To see the other types of publications on this topic, follow the link: Temperature-modulated differential scanning calorimetry.

Journal articles on the topic 'Temperature-modulated differential scanning calorimetry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Temperature-modulated differential scanning calorimetry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ISHIKIRIYAMA, KAZUHIKO. "Temperature Modulated Differential Scanning Calorimetry." FIBER 65, no. 11 (2009): P.428—P.432. http://dx.doi.org/10.2115/fiber.65.p_428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Van Hemelrijck, A., and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 437–42. http://dx.doi.org/10.1007/bf01987467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Van Assche, G., A. Van Hemelrijck, and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 443–47. http://dx.doi.org/10.1007/bf01987468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Zhong, Corrie T. Imrie, and John M. Hutchinson. "Temperature modulated differential scanning calorimetry. Part I:." Thermochimica Acta 315, no. 1 (May 1998): 1–9. http://dx.doi.org/10.1016/s0040-6031(98)00270-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cser, F., F. Rasoul, and E. Kosior. "Modulated Differential Scanning Calorimetry." Journal of thermal analysis 50, no. 5-6 (December 1997): 727–44. http://dx.doi.org/10.1007/bf01979203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roussel, F., and J. M. Buisine. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 47, no. 3 (September 1996): 715–25. http://dx.doi.org/10.1007/bf01981806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reading, M., A. Luget, and R. Wilson. "Modulated differential scanning calorimetry." Thermochimica Acta 238 (June 1994): 295–307. http://dx.doi.org/10.1016/s0040-6031(94)85215-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hourston, D. J., M. Song, H. M. Pollock, and A. Hammiche. "Modulated differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 209–18. http://dx.doi.org/10.1007/bf01987441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gill, P. S., S. R. Sauerbrunn, and M. Reading. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 40, no. 3 (September 1993): 931–39. http://dx.doi.org/10.1007/bf02546852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Krüger, Jan, Wolfgang Manglkammer, Andrä le Coutre, and Patrick Mesquida. "Differential scanning calorimetry and temperature-modulated differential scanning calorimetry: an extension to lower temperatures." High Temperatures-High Pressures 32, no. 4 (2000): 479–85. http://dx.doi.org/10.1068/htwu580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Simon, Sindee L. "Temperature-modulated differential scanning calorimetry: theory and application." Thermochimica Acta 374, no. 1 (June 2001): 55–71. http://dx.doi.org/10.1016/s0040-6031(01)00493-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ding, E. "Theory of general temperature modulated differential scanning calorimetry." Thermochimica Acta 378, no. 1-2 (October 24, 2001): 51–68. http://dx.doi.org/10.1016/s0040-6031(01)00625-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ozawa, T. "Temperature modulated differential scanning calorimetry-applicability and limitation." Pure and Applied Chemistry 69, no. 11 (January 1, 1997): 2315–20. http://dx.doi.org/10.1351/pac199769112315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dranca, Ion, and Tudor Lupascu. "Implications of Global and Local Mobility in Amorphous Excipients as Determined by DSC and TM DSC." Chemistry Journal of Moldova 4, no. 2 (December 2009): 105–15. http://dx.doi.org/10.19261/cjm.2009.04(2).02.

Full text
Abstract:
The paper explores the use of differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TM DSC) to study α- and β- processes in amorphous sucrose and trehalose. The real part of the complex heat capacity is evaluated at the frequencies, f, from 5 to 20mHz. β-relaxations were studied by annealing glassy samples at different temperatures and subsequently heating at different rates in a differential scanning calorimeter.
APA, Harvard, Vancouver, ISO, and other styles
15

Ishikiriyama, K., A. Boller, and B. Wunderlich. "Melting of indium by temperature-modulated differential scanning calorimetry." Journal of thermal analysis 50, no. 4 (November 1997): 547–58. http://dx.doi.org/10.1007/bf01979027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ishikiriyama, K., and B. Wunderlich. "Cell asymmetry correction for temperature modulated differential scanning calorimetry." Journal of thermal analysis 50, no. 3 (October 1997): 337–46. http://dx.doi.org/10.1007/bf01980494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Bin, and Qiao Lin. "Temperature-modulated differential scanning calorimetry in a MEMS device." Sensors and Actuators B: Chemical 180 (April 2013): 60–65. http://dx.doi.org/10.1016/j.snb.2012.02.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Leyva-Porras, César, Pedro Cruz-Alcantar, Vicente Espinosa-Solís, Eduardo Martínez-Guerra, Claudia I. Piñón-Balderrama, Isaac Compean Martínez, and María Z. Saavedra-Leos. "Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries." Polymers 12, no. 1 (December 18, 2019): 5. http://dx.doi.org/10.3390/polym12010005.

Full text
Abstract:
Phase transition issues in the field of foods and drugs have significantly influenced these industries and consequently attracted the attention of scientists and engineers. The study of thermodynamic parameters such as the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), enthalpy (H), and heat capacity (Cp) may provide important information that can be used in the development of new products and improvement of those already in the market. The techniques most commonly employed for characterizing phase transitions are thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC). Among these techniques, DSC is preferred because it allows the detection of transitions in a wide range of temperatures (−90 to 550 °C) and ease in the quantitative and qualitative analysis of the transitions. However, the standard DSC still presents some limitations that may reduce the accuracy and precision of measurements. The modulated differential scanning calorimetry (MDSC) has overcome some of these issues by employing sinusoidally modulated heating rates, which are used to determine the heat capacity. Another variant of the MDSC is the supercooling MDSC (SMDSC). SMDSC allows the detection of more complex thermal events such as solid–solid (Ts-s) transitions, liquid–liquid (Tl-l) transitions, and vitrification and devitrification temperatures (Tv and Tdv, respectively), which are typically found at the supercooling temperatures (Tco). The main advantage of MDSC relies on the accurate detection of complex transitions and the possibility of distinguishing reversible events (dependent on the heat capacity) from non-reversible events (dependent on kinetics).
APA, Harvard, Vancouver, ISO, and other styles
19

Grunenfelder, Lessa K., and Steven R. Nutt. "Prepreg age monitoring via differential scanning calorimetry." Journal of Reinforced Plastics and Composites 31, no. 5 (March 2012): 295–302. http://dx.doi.org/10.1177/0731684411431020.

Full text
Abstract:
Fabrication of composite parts from prepregs often requires layup and preparation times of days and even weeks, during which prepregs undergo room-temperature aging. The aging process can compromise compaction, tack, and overall quality of composite parts, and thus a need exists for an accurate and convenient method to monitor the extent of prepreg aging as a function of out-time. Here, we report a method to monitor prepreg age, which involves measurement of changes in glass transition temperature as a function of room-temperature aging time. Samples from three out-of-autoclave prepreg systems were aged in ambient conditions and tested periodically using modulated differential scanning calorimetry. A linear increase in glass transition temperature with prepreg age was noted. Results are discussed in the context of monitoring the chemical aging of epoxy resins that occurs at ambient temperature.
APA, Harvard, Vancouver, ISO, and other styles
20

Hutchinson, John M., Ang Boon Tong, and Zhong Jiang. "Aging of polycarbonate studied by temperature modulated differential scanning calorimetry." Thermochimica Acta 335, no. 1-2 (September 1999): 27–42. http://dx.doi.org/10.1016/s0040-6031(99)00134-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Aldén, Maggie, and Anna Hillgren. "Investigation of aqueous solutions by modulated temperature differential scanning calorimetry." Thermochimica Acta 311, no. 1-2 (March 1998): 51–60. http://dx.doi.org/10.1016/s0040-6031(97)00475-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Van Den Mooter, Guy, Duncan Q. M. Craig, and Paul G. Royall. "Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry." Journal of Pharmaceutical Sciences 90, no. 8 (August 2001): 996–1003. http://dx.doi.org/10.1002/jps.1052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Carpentier, L., O. Bustin, and M. Descamps. "Temperature-modulated differential scanning calorimetry as a specific heat spectroscopy." Journal of Physics D: Applied Physics 35, no. 4 (February 1, 2002): 402–8. http://dx.doi.org/10.1088/0022-3727/35/4/317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Peng, Cai Qin Gu, Qing Zhu Zeng, and Hao Huai Liu. "The Extrapolation Method for Hyper Differential Scanning Calorimetry." Advanced Materials Research 554-556 (July 2012): 1994–98. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.1994.

Full text
Abstract:
In order to eliminate the temperature lag effect and obtain the accurate temperature results from hyper differential scanning calorimetry (Hyper-DSC) operated at high heating rate, an adjustable method, namely “Extrapolation Method”, had been introduced by us in former papers. And in this paper, we wanted to support the accuracy of this method by other instruments. Specifically, the extrapolated glass transition temperatures (Tg, 61.5 °C) of PLA film, which was obtained by Hyper-DSC, was close to the value detected directly by normal DSC (62.0 °C). And the extrapolated Tg of waxy starch film (59.7 °C for 8.7% moisture content, and 57.2 °C for 11.2% moisture content) was close to the values detected by modulated temperature DSC (MT-DSC) (63.6 °C and 56.8 °C correspondingly). Consequently, these experimental results support that the “Extrapolation Method” is a feasible way to eliminate temperature lag effect for Hyper-DSC.
APA, Harvard, Vancouver, ISO, and other styles
25

Shoifet, Evgeni, Gunnar Schulz, and Christoph Schick. "Temperature modulated differential scanning calorimetry – extension to high and low frequencies." Thermochimica Acta 603 (March 2015): 227–36. http://dx.doi.org/10.1016/j.tca.2014.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Loubens, J., and F. Hoppenot. "Contributions of Tzero™ technology to temperature modulated Differential scanning calorimetry." MATEC Web of Conferences 3 (2013): 01025. http://dx.doi.org/10.1051/matecconf/20130301025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Amarasinghe, G., F. Chen, A. Genovese, and R. A. Shanks. "Thermal memory of polyethylenes analyzed by temperature modulated differential scanning calorimetry." Journal of Applied Polymer Science 90, no. 3 (August 18, 2003): 681–92. http://dx.doi.org/10.1002/app.12694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jiang, Zhong, John M. Hutchinson, and Corrie T. Imrie. "Temperature-modulated differential scanning calorimetry. Part II. Determination of activation energies." Polymer International 47, no. 1 (September 1998): 72–75. http://dx.doi.org/10.1002/(sici)1097-0126(199809)47:1<72::aid-pi999>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lacey, A. A. "A model for polymer melting during modulated-temperature differential scanning calorimetry." IMA Journal of Applied Mathematics 66, no. 5 (October 1, 2001): 449–76. http://dx.doi.org/10.1093/imamat/66.5.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Venkata Krishnan, R., and K. Nagarajan. "Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry." Journal of Thermal Analysis and Calorimetry 102, no. 3 (April 9, 2010): 1135–40. http://dx.doi.org/10.1007/s10973-010-0770-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hensel, A., and C. Schick. "Temperature calibration of temperature-modulated differential scanning calorimeters." Thermochimica Acta 304-305 (November 1997): 229–37. http://dx.doi.org/10.1016/s0040-6031(97)00186-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cao, Jinan. "Mathematical studies of modulated differential scanning calorimetry." Thermochimica Acta 325, no. 2 (January 1999): 101–9. http://dx.doi.org/10.1016/s0040-6031(98)00559-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rösgen, Jörg, and Hans-Jürgen Hinz. "Pressure-Modulated Differential Scanning Calorimetry: Theoretical Background." Analytical Chemistry 78, no. 4 (February 2006): 991–96. http://dx.doi.org/10.1021/ac0516436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Masson, J.-F., and G. M. Polomark. "Bitumen microstructure by modulated differential scanning calorimetry." Thermochimica Acta 374, no. 2 (July 2001): 105–14. http://dx.doi.org/10.1016/s0040-6031(01)00478-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Toda, Akihiko. "Temperature-Modulated Scanning Calorimetry of Melting–Recrystallization of Poly(butylene terephthalate)." Polymers 13, no. 1 (January 1, 2021): 152. http://dx.doi.org/10.3390/polym13010152.

Full text
Abstract:
The melting and recrystallization behaviors of poly(butylene terephthalate) (PBT) were investigated using temperature-modulated scanning calorimetry in both fast- and conventional slow-scan modes. With this method, the response of multiple transition kinetics, such as melting and recrystallization, can be differentiated by utilizing the difference in the time constants of the kinetics. In addition to the previous result of temperature-modulated fast-scan calorimetry of polyethylene terephthalate (PET), the supporting evidence of another aromatic polyester, PBT, confirmed the behavior of the exothermic process of recrystallization, which proceeds simultaneously with melting on heating scan in the temperature range of double melting peaks starting just above the crystallization temperature up to the main melting peak. Because the crystallization of PBT is much more pronounced than that of PET, similar behavior of recrystallization was obtained by the conventional temperature-modulated differential scanning calorimetry at a slow-scan rate.
APA, Harvard, Vancouver, ISO, and other styles
36

Wunderlich, B., A. Boller, I. Okazaki, K. Ishikiriyama, W. Chen, M. Pyda, J. Pak, I. Moon, and R. Androsch. "Temperature-modulated differential scanning calorimetry of reversible and irreversible first-order transitions." Thermochimica Acta 330, no. 1-2 (May 1999): 21–38. http://dx.doi.org/10.1016/s0040-6031(99)00037-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Galovic, S., B. Secerov, S. Trifunovic, D. Milicevic, and E. Suljovrujic. "A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry." Radiation Physics and Chemistry 81, no. 9 (September 2012): 1374–77. http://dx.doi.org/10.1016/j.radphyschem.2011.11.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baroni, A. F., A. M. Sereno, and M. D. Hubinger. "Thermal transitions of osmotically dehydrated tomato by modulated temperature differential scanning calorimetry." Thermochimica Acta 395, no. 1-2 (January 2002): 237–49. http://dx.doi.org/10.1016/s0040-6031(02)00220-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. "Modulated temperature differential scanning calorimetry: Cure, vitrification, and devitrification of thermosetting systems." Thermochimica Acta 304-305 (November 1997): 317–34. http://dx.doi.org/10.1016/s0040-6031(97)00175-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

López-Paz, Jesús, Carlos Gracia-Fernández, Silvia Gómez-Barreiro, Jorge López-Beceiro, Javier Nebreda, and Ramón Artiaga. "Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology." Journal of Materials Research 27, no. 10 (March 20, 2012): 1410–16. http://dx.doi.org/10.1557/jmr.2012.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gunaratne, L. M. W. K., and R. A. Shanks. "Thermal memory of poly(3-hydroxybutyrate) using temperature-modulated differential scanning calorimetry." Journal of Polymer Science Part B: Polymer Physics 44, no. 1 (2005): 70–78. http://dx.doi.org/10.1002/polb.20676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Khatiwada, Bal K., Boonta Hetayothin, and Frank D. Blum. "Thermal Properties of PMMA on Silica Using Temperature-Modulated Differential Scanning Calorimetry." Macromolecular Symposia 327, no. 1 (May 2013): 20–28. http://dx.doi.org/10.1002/masy.201350502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lacey, A. A., and C. V. Nikolopoulos. "A 1D model for polymer melting during modulated temperature differential scanning calorimetry." IMA Journal of Applied Mathematics 71, no. 2 (April 1, 2006): 186–209. http://dx.doi.org/10.1093/imamat/hxh096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Okazaki, Iwao, and Bernhard Wunderlich. "Reversible Melting in Polymer Crystals Detected by Temperature-Modulated Differential Scanning Calorimetry." Macromolecules 30, no. 6 (March 1997): 1758–64. http://dx.doi.org/10.1021/ma961539d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Srikaeo, Khongsak, John E. Furst, John F. Ashton, Robert W. Hosken, and Peter A. Sopade. "Wheat grain cooking process as investigated by modulated temperature differential scanning calorimetry." Carbohydrate Polymers 61, no. 2 (August 2005): 203–10. http://dx.doi.org/10.1016/j.carbpol.2005.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Coleman, N. "Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis." International Journal of Pharmaceutics 135, no. 1-2 (June 17, 1996): 13–29. http://dx.doi.org/10.1016/0378-5173(95)04463-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lacey, A. A., C. Nikolopoulos, and M. Reading. "A mathematical model for Modulated Differential Scanning Calorimetry." Journal of thermal analysis 50, no. 1-2 (September 1997): 279–333. http://dx.doi.org/10.1007/bf01979568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

PIELICHOWSKI, KRZYSZTOF, and KINGA FLEJTUCH. "http://en.www.ichp.pl/Application-of-modulated-differential-scanning-calorimetry-." Polimery 47, no. 11/12 (November 2002): 784–92. http://dx.doi.org/10.14314/polimery.2002.784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bloxham, Joseph C., Joseph Hogge, Neil F. Giles, Thomas A. Knotts, and W. Vincent Wilding. "Modulated Differential Scanning Calorimetry Measurements of 27 Compounds." Journal of Chemical & Engineering Data 66, no. 7 (June 10, 2021): 2773–82. http://dx.doi.org/10.1021/acs.jced.1c00171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chang, S. S. "Temperature gradient in differential scanning calorimetry." Thermochimica Acta 178 (April 1991): 195–201. http://dx.doi.org/10.1016/0040-6031(91)80310-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography