Academic literature on the topic 'Temperature-dependent'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temperature-dependent.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Temperature-dependent"

1

Naik, S. Harisingh. "Rayleigh-Bénard Convection With Temperature Dependent Variable Viscosity." Paripex - Indian Journal Of Research 3, no. 7 (January 1, 2012): 247–55. http://dx.doi.org/10.15373/22501991/july2014/87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shere, Ishwar G. "Temperature Dependent Dielectric Relaxation Study of Butanenitrile with Chlorobenzene." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 114–15. http://dx.doi.org/10.15373/22778179/may2013/41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kharin, Stanislav, and Targyn Nauryz. "ONE-PHASE SPHERICAL STEFAN PROBLEM WITH TEMPERATURE DEPENDENT COEFFICIENTS." Eurasian Mathematical Journal 12, no. 1 (2021): 49–56. http://dx.doi.org/10.32523/2077-9879-2021-12-1-49-56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Draper, David O., Aaron M. Wells, William J. Vincent, and Justin H. Rigby. "Ultrasound Treatment Temperature Goals: Temperature Dependent Versus Time Dependent." Athletic Training & Sports Health Care 5, no. 2 (February 1, 2013): 76–80. http://dx.doi.org/10.3928/19425864-20130213-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cai, Hongneng, Toru Mizotani, Masayuki Nakada, and Yasushi Miyano. "GSW0189 Time-temperature dependent flexural behavior of honeycomb sandwich composites." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _GSW0189–1—_GSW0189–5. http://dx.doi.org/10.1299/jsmeatem.2003.2._gsw0189-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klik, Ivo. "Temperature‐dependent prefactor." Journal of Applied Physics 73, no. 10 (May 15, 1993): 6725–27. http://dx.doi.org/10.1063/1.352515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robini, Marc C., and Pierre-Jean Reissman. "On simulated annealing with temperature-dependent energy and temperature-dependent communication." Statistics & Probability Letters 81, no. 8 (August 2011): 915–20. http://dx.doi.org/10.1016/j.spl.2011.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Page, Elizabeth Heller, and Neil H. Shear. "Temperature-dependent skin disorders." Journal of the American Academy of Dermatology 18, no. 5 (May 1988): 1003–19. http://dx.doi.org/10.1016/s0190-9622(88)70098-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sutton, A. P. "Temperature-dependent interatomic forces." Philosophical Magazine A 60, no. 2 (August 1989): 147–59. http://dx.doi.org/10.1080/01418618908219278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frank, Stephen, Jason Sexauer, and Salman Mohagheghi. "Temperature-Dependent Power Flow." IEEE Transactions on Power Systems 28, no. 4 (November 2013): 4007–18. http://dx.doi.org/10.1109/tpwrs.2013.2266409.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Temperature-dependent"

1

Sansom, Ahmos. "Spreading gravity currents with temperature-dependent viscosity." Thesis, University of Nottingham, 2000. http://eprints.nottingham.ac.uk/14140/.

Full text
Abstract:
The spreading of a fluid under gravity has many important industrial and geophysical applications and has been the focus of much research. Variations in the thermal properties of the fluid have often been neglected. This thesis introduces a series of models incorporating fluids having temperature-dependent viscosity and vertical cross-sectional profile of small aspect ratio to show the important effects that cooling can have on the flow field. The numerical results show features that are commonly observed in experiment and lava dome growth, such as plateauing and fingering.
APA, Harvard, Vancouver, ISO, and other styles
2

Therrien, Corie L. "Conservational implications of temperature-dependent sex determination." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008r/therrien.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yun. "Temperature dependent PCDD/PCDF product distributions from phenols." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/20182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fuller, Jason C. "Temperature dependent control of community energy storage devices." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/j_fuller_042310.pdf.

Full text
Abstract:
Thesis (M.S. in electrical engineering)--Washington State University, May 2010.
Title from PDF title page (viewed on July 15, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 71-75).
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Yan, and 黃燕. "Temperature dependent hall effect: studies ofGaN on sapphire." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42577068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Falasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty, and Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chiu, Kwong-Shing Kevin. "Temperature dependent properties and microvoid in thermal lagging /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9962510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Falasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty, and Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion." Diffusion fundamentals 20 (2013) 63, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Yang. "Temperature dependent visco-elastoplastic evaluation of flexible pavements." Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hai, Md. "Minimizing temperature dependent spectral shift in SOI DPSK demodulators." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104852.

Full text
Abstract:
Silicon on insulator (SOI) photonic devices are becoming popular due to their compatibility with complementary metal oxide semiconductor (CMOS) technology. Over the last five years, we have seen several practical demonstrations of high-speed optical modulators, switches, filters designed on SOI platform. Some of these devices were made utilizing one fundamental property of light: Interference. However, interference-based SOI devices show disastrous spectral phase shift with temperature change which result in the necessity of integrating active temperature control circuits to stabilize them. In this work we present a 50 Gb/sec SOI Mach-Zehnder interferometer (MZI) differential phase shift keying (DPSK) demodulator which exhibits over 90% improvement in thermal stability with 0.05 nm/C of its spectral profile compared to 0.9 nm/C for a noncompensated demodulators. Our proposed method is a fully passive way of minimizing temperature dependant spectral shift in DPSK demodulators, which employs the waveguide engineering method. A full analytical approach to address the problem is derived first, which is followed by extensive numerical simulations to find out the exact device dimensions. Through this, we present a step by step approach to design the demodulator by achieving required waveguide geometry. After we get the design values of our device parameters we calculate the spectral shift with temperature change by our customized computer program and observe improved performance of the device with temperature change. With the values of design variables, we fabricate our device through Canadian Microelectronics Corporation (CMC). The waveguide width of our device varies from 280 nm to 450 nm at different stage of the device while its height was fixed to 220 nm. For thermally non-compensated demodulator, waveguide width was 450 nm throughout the device. Both thermally compensated and non-compensated demodulators are built on the same chip. Experimental result of the fabricated device is presented and we compare different performance metric of the demodulator with and without the proposed temperature compensation technique.
La recherche sur les composantes photoniques en silicium sur isolant (SOI) est devenue populaire en raison de leur compatibilité avec la technologie des semi-conducteur en métal complémentaire d'oxyde (CMOS). Pendant les cinq dernières années, nous avons vu plusieurs démonstrations pratiques de modulateurs optiques à grande vitesse, de commutateurs, et de filtres en SOI. Certaines de ces composantes utilisent une propriété fondamentale de lumière : l'interférence. Pourtant, les composantes en SOI à base d'interférence montrent un changement de phase spectral désastreux avec le changement de température qui s'ensuit d'une nécessité d'intégrer des circuits de contrôle actifs de température pour les stabiliser. Dans ce travail nous présentons un interféromètre Mach-Zehnder (MZI) en SOI à 50 Gb/sec pour la modulation de phase différentielle (DPSK). Le démodulateur a une stabilité thermale de 0.05 nm/0C qui est 90% meilleure que les démodulateurs non-compensés qui eux ont un profil spectral de 0.9 nm/0C. Notre méthode propose une façon complètement passive de minimiser l'effet de la température sur le changement spectral des démodulateurs DPSK. Une approche analytique complète suivi pardes simulations numériques permettent de définir les dimensions exactes du démodulateur. Nous présentons la géométrie due démodulateur. En utilisant les paramètres obtenus, nous calculons le changement spectral avec le changement de température en utilisant notre programme informatique conçu pour observer la performance du démodulateur. Le démodulateur a été fabriqué par la société de microélectrique Canadian (CMC). La largeur de la guide d'onde du démodulateur varie de 280 nm 450 nm et la hauteur est fixe à 220 nm. Pour le démodulateur non-compensé, la largeur du guide d'onde est 450 nm. Les démodulateurs tant compensés que non-compensés sont construits sur le même fragment. Les résultats expérimentaux sont présentés et nous comparons les différentes performances du démodulateur avec et sans la technique de compensation proposée.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Temperature-dependent"

1

Es, Cujātā, ed. Temperature-dependent biology and physiology reduviids. Hauppauge, N.Y: Nova Science Publisher's, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrington, Pauline Mary. Temperature-dependent sex determination in the American alligator - Alligator Mississippiensis. Manchester: University of Manchester, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gencer, Ali. Time dependent magnetisation and flux dynamics of high temperature superconductors. Birmingham: University of Birmingham, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coriat, Anne-Marie. The molecular analysis of temperature dependent sex deterimination in Alligator mississippiensis. Manchester: University of Manchester, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Degenhardt, David. Temperature-dependent Deformation and Fracture Behavior of a Talcum-filled Co-polymer. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30155-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Awrejcewicz, Jan, Anton V. Krysko, Maxim V. Zhigalov, and Vadim A. Krysko. Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55993-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vitkin, Ilya Alex. Application of photothermal wave non-destructive evaluation (NDE) techniques to temperature dependent semiconductor and superconductor characterization. Ottawa: National Library of Canada, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rühl, Andreas. On the Time and Temperature Dependent Behaviour of Laminated Amorphous Polymers Subjected to Low-Velocity Impact. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54641-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pressure Vessels and Piping Conference (1993 Denver, Colo.). High-temperature service and time-dependent failure: Presented at the 1993 Pressure Vessels and Piping Conference, Denver, Colorado, July 25-29, 1993. Edited by Swindeman R. W, Asada Y. 1938-, and American Society of Mechanical Engineers. Pressure Vessels and Piping Division. New York, N.Y: American Society of Mechanical Engineers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Temperature-dependent"

1

Overhof, Harald, and Peter Thomas. "Temperature dependent reference energies." In Springer Tracts in Modern Physics, 122–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0044943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Degenhardt, David. "Temperature-dependent Material Model." In AutoUni – Schriftenreihe, 49–70. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30155-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parks, James E., Michael R. Cates, Stephen W. Allison, David L. Beshears, M. Al Akerman, and Matthew B. Scudiere. "TEMPERATURE-DEPENDENT FLUORESCENCE MEASUREMENTS." In Handbook of Measurement in Science and Engineering, 2225–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119244752.ch62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tauchert, Theodore R. "Plates with Temperature-Dependent Properties." In Encyclopedia of Thermal Stresses, 3953–57. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Altenbokum, M., K. Emrich, H. Kümmel, and J. G. Zabolitzky. "A Temperature Dependent Coupled Cluster Method." In Condensed Matter Theories, 389–96. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0917-8_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Straughan, Brian. "Convection with temperature dependent fluid properties." In The Energy Method, Stability, and Nonlinear Convection, 291–312. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21740-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

King, J. R., D. S. Riley, and A. Sansom. "Melt Spreading with Temperature-Dependent Viscosity." In Interactive Dynamics of Convection and Solidification, 165–76. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9807-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kucera, Ales, Zina Scherbakova, and Eduard Baranovsky. "Height-Dependent Solar Plage Temperature Distribution." In Mechanisms of Chromospheric and Coronal Heating, 109–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Čanađija, Marko. "Temperature-Dependent Thermoplasticity at Finite Strains." In Encyclopedia of Thermal Stresses, 4813–26. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hübel, Hartwig. "STPZ with Temperature-Dependent Material Data." In Simplified Theory of Plastic Zones, 159–210. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29875-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Temperature-dependent"

1

Airola, Marc B., Andrea M. Brown, Daniel V. Hahn, Michael E. Thomas, Elizabeth A. Congdon, and Douglas S. Mehoke. "Temperature dependent BRDF facility." In SPIE Optical Engineering + Applications, edited by Leonard M. Hanssen. SPIE, 2014. http://dx.doi.org/10.1117/12.2062838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kitamura, Kazuhiro, and I. L. Maksimov. "Temperature-Dependent Micro-Crack Propagation." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2733.

Full text
Abstract:
The crack-lattice trapping phenomenon introduce by R. Thomson et al[1] is studied for the conditions of the Frenkel-Kontrova-type experiment. By using a new method, which allows further model extension for a finite temperature case we are able to describe an equilibrium crack energetics for arbitrary externa conditions and ascertain the crack propagation conditions. Specifically, the system free energy F as a function of nonlinear bond displacement ul for an external forces P and for a finite temperature T is found. The equilibrium values for the displacement ul = ul* and for G* = G(ul*), are obtained. The free-energy barrier height G = Gmax − G* dependence upon P and T is determined. With the help of the exact solution of the equilibrium equations we obtained the free energy as function of crack length G(l,T,P). We found that local free energy barriers take place for every crack length l, which is in contrast to the Thomson model. From the microscopic viewpoint it means that crack advance is controlled by local free energy barriers. We found that near the equilibrium length the crack energy barrier is relatively high, while far from equilibrium crack position, energy barrier height decreases to a finite value. It is worth to note that the barrier height monotonically decrease with the increase of the environment temperature. On the basis of our model the temperature dependence of the crack surface energy will be found, the global energetics of the crack will be described.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghosh, Anwesha, and Vivekananda Mukherjee. "Temperature dependent optimal power flow." In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE, 2017. http://dx.doi.org/10.1109/tapenergy.2017.8397287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herrera, Fernando Avila, Mitiko Miura-Mattausch, Hideyuki Kikuchihara, Takahiro Iizuka, Hans Jurgen Mattausch, and Hirotaka Takatsuka. "Modeling of Temperature-Dependent MOSFET Aging." In 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2019. http://dx.doi.org/10.1109/sispad.2019.8870469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fernandez, Allen S., Lawrence P. Dunleavy, and Julian R. Martin. "Temperature Dependent Characterization of GaAs MESFETs." In 40th ARFTG Conference Digest. IEEE, 1992. http://dx.doi.org/10.1109/arftg.1992.327010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Umoh, Ime J., and Tom J. Kazmierski. "Temperature dependent graphene channel - SPICE implementation." In 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6967963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jing, X., K. V. Singh, X. Wang, M. Ozkan, and C. S. Ozkan. "Temperature dependent transport in nanotube bioconjugates." In 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shen, B., M. Rinne, T. K. Kim, J. M. Lee, S. C. Lee, J. Y. Kim, H. M. Kim, et al. "Temperature Dependent Rock Fracturing in Boreholes." In 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.201400826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yue, Xuefeng, Karsten Buse, Romano A. Rupp, and Eckhard Kratzig. "Temperature-dependent photorefractive effects in Bi4Ti3O12." In Photonics China '98, edited by Peixian Ye, Tsutomu Shimura, and Ratnakar R. Neurgaonkar. SPIE, 1998. http://dx.doi.org/10.1117/12.318134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mall, A. K., S. Mukherjee, Y. Sharma, A. Garg, and R. Gupta. "Temperature dependent Raman scattering in YCrO3." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873101.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Temperature-dependent"

1

Mitchell, Jonathan E., and Ivan C. Lee. Temperature-dependent Study of Isobutanol Decomposition. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Van der Sluys, W. A., E. S. Robitz, B. A. Young, and J. Bloom. Investigations of Low Temperature Time Dependent Cracking. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/833790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Efthimion, P. C., D. K. Mansfield, B. C. Stratton, E. Synakowski, A. Bhattacharjee, H. Biglari, P. H. Diamond, et al. Observation of temperature dependent transport in TFTR. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6780591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, R. S., H. H. Chau, R. L. Druce, and K. Moua. Temperature-dependent shock initiation of LX-17 explosive. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/72997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Ralph C., and Craig L. Hom. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada452005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saxena, A., and S. R. Stock. Mechanisms of time-dependent crack growth at elevated temperature. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6633270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sihn, Sangwook, Yasushi Miyano, and S. W. Tsai. Time- and temperature-dependent failures of a bonded joint. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/510583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Everett, Randy L., Brian D. Iverson, Scott Thomas Broome, Nathan Phillip Siegel, and David R. Bronowski. Temperature-dependent mechanical property testing of nitrate thermal storage salts. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/991535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cullen, D. E. Temperature dependent ENDF/B-VI, release 7 cross section library. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/15006157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curry, John, Adam Hinkle, Tomas Farley Babuska, Mark Wilson, Michael T. Dugger, Brandon A. Krick, Nicolas Argibay, and Michael E. Chandross. Atomistic Origins of Temperature Dependent Shear Strength in 2D Materials. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1595881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography