Dissertations / Theses on the topic 'Telomeric DNA; Genome'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Telomeric DNA; Genome.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brown, Karen E. "Telomere-directed breakage of the human Y chromosome." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260731.
Full textBhattacharjee, Anukana M. S. "Characterization of the DNA Binding Properties of CST (CTC1-STN1-TEN1) And Their Importance for CST Function in Telomeric as well as Genome-wide Replication." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504781845245038.
Full textPataskar, Shashank S. "Structure Function Studies Of Biologically Important Simple Repetitive DNA Sequences." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/261.
Full textStarling, Jacqueline. "Telomeres and related repetitive DNA in the mouse genome." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/14482.
Full textKhurana, Jaspreet S. "Drosophila piRNA Function in Genome Maintenance, Telomere Protection and Genome Evolution: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/518.
Full textDechyeva, Daryna. "Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybrids." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153318263914-87397.
Full textBeyer, Tracey Elaine, and Tracey Elaine Beyer. "Ontogeny of Unstable Chromosomes Formed by Telomere Replication Error." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621103.
Full textSilva, João Paulo Lopes da. "Comparação dos Perfis Transcricionais de Genes de Reparo e Duplicação do DNA e Medidas de Comprimento Telomérico entre Grupos de Indivíduos Jovens, Idosos e Centenários." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-28072015-114601/.
Full textGenomic instability plays a major role in the aging process due to the accumulation of DNA damage in somatic cells continuously exposed to endogenous and exogenous factors. A group of proteins essential in maintaining genome stability is composed by RecQ helicase, acting in several cell metabolism processes such as DNA replication, recombination, DNA repair and telomere maintenance. Some evidence related the aberrant expression of these proteins to premature aging. In order to determine the transcriptional expression profile of RecQ helicase gene family and some genes involved in the BER (Base excision repair) pathway, such as PARP1, POL and APEX1 in peripheral blood mononuclear cells (PBMCs), we compared groups of young (n = 20), elderly (n = 17) and centenarians (n = 27). Furthermore, it was also evaluated telomere length in DNA samples from these individuals. It was observed a decrease in the transcriptional expression of BLM gene in elderly and centenarians compared to the young group (p <0.05). It was also observed a decrease in expression of RECQL5 gene in the elderly compared to the younger group. For the BER genes, it was observed a transcriptional repression of PARP1 in the elderly group compared to the young group (p <0.05). Regarding the telomere length, our results demonstrated an association between reduction of telomere length and age. We obtained significant difference in comparing the telomere length of the elderly and centenarians compared to the younger group. However, no difference was observed between the elderly and centenarians groups. Thus, our results show an association of aging process with the modulation of certain genes from RecQ helicase family and participants of the BER pathway and the telomere shortening. The results generated in this study are promising, and relevant to better understanding the aging process.
Monfouilloux, Sylvaine. "Etude de la structure et de l'évolution d'une région de translocations sous télomériques chez l'homme." Rouen, 1997. http://www.theses.fr/1997ROUES065.
Full textBurkert, Christian Martin. "Cis-regulation and genetic control of gene expression in neuroblastoma." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23008.
Full textGene regulation controls phenotypes in health and disease. In cancer, the interplay between germline variation, genetic aberrations and epigenetic factors modulate gene expression in cis. The childhood cancer neuroblastoma originates from progenitor cells of the sympathetic nervous system. It is characterized by a sparsity of recurrent exonic mutations but frequent somatic copy-number alterations, including gene amplifications on extrachromosomal circular DNA. So far, little is known on how local genetic and epigenetic factors regulate genes in neuroblastoma to establish disease phenotypes. I here combine allele-specific analysis of whole genomes, transcriptomes and circular DNA from neuroblastoma patients to characterize genetic and cis-regulatory effects, and prioritize germline regulatory variants by cis-QTLs mapping and chromatin profiles. The results show that somatic copy-number dosage dominates local genetic effects and regulates pathways involved in telomere maintenance, genomic stability and neuronal processes. Gene amplifications show strong dosage effects and are frequently located on large but not small extrachromosomal circular DNAs. My analysis implicates 11q loss in the upregulation of histone variants H3.3 and H2A in tumors with alternative lengthening of telomeres and cooperative effects of somatic rearrangements and somatic copy-number gains in the upregulation of TERT. Both 17p copy-number imbalances and associated downregulation of neuronal genes as well as upregulation of the imprinted gene RTL1 by copy-number-independent allelic dosage effects is associated with an unfavorable prognosis. cis-QTL analysis confirms the previously reported regulation of the LMO1 gene by a super-enhancer risk polymorphism and characterizes the regulatory potential of additional GWAS risk loci. My work highlights the importance of dosage effects in neuroblastoma and provides a detailed map of regulatory variation active in this disease.
Konstantinidis, Michalis. "Preimplantation genetic diagnosis : new methods for the detection of genetic abnormalities in human preimplantation embryos." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:28611f65-7729-4293-9c3f-4fc3f0cc39d7.
Full textLe, Guen Tangui. "Caractérisation phénotypique et moléculaire de déficiences humaines liées à des dysfonctions des télomères et / ou de la réparation de l’ADN." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T092/document.
Full textMaintaining genome integrity is essential for cell survival and propagation of the genetic information. Improper management of DNA damages and / or aberrations in maintenance of telomere - the ends of linear chromosomes - causes humans disorders associated with genetic instability. Thus, in humans, telomere dysfunction causes Dyskeratosis Congenita (DC), and its rare and severe form, Hoyeraal-Hreidarsson Syndrome (HHS). DC and HHS are mainly characterized by progressive bone marrow failure, developmental defects and predisposition to cancer. In addition, many syndromes involving immunodeficiency and developmental abnormalities are caused by defects in DNA repair (e.g. severe immune deficiencies, Fanconi Anemia (FA), Ataxia Telangiectasia (AT),…). In this work, we performed a phenotypic and genetic study of patients with two syndromes presenting distinct clinical features. This work permitted : 1) on one hand, to identify RTEL1 mutations in patients with HHS and describe a new molecular cause of this disease. The analysis of patients’ cells revealed the crucial role for RTEL1 in genome stability and telomere maintenance in human cells. 2) on the other hand, to identify mutations in MYSM1, a histone deubiquitinase, in a new immuno-hematological syndrome associated with defects in DNA repair and sharing some similarities with Fanconi anemia. This study demonstrates for the first time that, in addition to its role in transcriptional regulation, MYSM1 is required to cope with DNA damages
Ghosal, Gargi. "Biochemical Characterization Of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 Using Telomeric DNA : A Role For The Endonucleolytic Activity Of Mre11 In Telomere Length Maintenance And Its Regulation By Rad50." Thesis, 2007. http://hdl.handle.net/2005/499.
Full textPoon, Betty Po Kei. "Roles for the Cohibin Complex and its Associated Factors in the Maintenance of Several Silent Chromatin Domains in S. cerevisiae." Thesis, 2012. http://hdl.handle.net/1807/33494.
Full textBenslimane, Yahya. "Genome-wide CRISPR screens for the interrogation of genome integrity maintenance networks." Thesis, 2020. http://hdl.handle.net/1866/25540.
Full textThe genetic material (DNA) of an organism contains the necessary information for survival, growth and reproduction. Loss of this information strongly impacts the health of the organism and is the leading factor in aging and cancer. Almost all cells in an organism contain a copy of said genetic material (genome) and employ several mechanisms to repair any damaged section of the genome and to accurately copy it during cell division. We sought to understand the cellular processes by which cells maintain genome stability by systematically inactivating individual genes to uncover their role using pooled CRISPR-Cas9 screening. We employed genome-wide CRISPR screening in human cell lines in combination with specific chemical perturbations to identify gene deletions that enhance or suppress the phenotype of the chemical treatment, thereby shedding light on the effect of the treatment or the role of said enhancer/suppressor genes. We first focused on resveratrol; a small molecule first discovered in plants that has been suggested to extend lifespan in model organisms while also inhibiting cell proliferation ex vivo. Chemical-genetic screening pinpointed a role of resveratrol in inhibition of DNA replication. When we compared the cellular effects of resveratrol to hydroxyurea, a known inducer of replicative stress, we found that both treatments led to slower replication fork progression and activation of signaling in response to replicative stress. Importantly, we showed that the inhibition of DNA replication by resveratrol in human cells is a primary effect on cell proliferation and independent of the histone deacetylase Sirtuin-1, which has been implicated as the primary target in lifespan extension by resveratrol. We then studied the perturbation of a second cellular process, namely telomere maintenance. These specialized sequences at the termini of chromosomes are critical for the protection of chromosome ends and their erosion is counteracted by the enzymatic activity of telomerase. We performed a genome-wide CRISPR screen in cells that were concomitantly treated with a specific telomerase inhibitor, BIBR1532. We uncovered a strong genetic interaction between telomerase and a previously unannotated gene, C16orf72, which we named TAPR1. We found that TAPR1-depleted cells led to elevated p53 levels, a transcription factor central for the cellular response to telomeric and global DNA damage. We propose that TAPR1 is a negative regulator of p53 protein levels by promoting its turnover. Altogether, these studies highlight the power of CRISPR-Cas9 in genetic screening to uncover novel insight into the human genome stability maintenance network.
Stauropoulos, Dimitrios James. "An analysis of the interplay between telomeric factors and DNA repair proteins, in the human ALT pathway and cellular response to genomic double strand breaks." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=478811&T=F.
Full textGhadaouia, Sabrina. "Étude des mécanismes d'entrée en sénescence suite à une dysfonction de la chromatine télomérique." Thèse, 2016. http://hdl.handle.net/1866/18329.
Full textReplicative senescence is the physiological permanent growth arrest caused by telomeres shortening, at each round of replication. Once they have reach a critical length, the telomeres lose their t-loop structure, revealing the chromosome extremity that triggers a p53-dependant DNA damage response (DDR) and leads to proliferation arrest. The number of shortened telomeres that are necessary to onset senescence is not known, but accumulating evidences suggest that the cell is able to tolerate a certain level of telomere uncapping before stopping its divisions. Here, we used an inducible dominant negative form of Tin2 (Tin2DN), a member of the shelterin complex that stabilizes the t-loop, to show that telomeres uncapping alone is not sufficient to induce a stable growth arrest. When expressed, Tin2DN leads to the openingverture of the t-loop, creating a DDR with the formation of 53BP1 DNA damage foci (DDF) and a transient growth arrest. Indeed, we observed that the cells were re-entering the cell cycle and dividing, despite their uncapped DDF harbouring telomeres. As telomere uncapping creates chromosome fusions, such division leads to the apparition of secondary DNA breaks, with an accumulation of genomic instabilities, such as chromosomes bridges or micronuclei. We observed that Tin2 DN-induced telomere uncapping leads to a very weak activation of p53 and p21, with almost no phosphorylation of chkChk2. Nevertheless, when we infected our cells with a shp53, the primary growth arrest did not occur, leading to an amplification of the damages, with strong signs of instability and mitotic catastrophe. Altogether, these results propose a new model for replicative senescence: telomere uncapping induces a weak DDR that leads to a transitory growth arrest. The cells divide with fused chromosomes, creating new randomly distributed double strand breaks that trigger a stronger DDR and a permanent growth arrest. In that model, replicative senescence is not directly induced by telomere uncapping, but by an amplification of DNA damages through mitotic catastrophe.