Academic literature on the topic 'Temperature dependent electrical transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temperature dependent electrical transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Temperature dependent electrical transport"
Sallam, M. M., B. A. El-Sayed, and A. A. Abdel-Shafi. "The temperature dependent electrical transport in biphenyl derivatives." Current Applied Physics 6, no. 1 (January 2006): 71–75. http://dx.doi.org/10.1016/j.cap.2004.12.006.
Full textWu, H. Y., W. Wang, and W. J. Lu. "Temperature-dependent electrical transport mechanism in amorphous Ge2Sb2Te5films." physica status solidi (b) 253, no. 9 (June 7, 2016): 1855–60. http://dx.doi.org/10.1002/pssb.201600045.
Full textVAISH, RAHUL, and KALIDHINDI B. R. VARMA. "ELECTRICAL TRANSPORT STUDIES IN 3Na2O–6.5B2O3 GLASSES." Journal of Advanced Dielectrics 01, no. 03 (July 2011): 331–36. http://dx.doi.org/10.1142/s2010135x11000355.
Full textMuchharla, Baleeswaraiah, T. N. Narayanan, Kaushik Balakrishnan, Pulickel M. Ajayan, and Saikat Talapatra. "Temperature dependent electrical transport of disordered reduced graphene oxide." 2D Materials 1, no. 1 (May 29, 2014): 011008. http://dx.doi.org/10.1088/2053-1583/1/1/011008.
Full textSinha, S., P. L. Srivastava, and R. N. Singh. "Temperature-dependent structure and electrical transport in liquid metals." Journal of Physics: Condensed Matter 1, no. 9 (March 6, 1989): 1695–705. http://dx.doi.org/10.1088/0953-8984/1/9/014.
Full textLi, Zhen, Yongsen Han, Ji Liu, Daomin Min, and Shengtao Li. "Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites." Applied Physics Letters 121, no. 5 (August 1, 2022): 052901. http://dx.doi.org/10.1063/5.0097351.
Full textPark, Jae Young, Hwangyou Oh, Ju-Jin Kim, and Sang Sub Kim. "The temperature-dependent electrical transport mechanism of single ZnO nanorods." Nanotechnology 17, no. 5 (February 7, 2006): 1255–59. http://dx.doi.org/10.1088/0957-4484/17/5/016.
Full textSahu, A. K., S. K. Satpathy, and Banarji Behera. "Dielectric and frequency-dependent transport properties of lanthanum-doped bismuth ferrite." Journal of Advanced Dielectrics 09, no. 04 (August 2019): 1950031. http://dx.doi.org/10.1142/s2010135x19500310.
Full textHui, Zhenzhen, Xuzhong Zuo, Longqiang Ye, Xuchun Wang, and Xuebin Zhu. "Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties." Materials 13, no. 2 (January 16, 2020): 417. http://dx.doi.org/10.3390/ma13020417.
Full textZhang, Tong, Liuan Li, and Jin-Ping Ao. "Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode." Surfaces and Interfaces 5 (December 2016): 15–18. http://dx.doi.org/10.1016/j.surfin.2016.08.004.
Full textDissertations / Theses on the topic "Temperature dependent electrical transport"
Kaya, Savas. "Electrical transport in strained silicon quantum wells on vicinal substrates." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313699.
Full textWebb, Alexander James. "Temperature dependence and touch sensitivity of electrical transport in novel nanocomposite printable inks." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10764/.
Full textWhitfield, Thomas Britain. "An analysis of copper transport in the insulation of high voltage transformers." Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843581/.
Full textFalasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty, and Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183309.
Full textFalasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty, and Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion." Diffusion fundamentals 20 (2013) 63, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13640.
Full textHai, Md. "Minimizing temperature dependent spectral shift in SOI DPSK demodulators." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104852.
Full textLa recherche sur les composantes photoniques en silicium sur isolant (SOI) est devenue populaire en raison de leur compatibilité avec la technologie des semi-conducteur en métal complémentaire d'oxyde (CMOS). Pendant les cinq dernières années, nous avons vu plusieurs démonstrations pratiques de modulateurs optiques à grande vitesse, de commutateurs, et de filtres en SOI. Certaines de ces composantes utilisent une propriété fondamentale de lumière : l'interférence. Pourtant, les composantes en SOI à base d'interférence montrent un changement de phase spectral désastreux avec le changement de température qui s'ensuit d'une nécessité d'intégrer des circuits de contrôle actifs de température pour les stabiliser. Dans ce travail nous présentons un interféromètre Mach-Zehnder (MZI) en SOI à 50 Gb/sec pour la modulation de phase différentielle (DPSK). Le démodulateur a une stabilité thermale de 0.05 nm/0C qui est 90% meilleure que les démodulateurs non-compensés qui eux ont un profil spectral de 0.9 nm/0C. Notre méthode propose une façon complètement passive de minimiser l'effet de la température sur le changement spectral des démodulateurs DPSK. Une approche analytique complète suivi pardes simulations numériques permettent de définir les dimensions exactes du démodulateur. Nous présentons la géométrie due démodulateur. En utilisant les paramètres obtenus, nous calculons le changement spectral avec le changement de température en utilisant notre programme informatique conçu pour observer la performance du démodulateur. Le démodulateur a été fabriqué par la société de microélectrique Canadian (CMC). La largeur de la guide d'onde du démodulateur varie de 280 nm 450 nm et la hauteur est fixe à 220 nm. Pour le démodulateur non-compensé, la largeur du guide d'onde est 450 nm. Les démodulateurs tant compensés que non-compensés sont construits sur le même fragment. Les résultats expérimentaux sont présentés et nous comparons les différentes performances du démodulateur avec et sans la technique de compensation proposée.
Zhang, Zhaohui. "Spin-dependent electrical and thermal transport in magnetic tunnel junctions." APS, 2012. http://hdl.handle.net/1993/31947.
Full textFebruary 2017
Ohlendorf, Gerd, Denny Richter, Jan Sauerwald, and Holger Fritze. "High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192902.
Full textSirisathitkul, C. "Studies of transport phenomena at ferromagnet/semiconductor interfaces." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325445.
Full textGreen, Paul Elijah. "View-dependent precomputed light transport using non-linear Gaussian function approximations." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/35605.
Full textIncludes bibliographical references (p. 43-46).
We propose a real-time method for rendering rigid objects with complex view-dependent effects under distant all-frequency lighting. Existing precomputed light transport approaches can render rich global illumination effects, but high-frequency view-dependent effects such as sharp highlights remain a challenge. We introduce a new representation of the light transport operator based on sums of Gaussians. The non-linear parameters of the representation allow for 1) arbitrary bandwidth because scale is encoded as a direct parameter; and 2) high-quality interpolation across view and mesh triangles because we interpolate the average direction of the incoming light, thereby preventing linear cross-fading artifacts. However, fitting the precomputed light transport data to this new representation requires solving a non-linear regression problem that is more involved than traditional linear and non-linear (truncation) approximation techniques. We present a new data fitting method based on optimization that includes energy terms aimed at enforcing good interpolation. We demonstrate that our method achieves high visual quality for a small storage cost and fast rendering time.
by Paul Elijah Green.
S.M.
Books on the topic "Temperature dependent electrical transport"
George C. Marshall Space Flight Center., ed. [Computational modeling of properties]: [final report]. Marshall Space Flight Center, AL: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. [Computational modeling of properties]: [final report, 12 Mar. 1993 - 11 Jul. 1994]. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textPlastics in Automotive Engineering PIAE EUROPE. VDI Verlag, 2019. http://dx.doi.org/10.51202/9783181023433.
Full textPirota, Kleber Roberto, Angela Knobel, Manuel Hernandez-Velez, Kornelius Nielsch, and Manuel Vázquez. Magnetic nanowires: Fabrication and characterization. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.22.
Full textPanigrahi, Muktikanta, and Arpan Kumar Nayak. Polyaniline based Composite for Gas Sensors. IOR PRESS, 2021. http://dx.doi.org/10.34256/ioriip212.
Full textFisher, David. Mechanical Properties of MAX Phases. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901274.
Full textSobczyk, Eugeniusz Jacek. Uciążliwość eksploatacji złóż węgla kamiennego wynikająca z warunków geologicznych i górniczych. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 2022. http://dx.doi.org/10.33223/onermin/0222.
Full textBook chapters on the topic "Temperature dependent electrical transport"
Jahana, R., S. Kawaji, T. Okamoto, T. Fukase, T. Sakon, and M. Motokawa. "Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions." In Materials Science in Static High Magnetic Fields, 181–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56312-6_13.
Full textSuryavanshi, Manmath, P. Karuppanan, Abhay Kumar Gautam, and Sreeteja Reddy Kotha. "A Temperature Dependent Modified TEAM Model." In Lecture Notes in Electrical Engineering, 357–68. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2631-0_32.
Full textFarkas, Gábor. "Temperature-Dependent Electrical Characteristics of Semiconductor Devices." In Theory and Practice of Thermal Transient Testing of Electronic Components, 139–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86174-2_4.
Full textHeer, R., J. Smoliner, J. Bornemeier, and H. Brückl. "Temperature Dependent Transport in Spin Valve Transistor Structures." In Nonequilibrium Carrier Dynamics in Semiconductors, 159–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36588-4_35.
Full textNjuguna, M. K., C. Yan, J. Bell, and P. Yarlagadda. "Temperature Dependent Electrical Resistivity in Epoxy—Multiwall Carbon Nanotube Nanocomposites." In Engineering Asset Management and Infrastructure Sustainability, 713–23. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-493-7_55.
Full textSchweitzer, Ludwig. "Frequency Dependent Electrical Transport in the Integer Quantum Hall Effect." In Anderson Localization and Its Ramifications, 65–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45202-7_6.
Full textSteffen, Robert P. "Effect of RSR13 on Temperature-Dependent Changes in Hemoglobin Oxygen Affinity of Human Whole Blood." In Oxygen Transport to Tissue XX, 653–61. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4863-8_77.
Full textVerma, Prateek Kishor, Akash Singh Rawat, and Santosh Kumar Gupta. "Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications." In Lecture Notes in Electrical Engineering, 355–66. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9775-3_32.
Full textFritsch, G., A. Schulte, and E. Lüscher. "Low Temperature Transport Properties: The Electrical Resistivity of Some Amorphous Alloys." In Amorphous and Liquid Materials, 368–90. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3505-1_29.
Full textThong, Trinh Quang, Nguyen Anh Minh, Nguyen Trong Tinh, Trieu Viet Phuong, and Dao Huy Du. "Measurement Setup for Temperature-Dependent Electrical Property of ZnO-Based Thermoelectric Thin Films." In Advances in Engineering Research and Application, 541–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64719-3_60.
Full textConference papers on the topic "Temperature dependent electrical transport"
Thakore, B. Y., P. H. Suthar, S. G. Khambholja, P. N. Gajjar, N. K. Bhatt, A. R. Jani, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar, and G. S. S. Saini. "Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys." In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653657.
Full textAnjum, Nafisa, Riffat Ara Islam Ritu, Washik Adnan, Md Ittehad Hasan, and Md Faysal Nayan. "Numerical Analysis to Determine the Temperature-Dependent Charge Transport in CNTFET." In 2021 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2021. http://dx.doi.org/10.1109/wiecon-ece54711.2021.9829666.
Full textWagenknecht, David, Karel Carva, and Ilja Turek. "Spin-dependent electrical transport at finite temperatures from the first principles." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2273315.
Full textMa, Weigang, Tingting Miao, and Xing Zhang. "Thermal and Electrical Transport Characteristics of Polycrystalline Gold Nanofilms." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22328.
Full textSamuel, B. A., C. M. Lentz, and M. A. Haque. "Experimental Study of Structure-Electrical Transport Correlation in Single Disordered Carbon Nanowires." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11739.
Full textTang, Gong Yue, and Chun Yang. "Joule Heating Induced Temperature Gradient Focusing in a Microfluidic Channel With a Sudden Change in Cross Section." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52197.
Full textTang, Gongyue, Chun Yang, Cheekiong Chai, and Haiqing Gong. "Electroosmotic Flow and Mass Species Transport in a Microcapillary Under Influences of Joule Heating." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45124.
Full textMiller, A., R. J. Manning, and P. J. Bradley. "Optical Nonlinearities and Cross-Well Transport In Multiple Quantum Well Structures." In Quantum Wells for Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.mc1.
Full textLi, Yong Bing, Zhong Qin Lin, Li Li, and Guan Long Chen. "Numerical Analysis of Transport Phenomena in Resistance Spot Welding Process." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78210.
Full textShimpalee, S., S. Dutta, and J. W. Van Zee. "Numerical Prediction of Local Temperature and Current Density in a PEM Fuel Cell." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1360.
Full textReports on the topic "Temperature dependent electrical transport"
Weiss, W. Jason, Chunyu Qiao, Burkan Isgor, and Jan Olek. Implementing Rapid Durability Measure for Concrete Using Resistivity and Formation Factor. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317120.
Full textEfthimion, P. C., D. K. Mansfield, B. C. Stratton, E. Synakowski, A. Bhattacharjee, H. Biglari, P. H. Diamond, et al. Observation of temperature dependent transport in TFTR. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6780591.
Full textChan, Mun Keat. Magnetometry and electrical transport measurements of high temperature superconductors. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343729.
Full textFriedman, Shmuel, Jon Wraith, and Dani Or. Geometrical Considerations and Interfacial Processes Affecting Electromagnetic Measurement of Soil Water Content by TDR and Remote Sensing Methods. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580679.bard.
Full textNasser, Abidelfatah, Charles Gerba, Badri Fattal, Tian-Chyi Yeh, and Uri Mingelgrin. Biocolloids Transport to Groundwater. United States Department of Agriculture, December 1997. http://dx.doi.org/10.32747/1997.7695834.bard.
Full textBrosh, Arieh, David Robertshaw, Yoav Aharoni, Zvi Holzer, Mario Gutman, and Amichai Arieli. Estimation of Energy Expenditure of Free Living and Growing Domesticated Ruminants by Heart Rate Measurement. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580685.bard.
Full text