detected directly by normal DSC (62.0 °C). And the extrapolated Tg of waxy starch film (59.7 °C for 8.7% moisture content, and 57.2 °C for 11.2% moisture content) was close to the values detected by modulated temperature DSC (MT-DSC) (63.6 °C and 56.8 °C correspondingly). Consequently, these experimental results support that the “Extrapolation Method” is a feasible way to eliminate temperature lag effect for Hyper-DSC.
APA, Harvard, Vancouver, ISO, and other styles
22

Menyhárd, A., J. Varga, and G. Molnár. "Comparison of different -nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements." Journal of Thermal Analysis and Calorimetry 83, no. 3 (March 2006): 625–30. http://dx.doi.org/10.1007/s10973-005-7498-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pieters, Ronny, Hans E. Miltner, Guy Van Assche, and Bruno Van Mele. "Kinetics of Temperature-induced and Reaction-induced Phase Separation Studied by Modulated Temperature DSC." Macromolecular Symposia 233, no. 1 (February 2006): 36–41. http://dx.doi.org/10.1002/masy.200690026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shanks, Robert A. "Thermal Relaxations of Polymers Revealed by Reversing and Non-Reversing Coefficient of Thermal Expansion." Advanced Materials Research 123-125 (August 2010): 451–54. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.451.

Full text
Abstract:
Reversible and irreversible events can be resolved) using modulated temperature DSC and TMA. Each technique has advantages, those for TMA include longer times and slower scan rates that allow greater approach to material equilibrium. The thermal expansion coefficient and glass transition temperature can be isolated from relaxations and structural changes. Modulated temperature thermomechanometry (mT-TM) is used to characterize amorphous thermoplastics including PS, PMMA, PC and PPO, and the results including annealing, heating and cooling.
APA, Harvard, Vancouver, ISO, and other styles
25

Dranca, Ion, and Tudor Lupascu. "Implications of Global and Local Mobility in Amorphous Excipients as Determined by DSC and TM DSC." Chemistry Journal of Moldova 4, no. 2 (December 2009): 105–15. http://dx.doi.org/10.19261/cjm.2009.04(2).02.

Full text
Abstract:
The paper explores the use of differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TM DSC) to study α- and β- processes in amorphous sucrose and trehalose. The real part of the complex heat capacity is evaluated at the frequencies, f, from 5 to 20mHz. β-relaxations were studied by annealing glassy samples at different temperatures and subsequently heating at different rates in a differential scanning calorimeter.
APA, Harvard, Vancouver, ISO, and other styles
26

Nguyen, Ha Tran, Thu Thi Le Nguyen, Thang Van Le, and Lam Le. "Temperature-modulated DSC study of network formation via Thiol-Isocyanate “click” reaction." Science and Technology Development Journal 19, no. 2 (June 30, 2016): 78–87. http://dx.doi.org/10.32508/stdj.v19i2.655.

Full text
Abstract:
The thiol-isocyanate chemistry was used to create crosslinked polymer networks without the use of solvent and catalyst. The preliminary study of a model thiol-isocyanate reaction was performed to confirm the “efficient linking” feature of the reaction, as indicated by online FTIR method. Temperature-modulated differential scanning calorimetry (TMDSC) was used to characterize the occurrence of the networks thiol-isocyanate reaction between multifunctional reactants, the influence of temperature on the reaction rate and the glass transition temperatures of the partially and fully cured networks. The investigation could pave the way for the design and tailoring of new cross-linked polymer materials for on-demand applications.
APA, Harvard, Vancouver, ISO, and other styles
27

Toda, Akihiko, Chiyoko Tomita, Masamichi Hikosaka, and Yasuo Saruyama. "Kinetics of irreversible melting of polyethylene crystals revealed by temperature modulated DSC." Thermochimica Acta 324, no. 1-2 (December 1998): 95–107. http://dx.doi.org/10.1016/s0040-6031(98)00527-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Verdonck, Els, Ko Schaap, and Leonard C. Thomas. "A discussion of the principles and applications of Modulated Temperature DSC (MTDSC)." International Journal of Pharmaceutics 192, no. 1 (December 1999): 3–20. http://dx.doi.org/10.1016/s0378-5173(99)00267-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brantley, W. A., M. Iijima, and T. H. Grentzer. "Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires." Thermochimica Acta 392-393 (September 2002): 329–37. http://dx.doi.org/10.1016/s0040-6031(02)00119-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kanari, Katsuhiko, and Takeo Ozawa. "Errors and correction in complex heat capacity measurements by temperature modulated DSC." Thermochimica Acta 399, no. 1-2 (March 2003): 189–201. http://dx.doi.org/10.1016/s0040-6031(02)00463-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Reading, Mike. "Comments on “A comparison of different evaluation methods in modulated-temperature DSC”." Thermochimica Acta 292, no. 1-2 (May 1997): 179–87. http://dx.doi.org/10.1016/s0040-6031(96)03109-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Toda, A., C. Tomita, and M. Hikosaka. "A Temperature Modulated DSC Study of Glass Transition in Poly(ethylene terephthalate)." Progress of Theoretical Physics Supplement 126 (May 16, 2013): 103–6. http://dx.doi.org/10.1143/ptp.126.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Toda, Akihiko, Chiyoko Tomita, and Masamichi Hikosaka. "A Temperature Modulated DSC Study of Glass Transition in Poly(ethylene terephthalate)." Progress of Theoretical Physics Supplement 126 (1997): 103–6. http://dx.doi.org/10.1143/ptps.126.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schawe, Jürgen E. K. "Remarks regarding the determination of the initial crystallinity by temperature modulated DSC." Thermochimica Acta 657 (November 2017): 151–55. http://dx.doi.org/10.1016/j.tca.2017.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Toda, Akihiko, Takeshi Arita, and Masamichi Hikosaka. "Transition kinetics of a Ti–Ni alloy examined by temperature-modulated DSC." Thermochimica Acta 431, no. 1-2 (June 2005): 98–105. http://dx.doi.org/10.1016/j.tca.2005.01.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Swier, Steven, and Bruno Van Mele. "In situ monitoring of reaction-induced phase separation with modulated temperature DSC." Macromolecular Symposia 198, no. 1 (August 2003): 363–76. http://dx.doi.org/10.1002/masy.200350831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wei, Chih-Lung, Ming Chen, and Feng-Er Yu. "Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone)." Polymer 44, no. 26 (December 2003): 8185–93. http://dx.doi.org/10.1016/j.polymer.2003.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

PIELICHOWSKI, KRZYSZTOF, and KINGA FLEJTUCH. "Modulated temperature DSC studies on the phase transitions of poly(ethylene oxide). Effect of temperature step." Polimery 48, no. 06 (June 2003): 455–57. http://dx.doi.org/10.14314/polimery.2003.455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jiang, Pan, Jing Bai, Pu Wei, Shuang Ji Han, Mei Jie Yang, Fei Teng, Xin Li Wang, and Xiang Zhao. "Martensitic Transformation and Crystal Structure Characterization of Ni-Fe-Ga-Co Ferromagnetic Shape Memory Alloys." Materials Science Forum 879 (November 2016): 2061–65. http://dx.doi.org/10.4028/www.scientific.net/msf.879.2061.

Full text
Abstract:
In this paper, the martensitic transformation temperature, the microstructure and the crystal structure of the complicated martensitic phases of Ni56-xFe19Ga25Cox (x =0, 1.5, 3, 4.5, 6) alloys were investigated by DSC, XRD, SEM and TEM techniques. DSC results show that the martensitic transformation temperature Tm, which is above the room temperature, decreases with the increasing Co content. The microstructure of the Ni56-xFe19Ga25Cox (x =0, 1.5, 3, 4.5, 6) alloys is composed by the martensitic lath and randomly distributed γ phase. The 6M+14M mixed modulated martensite and the γ second phase were detected in the Ni53Fe19Ga25Co3 alloy by XRD and TEM tests.
APA, Harvard, Vancouver, ISO, and other styles
40

Zarzyka, Iwona, Maria Laura Di Lorenzo, and Marek Pyda. "Phase Diagrams of Smart Copolymers Poly(N-isopropylacrylamide) and Poly(sodium acrylate)." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/516076.

Full text
Abstract:
The phase behavior of linear poly(N-isopropylacrylamide) (PNIPA), linear copolymer poly(N-isopropylacrylamide) and poly(sodium acrylate) (PNIPA-SA), and chemically cross-linked PNIPA in water has been determined by temperature modulated differential scanning calorimetry (TM-DSC). Experiments related to linear polymers (PNIPA and PNIPA-SA) indicated nontypical demixing/mixing behavior with a lower critical solution temperature (LCST), which do not correspond to the three classical types of limiting critical behavior. Some similarities and differences are observed in comparison to our literature data using standard TM-DSC for PNIPA/water. Furthermore no influence of composition cross-linked PNIPA/water system on demixing/mixing temperature was observed.
APA, Harvard, Vancouver, ISO, and other styles
41

Vassilev, Tsvetan G. "A combined photoacoustic DSC for simultaneous temperature modulated measurements: does it really work?" Thermochimica Acta 330, no. 1-2 (May 1999): 145–54. http://dx.doi.org/10.1016/s0040-6031(99)00029-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Schawe, J. E. K. "Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition." Thermochimica Acta 261 (September 1995): 183–94. http://dx.doi.org/10.1016/0040-6031(95)02315-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Androsch, R., I. Moon, S. Kreitmeier, and B. Wunderlich. "Determination of heat capacity with a sawtooth-type, power-compensated temperature-modulated DSC." Thermochimica Acta 357-358 (August 2000): 267–78. http://dx.doi.org/10.1016/s0040-6031(00)00397-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hempel, E., M. Beiner, H. Huth, and E. Donth. "Temperature modulated DSC for the multiple glass transition in poly(n-alkyl methacrylates)." Thermochimica Acta 391, no. 1-2 (August 2002): 219–25. http://dx.doi.org/10.1016/s0040-6031(02)00185-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wunderlich, B., A. Boller, I. Okazaki, and K. Ishikiriyama. "Heat-capacity determination by temperature-modulated DSC and its separation from transition effects." Thermochimica Acta 304-305 (November 1997): 125–36. http://dx.doi.org/10.1016/s0040-6031(97)00184-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Simon, Sindee L., and Gregory B. McKenna. "The effects of structural recovery and thermal lag in temperature-modulated DSC measurements." Thermochimica Acta 307, no. 1 (November 1997): 1–10. http://dx.doi.org/10.1016/s0040-6031(97)00275-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kawakami, Kohsaku, and Yasuo Ida. "Application of modulated-temperature DSC to the analysis of enantiotropically related polymorphic transitions." Thermochimica Acta 427, no. 1-2 (March 2005): 93–99. http://dx.doi.org/10.1016/j.tca.2004.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fukao, K., A. Sakamoto, Y. Kubota, and Y. Saruyama. "Aging phenomena in poly(methyl methacrylate) by dielectric spectroscopy and temperature modulated DSC." Journal of Non-Crystalline Solids 351, no. 33-36 (September 2005): 2678–84. http://dx.doi.org/10.1016/j.jnoncrysol.2005.03.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sauer, B. B., W. G. Kampert, E. Neal Blanchard, S. A. Threefoot, and B. S. Hsiao. "Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms." Polymer 41, no. 3 (February 2000): 1099–108. http://dx.doi.org/10.1016/s0032-3861(99)00258-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pradhan, N. R., and G. S. Iannacchione. "Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC." Journal of Physics D: Applied Physics 43, no. 10 (February 25, 2010): 105401. http://dx.doi.org/10.1088/0022-3727/43/10/105401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography