Academic literature on the topic 'Telomeric DNA; Genome'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Telomeric DNA; Genome.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Telomeric DNA; Genome"

1

Bryan, Tracy M. "G-Quadruplexes at Telomeres: Friend or Foe?" Molecules 25, no. 16 (August 13, 2020): 3686. http://dx.doi.org/10.3390/molecules25163686.

Full text
Abstract:
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
APA, Harvard, Vancouver, ISO, and other styles
2

Harrington, Lea, and Fabio Pucci. "In medio stat virtus : unanticipated consequences of telomere dysequilibrium." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1741 (January 15, 2018): 20160444. http://dx.doi.org/10.1098/rstb.2016.0444.

Full text
Abstract:
The integrity of chromosome ends, or telomeres, depends on myriad processes that must balance the need to compact and protect the telomeric, G-rich DNA from detection as a double-stranded DNA break, and yet still permit access to enzymes that process, replicate and maintain a sufficient reserve of telomeric DNA. When unable to maintain this equilibrium, erosion of telomeres leads to perturbations at or near the telomeres themselves, including loss of binding by the telomere protective complex, shelterin, and alterations in transcription and post-translational modifications of histones. Although the catastrophic consequences of full telomere de-protection are well described, recent evidence points to other, less obvious perturbations that arise when telomere length equilibrium is altered. For example, critically short telomeres also perturb DNA methylation and histone post-translational modifications at distal sites throughout the genome. In murine stem cells for example, this dysregulated chromatin leads to inappropriate suppression of pluripotency regulator factors such as Nanog . This review summarizes these recent findings, with an emphasis on how these genome-wide, telomere-induced perturbations can have profound consequences on cell function and fate. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
APA, Harvard, Vancouver, ISO, and other styles
3

Bettin, Nicole, Claudio Oss Pegorar, and Emilio Cusanelli. "The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability." Cells 8, no. 3 (March 15, 2019): 246. http://dx.doi.org/10.3390/cells8030246.

Full text
Abstract:
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

López-Fernández, C., E. Pradillo, M. Zabal-Aguirre, J. L. Fernández, C. García de la Vega, and J. Gosálvez. "Telomeric and interstitial telomeric-like DNA sequences in Orthoptera genomes." Genome 47, no. 4 (August 1, 2004): 757–63. http://dx.doi.org/10.1139/g03-143.

Full text
Abstract:
A (TTAGG)n-specific telomeric DNA probe was hybridized to 11 orthopteroid insect genomes by fluorescence in situ hybridization. Nine different genera, mainly distributed within two evolutionary branches with male chromosome numbers 2n = 23 and 2n = 17 were included in the analysis. Telomere sequences yielded positive signals in every telomere and there was a considerable number of interstitial telomeric-like sequences, mainly located at the distal end of some, but not all, subterminal chromosome regions. One of the species, Pyrgomorpha conica, showed massive hybridization signals associated with constitutive heterochromatin. The results are discussed along two lines: (i) the chromosomal evolutionary trends within this group of insects and (ii) the putative role that ITs may play in a genome when they are considered telomere-derived, but not telomere-functional, DNA sequences.Key words: telomere, insect chromosomes, karyotype evolution, fluorescence in situ hybridization.
APA, Harvard, Vancouver, ISO, and other styles
5

Pal, Jagannath, Jie Ding, Subodh Kumar, Zachary Hunter, Teresa Calimeri, Jianhong Lin, Maria Gkotzamanidou, et al. "Telomerase Contributes To Repair Of DNA Breaks In Myeloma Cells By Incorporating “TTAGGG” Sequences Within Genome: Biological and Translational Significance." Blood 122, no. 21 (November 15, 2013): 1249. http://dx.doi.org/10.1182/blood.v122.21.1249.1249.

Full text
Abstract:
Abstract We previously reported that telomerase activity is elevated in multiple myeloma (MM), and its inhibition induces telomere shortening and growth arrest in cancer cells. We have now gone on to study the role of telomerase in DNA break repair and genome maintenance in MM cells. To demonstrate the role of telomerase in DNA break repair: 1) We used g-H2AX staining (marker for DNA breaks) and comet assay, a gel-based technique for detection of DNA breaks in individual cells, and observed that telomerase inhibition leads to significantly increased DNA breaks in MM cells; 2) We have confirmed the repair and re-circularization of a linearized plasmid by telomerase in MM cell extracts; and 3) Demonstrated increased genomic instability, especially deletions, upon telomerase inhibition in MM cells. This does not necessarily suggest role of telomerase in DNA repair as telomerase inhibition with attrition of telomeres can also lead to increased instability. To confirm the direct role of telomerase in DNA repair in MM, we now present the evidence and mechanism of DNA break repair by telomerase by demonstrating: 1) The presence of “TTAGGG” repeats at non-telomeric sites at higher frequency in cancer vs normal cells; and 2) Decline in “TTAGGG” insertions at non-telomeric sites in MM cells following suppression of telomerase. To evaluate rare telomeric insertions in the cancer genome, we created libraries of genomic DNA fragments enriched for “TTAGGG” sequences from primary MM and matching normal PBMCs derived from the same patient. The libraries were sequenced using Illumina platform and reads containing 4 or more telomeric repeats were filtered for further analysis. Telomeric insertion sites were located from unique genomic sequences immediately following TTAGGG at one end of each read. By subtracting telomeric insertions detected in normal cells, from MM cells of same patent, we identified 94 unique loci with telomeric insertion in the primary MM cells. To investigate if telomerase inserts new “TTAGGG” repeats within cancer genome following DNA breaks, UV-treated RPMI cells were incubated with and without telomerase inhibitor for 4 days, cultured without telomerase inhibition for another 6 days, harvested and DNA libraries prepared and enriched for telomeric fragments and subjected to sequencing. DNA from cells preserved before UV treatment (day 0) was used as baseline control and their telomeric insertions were subtracted from UV-treated control and telomerase-inhibited cells. Following induction of DNA breaks by UV, 21 and 3 new telomeric insertions were detected in control and telomerase-inhibited MM cells, respectively, indicating 86% reduction of telomeric insertions within MM cell genome upon telomerase inhibition. Analyses of flanking sequences indicated that 71% of the new telomeric insertions in the UV-treated control cells occurred at sites which did not have any pre-existing “TTAGGG” repeats. Similarly in primary MM cells, 67%, 29% and 4% of the new insertions were observed at positions containing 0, 1 and 2 copies of “TTAGGG” repeats, respectively, indicating that telomerase could use both telomeric as well as non-telomeric DNA as substrate for interstitial telomeric sequence insertions. Evaluation of a few telomeric insertions by Q-PCR confirmed the sequencing data. For an insertion on chr16 (q24.1), a 9.2-fold increase in telomeric signal in UV-treated control relative to background (day 0) cells was observed, whereas the same locus in telomerase-inhibited sample showed near background amplification. We also looked for somatic telomere insertions in 55 largely untreated patients with Waldenström’s macroglobulinemia for whom whole genome sequencing data was available. The absolute number of telomere insertions correlated with the number of somatic structural variants (translocation, inversions, and large deletions) per genome (tau = 0.3 p=0.001) indicating a possible role in DNA double stranded break repair. Thus telomerase contributes to survival of MM and other cancer cells, not only by preventing telomere attrition, but also the repair of DNA breaks which involves the insertion of telomeric repeats within genome. Inhibition of telomerase therefore, may increase the efficacy of chemotherapeutic agents targeting DNA repair. Evaluating interstitial telomeric insertion pattern in cancer could also be a potentially useful tool to study tumor progression or evolution upon treatment. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
6

Stroik, Susanna, Kevin Kurtz, and Eric A. Hendrickson. "CtIP is essential for telomere replication." Nucleic Acids Research 47, no. 17 (August 5, 2019): 8927–40. http://dx.doi.org/10.1093/nar/gkz652.

Full text
Abstract:
Abstract The maintenance of telomere length is critical to longevity and survival. Specifically, the failure to properly replicate, resect, and/or form appropriate telomeric structures drives telomere shortening and, in turn, genomic instability. The endonuclease CtIP is a DNA repair protein that is well-known to promote genome stability through the resection of endogenous DNA double-stranded breaks. Here, we describe a novel role for CtIP. We show that in the absence of CtIP, human telomeres shorten rapidly to non-viable lengths. This telomere dysfunction results in an accumulation of fusions, breaks, and frank telomere loss. Additionally, CtIP suppresses the generation of circular, extrachromosomal telomeric DNA. These latter structures appear to arise from arrested DNA replication forks that accumulate in the absence of CtIP. Hence, CtIP is required for faithful replication through telomeres via its roles at stalled replication tracts. Our findings demonstrate a new role for CtIP as a protector of human telomere integrity.
APA, Harvard, Vancouver, ISO, and other styles
7

Vinayagamurthy, Soujanya, Akansha Ganguly, and Shantanu Chowdhury. "Extra-telomeric impact of telomeres: Emerging molecular connections in pluripotency or stemness." Journal of Biological Chemistry 295, no. 30 (May 22, 2020): 10245–54. http://dx.doi.org/10.1074/jbc.rev119.009710.

Full text
Abstract:
Telomeres comprise specialized nucleic acid–protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length–dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat–binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.
APA, Harvard, Vancouver, ISO, and other styles
8

Fernandes, Stina George, Rebecca Dsouza, Gouri Pandya, Anuradha Kirtonia, Vinay Tergaonkar, Sook Y. Lee, Manoj Garg, and Ekta Khattar. "Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential." Cancers 12, no. 7 (July 14, 2020): 1901. http://dx.doi.org/10.3390/cancers12071901.

Full text
Abstract:
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Cohn, Marita, Ahu Karademir Andersson, Raquel Quintilla Mateo, and Mirja Carlsson Möller. "Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii." G3: Genes|Genomes|Genetics 9, no. 10 (August 19, 2019): 3345–58. http://dx.doi.org/10.1534/g3.119.400428.

Full text
Abstract:
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
10

Rassoulzadegan, Minoo, Ali Sharifi-Zarchi, and Leila Kianmehr. "DNA-RNA Hybrid (R-Loop): From a Unified Picture of the Mammalian Telomere to the Genome-Wide Profile." Cells 10, no. 6 (June 19, 2021): 1556. http://dx.doi.org/10.3390/cells10061556.

Full text
Abstract:
Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular extract without antibody that allows their physical isolation and determination of their RNA nucleotide sequence. We then define in the normal mouse and human sperm genomes the notion of stable DNA associated RNA terminal R-loop complexes, including TERRA molecules synthesized from local promoters of every chromosome. Furthermore, the first strong evidence of all telomeric structures, applied additionally to the whole murine sperm genome compared to the testes, showed reproducible R-loop complexes of the whole genome and suggesting a defined profile in the sperm genome for the next generation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Telomeric DNA; Genome"

1

Brown, Karen E. "Telomere-directed breakage of the human Y chromosome." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharjee, Anukana M. S. "Characterization of the DNA Binding Properties of CST (CTC1-STN1-TEN1) And Their Importance for CST Function in Telomeric as well as Genome-wide Replication." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504781845245038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pataskar, Shashank S. "Structure Function Studies Of Biologically Important Simple Repetitive DNA Sequences." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/261.

Full text
Abstract:
The recent explosion of DNA sequence information has provided compelling evidence for the following facts. (1) Simple repetitive sequences-microsatellites and minisatellites occur commonly in the human genome and (2) these repetitive DNA sequences could play an important role in the regulation of various genetic processes including modulation of gene expression. These sequences exhibit extensive polymorphism in both length and the composition between species and between organisms of the same species and even cells of the same organism. The repetitive DNA sequences also exhibit structural polymorphism depending on the sequence composition. The functional significance of repetitive DNA is a well-established fact. The work done in many laboratories including ours has conclusively documented the functional role played by repetitive sequences in various cellular processes. Structural studies have established the sequence requirement for various non-B DNA structures and the functional significance of these unusual DNA structures is becoming increasingly clear. The structures that were characterised earlier purely from conformation point of view have aroused interest after the recent realisation that these structures could be formed in vivo when cloned in a supercoiled plasmid. The discovery of novel type of dynamic mutations where intragenic amplifications of trinucleotide repeats is associated with phenotypic changes causing many neurodegenerative disorders has provided the most compelling evidence for the importance of simple repeats in the etiology of these disorders. Secondary structures adopted by these simple repeats is a common causative factor in the mechanism of expansion of these repeats. This realisation prompted many investigations into the relationship between the DNA sequence, structure and molecular basis of dynamic mutation. Many experimental evidences have implicated paranemic DNA structures in various biological processes, especially in the regulation of gene expression. Earlier work done in our laboratory on the structure function relationship of repetitive DNA sequences provided experimental evidence for the role of paranemic DNA structure in the regulation of gene expression. It was demonstrated that intramolecular triplex potential sequences within a gene downregulate its expression in vivo (Sarkar and Brahmachari (1992) Nucleic Acids Res., 20, 5713-5718). Similarly the effect of cruciform structure forming sequences on gene expression was also documented. Sequence specific alterations in DNA structures were studied in our laboratory using a variety of biophysical and biochemical techniques. An intramolecular, antiparallel tetraplex structure was proposed for human telomeric repeat sequences (Balagurumoorthy, et al., (1994) J. Biol. Chem., 269, 21858-21869). The telomeric repeats are not only present at the end of chromosomes but they are also present at many interstitial sites in the human genome. Database search reveals that the human telomeric sequences as well as similar sequences with minor variations are present at many locations in the human genome. Telomeric repeats are GC rich sequences with the G rich strand protruding as a 3' end overhang at the end of chromosomes. When human telomeric repeats are cloned in a supercoiled plasmid, the C rich strand adopts a hairpin like conformation where as the G-rich strand extrudes into a quadruplex structure. However, the biological significance of these structures in vivo still remains to be elucidated completely. The role of a putative tetraplex DNA structure in the insulin gene linked polymorphic region of the human insulin gene in vivo in the regulation of expression of the insulin gene has been suggested. In this context, we have addressed the question whether the telomeric repeats when present within a gene affect its expression in vivol If so, what would be the possible mechanism? An attempt has been made to understand the effect of presence of telomeric repeats within a gene on its expression. The details of these studies have been presented in Chapter 2 of this thesis. Contrary to telomeric repeats which provide stability to the chromosomes, recently expansion of a GC rich dodecamer repeat upstream of cystatin B gene (chromosome 21q) has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type. Two to three copies of the repeat (CCCCGCCCCGCG)n are present in normal individuals whereas the affected individuals have 30-75 copies of this repeat. The expression of cystatin B gene is reduced in patients in a cell specific manner. The repeat also shows intergenerational variability. The exact mechanism of expansion of this repeat is not known. In the case of trinucleotide repeat expansion, it is shown that the structure adopted by the repeat plays an important role in the mechanism of expansion and that some of the secondary structures adopted by trinucleotide repeats could be inherently mutagenic conformations. In order to understand the mechanism of expansion EPM1 dodecamer repeat, the work reported in this thesis was carried out with the following objectives. • To understand the structure of G rich and C-rich strands of EPM1 repeat. • To understand the variations in the structure with the increase in the length and its possible implications in the mechanism of expansion of EPM 1 repeat. Studies aimed with these objectives are presented in chapters 3, 4 and 5 of the thesis. Chapter 1 provides a general introduction to repetitive DNA, the various structures adopted by repetitive DNA sequences in the genome, the functional significance of the various simple repetitive DNA sequences in the genome has been presented. An account of trinucleotide repeat expansion and associated disorders, non-trinucleotide repeat expansions and associated disorders has been presented. The various non B-DNA structures adopted these repeats and their implications in the mechanism of expansion have been discussed. Chapter 2 describes in frame cloning of human telomeric repeats d(G3T2A)3G3 in the N-terminal region of β-galactosidase gene. The effect of such repeat Sequences on transcription elongation in vivo has been studied using E.coli as a model system. The 3.5 copies of human telomeric repeat sequences were cloned in the sense strand of plasmid pBluescriptllSK+ so as to create plasmid clone pSBQ8 and in the template strand of plasmid pBluescriptHKS+ so as to create clone pSBRQ8. One dimensional chloroquine gel shift assay indicated presence of an unwound structure in pSBQ8 and pSBRQ8. β-galactosidase activity assay suggested downregulation of the gene in vivo. In the case of plasmid pSBQ8 the difference in β-galactosidase activity was approximately 6 fold as compared to the parent plasmid pBluescriptIISK+ whereas in the case of pSBRQ8 the difference in β-galactosidase activity was approximately 8 fold as compared to the control pBluescriptIIKS+. The analysis of β-galactosidase transcript showed that full length transcript was formed in the case of pSBQ8. Full length transcript was not formed in the case of pSBRQ8. We propose that in the case of pSBQ8 the gene expression is inhibited in steps subsequent to transcription elongation. In the case of pSBRQ8, we propose that quadruplex structure may be formed by the template strand at the DNA level thereby blocking transcription elongation step. Chapter 3 describes studies aimed at understanding the structure of G-rich strand (referred to as G strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the G strand of dodecamer EPM1 repeat is d(GGGGCGGGGCGC)n. Oligoucleotides containing one (12mer), two (24mer) and three(36mer) were synthesised. These oligonucleotides are referred to as dG12, dG24 and dG36 respectively. Structural studies were carried out using CD spectroscopy, UV melting, non-denaturing gel electrophoresis and chemical and enzymatic probing. The G strand oligonucleotides showed enhanced gel elecrophoretic mobility in the presence of monovalent cations KCl and NaCl. Oligonucleotide dG12 also showed retarded species on non-denaturing gel in the presence of 70mM KCl indicating intermolecular associations. Oligonucleotides dG24 and dG36 predominantly formed intramolecular structures which migrated anomalously faster than the expected size. The CD spectrum for dG12 showed an intense positive band at 260nm and a negative band at 240nm in the presence of KCl indicative of an intermolecular, parallel G quartet structure. The CD spectra of dG24 and dG36 showed 260nm positive peak, 240nm negative peak along with a positive band around 290nm. This is indicative of folded back structure. These findings support the results of non-denaturing gel electrophoresis of G strand oligonucleotides. The UV melting profiles suggested increase in the stability with the increase in the length. These structures were further characterised by PI nuclease and chemical probing using DMS and DEPC. The structural studies with G-rich strand of EPM1 dodecamer repeat showed that this repeat motif adopts intramolecularly folded structures with increase in the length of the repeat thereby favouring slippage during replication. Chapter 4 deals with the studies aimed at understanding the structure at acidic pH of C-rich strand (referred to as C strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the C strand of dodecamer EPM1 repeat is d(CCCCGCCCCGCG)n. The C rich oligonucleotides are known to form a four stranded structure called i-motif at acidic pH involving intercalated base pairs. The i-motif consists of two parallel stranded, base paired duplexes are arranged in an antiparallel orientation. Since, the base pairs of one base paired duplex intercalate into those of the other duplex, the structure is called as i-motif. We have investigated structure of C strand of EPM1 repeat by circular dichroism (CD), native polyacrylamide gel electrophoresis and UV melting. Oligonucleotide dC12 showed two bands of which the major band was retarded on the native gel (pH 5.0) at low temperature suggesting that dC12 predominantly formed intermolecular structure, Oligonucleotides dC24 and dC36 migrated anomalously faster than the expected size indicating formation of compact, intramolecularly folded structures. Circular dichroism studies indicate that, all the oligonucleotides displayed an intense positive band near 285nm, a negative band around 260nm with a cross over at 270nm, This is a characteristic CD signature for an i-motif structure and reflects the presence of secondary structure due to formation of hydrogen bonded pairs between protonated cytosines. All the C strand oligonucleotides showed hyperchromism at 265nm, which is an isobestic wavelength for C protonation. Studies described in this chapter suggest an intramolecular i-motif structure for dC24 and dC36 and an intermolecular i-motif for oligonucleotide dC12. In addition, it was interesting to note that inspite of the presence of G residues, the stretch of C residues could adopt i-motif structure. Although these structures are formed at an acidic pH, it is indicative of formation of possible intramolecularly folded structure. Many reports have suggested the possibility of cytosine rich sequences adopting i-motif structure even at neutral pH. In order to test this possibility, structural studies were carried out on the C strand EPM1 oligonucleotides at pH 7.2 in the presence of 70mM NaCl. These studies have been described in Chapter 5. The investigations were done using CD spectroscopy, UV melting, native polyacrylamide gel electrophoresis, and chemical probing using hydroxylamine and PI nuclease. These studies indicate that all the C strand oligonucleotides form intramolecular, hairpin structure at physiological pH. All the three C strand oligonucleotides migrated anomalously faster on the native gel indicating the presence of a compact structure. The CD spectra at pH 7.2 showed a blue shift as compared to those at pH 5.0. This indicated absence of base pairs. The hydroxylamine chemical probing suggested presence of G-C Watson-Crick base pairs. The loop residues of the folded back hairpin structures were probed with PI nuclease. The C strand oligonucleotides showed possibility of formation of multiple hairpin structures with the increase in the length of the repeat. The propensity to form hairpin structures suggests a possibility of formation of slip loop structures during the replication process thereby promoting expansion of this repeat. Formation of folded back hairpin like structures is significant in terms of mechanism of expansion of this repeat. Chapter 6 is devoted to concluding remarks highlighting the significance of the experimental results presented in this thesis and their possible biological implications in the light of contemporary research.
APA, Harvard, Vancouver, ISO, and other styles
4

Starling, Jacqueline. "Telomeres and related repetitive DNA in the mouse genome." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/14482.

Full text
Abstract:
This project was designed to isolate and characterise interstitial telomere repeat containing loci from the human and mouse genomes and to investigate the nature of the mouse telomere. Cloning of the internal telomere repeat loci proved to be extremely difficult and so alternative methods such as restriction enzyme analysis, hybridisation analysis, inheritance studies, and mapping within recombinant inbred and backcross mouse strains were employed to characterise these regions within the mouse genome. Similar methods were used to characterise mouse telomeres. From these experiments it was shown that, in the mouse, Trypanosoma-like (TTAGGG)n telomere repeats are present at the telomeres and at interstitial sites. Within both of these regions, the (TTAGGG)n repeats are present within distinct genetic loci that are stably inherited through subsequent generations. New variant generation is observed at both types of loci, takes place at a significantly higher frequency at the telomeric compared to interstitial loci and occurs during gametogenesis. It is possible that the higher rate of new variant generation at mouse telomers compared to internal sites may relate to their position within the mouse genome. Restriction enzyme and hybridisation sequence analysis demonstrated that both classes of loci are composed of telomere-related repeats and that an undefined simple repeat may also be present. Direct sequencing is required before the nature and organisation of simple repetitive DNA within these loci can be determined. Mapping of the interstitial, (TTAGGG)n telomere repeat containing loci within the BxD Rl and Mus spretus/C57Bl/6 backcross mice demonstrated their presence within the protermini of chromosomes 9, 13 and X. It remains to be determined whether this distribution is functionally significant.
APA, Harvard, Vancouver, ISO, and other styles
5

Khurana, Jaspreet S. "Drosophila piRNA Function in Genome Maintenance, Telomere Protection and Genome Evolution: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/518.

Full text
Abstract:
Upon fertilization, the early embryo sustains most of the cellular processes using the maternally deposited reserves in the egg itself until the zygotic gene expression takes charge. Among the plethora of essential components provided by the mother are small non-coding RNAs called PIWI-interacting RNAs (piRNAs), which provide immunity to the zygote against transposon challenge. In this thesis, I have presented three different functions of piRNAs in Drosophila melanogaster- in maintenance of genomic integrity, telomere protection and their role as an adaptive immune system against genomic parasites. In Chapter 2, I have described the phenotypic effects of the loss of piRNA function in early embryos. The mutations affecting the piRNA pathway are known to cause embryonic lethality. To describe this lethality in detail, I have shown that all the characterized piRNA mutants show compromised zygotic genomic integrity during early embryogenesis. In addition, two piRNA pathway components, Aubergine (Aub) and Armitage (Armi) are also required for telomere resolution during early embryogenesis. Aub and Armi recruit telomeric protection complex proteins, HOAP and HP1, to the telomeric ends and thus avoid activation of the Non-homologous end joining (NHEJ) DNA repair pathway at the telomeres. There are about 120 transposon families in Drosophila melanogaster and piRNA pathway mutations cause activation of many of the resident transposons in the genome. In Chapter 3, I have described the effects of infection by a single transposon, P-element, in naïve strains by introduction through the zygote. Activation of the P-element leads to desilencing of unrelated transposons, causing accumulation of germline DNA damage which is linked to severely reduced fertility in the hybrid females. However, there is partial restoration of fertility as the hybrid progeny age, which correlates with P-element piRNA production and thus P-element silencing. Additionally, a number of transposons mobilize into piRNA generating heterochromatic clusters in the genome, and these insertions are stably inherited in the progeny. Collectively our data shows that piRNA production can be triggered in the adults in an absence of maternal contribution and that piRNAs serve as an adaptive immune system which helps resolve an internal genetic conflict between the host and the parasite. In an effort to understand the phenotypic effects of piRNA dysfunction in Drosophila, we have uncovered new exciting roles for piRNAs in development and presented evidence how transposons can act as architects in restructuring the host genome.
APA, Harvard, Vancouver, ISO, and other styles
6

Dechyeva, Daryna. "Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybrids." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153318263914-87397.

Full text
Abstract:
The elucidation of the composition and organization of genomes of higher plants is a fundamental problem of modern molecular biology. The genus Beta containing 14 species assigned to the sections Beta, Corollinae, Nanae and Procumbentes provides a suitable system for the comparative study of the nuclear genomes. Sugar beet Beta vulgaris has a genome size of 758 Mbp DNA with estimated 63 % repetitive sequences and the number of chromosomes n=9. The wild beet Beta procumbens is an important natural pool of resistance against pests and tolerance to unfavorable growth conditions. The subject of this research was the isolation and description of new repetitive DNA families from genomes of this Beta species. This work presents the molecular investigation and cytogenetic characterization by high-resolution multicolor fluorescent in situ hybridization (FISH) of the satellite and dispersed repetitive sequences in wild and cultivated beet species and in their hybrids. New repetitive sequences were isolated from the B. procumbens genome. The AluI restriction satellite repeats pAp11 are 229-246 bp long and form subfamilies. The satellite is amplified in the section Procumbentes, but also found in distantly related section Beta. Thus, pAp11 is probably an ancient component of Beta genomes. It could be the ancestor of the satellite subfamily pEV4 in B. vulgaris based on sequence analysis, Southern hybridization and comparative FISH. pAp11 was found at centromeric and a few intercalary sites in B. procumbens and formed intercalary blocks on B. vulgaris chromosomes where it co-localized with pEV4. These remarkable differences in the chromosomal position of pAp11 between Procumbentes and Beta species indicate that both satellites were likely involved in the expansion or rearrangement of the intercalary heterochromatin of B. vulgaris. Other two sequence families characterized on molecular, genomic and chromosomal levels are the non-homologous repeats pAp4 and pAp22, 1354 and 582 bp long. They have a dispersed organization in the genome and are widely scattered along B. procumbens chromosomes. pAp4 and pAp22 are specific for the section Procumbentes and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. High-resolution FISH on meiotic chromosomes showed that the both sequences mostly co-localize. The PCR analysis of their flanking regions revealed that pAp22 is a part of a Long Terminal Repeat (LTR) of an Athila-like env-class retrotransposon. This is the first indication that the retrovirus-like DNA elements exist in Beta. An ancient family of subtelomeric satellite DNA pAv34 was isolated from all four sections of the genus Beta and from spinach, a related Chenopodiaceae. Five clones were analyzed from each of the five species. The genomic organization and species distribution of the satellites were studied by sequencing and Southern hybridization. The repeating units in all families are 344-362 bp long and share 46.2-98.8 % similarity. Each monomer consists of two subunits SU1 and SU2 of 165-184 bp. The maximum likelihood and neighbor joining analyses of the 25 subtelomeric satellite monomers and their subunits indicated, that the duplication leading to the emergence of the 360 bp satellite should have occurred early in the phylogeny. The two directions of diversification are the clustering of satellites in two groups of subunits SU1 and SU2 and the arrangement of satellite repeats in section-specific groups. The comparative chromosomal localization of the telomeric repeat, pAv34 and rDNA was investigated by multicolor FISH. B. vulgaris chromosome termini showed unique physical organization of telomeric repeat and the subtelomeric satellite, as studied by high-resolution FISH on extended DNA fibers. The estimated length of the telomeric array was 0.55 - 62.65 kb, the length of pAv34 was 5.0-125.25 kb, the spacer between these sequences spanned 1.0-16.60 kb. Eight various classes of repeats were used to characterize the minichromosomes of the sugar beet fragment addition lines PRO1 and PAT2 by comparative multi-color FISH. The study allowed to propose a schematic pattern of repetitive DNA organization on the PRO1 and PAT2 minichromosomes. PRO1 has an acrocentric minichromosome, while PAT2 possesses a metacentric or submetacentric chromosome fragment. The functional integrity of the fragment addition line centromeres was confirmed by an immunostaining localization of the proteins specific to the active kinetochore. The serine 10-phosphorylated histone H3 was detected in pericentromeric regions of the PRO1 chromosomes. The microtubuli attachment sites were visualized as parts of kinetochore complexes.
APA, Harvard, Vancouver, ISO, and other styles
7

Beyer, Tracey Elaine, and Tracey Elaine Beyer. "Ontogeny of Unstable Chromosomes Formed by Telomere Replication Error." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621103.

Full text
Abstract:
The integrity of the genome relies on the maintenance of chromosomes, the structural embodiment of the genetic material. Disruption of chromosome replication can lead to extensive genomic rearrangements, spanning kilobase (Kb) to megabase (Mb) regions. Some chromosome rearrangements are inherently dynamic, beginning as a single unstable rearrangement from which multiple rearrangements emerge. The rare formation and transient behavior of unstable chromosomes renders their study challenging. Here I characterize the genetic ontogeny of unstable chromosomes in a budding yeast model, from initial replication error to unstable chromosome formation to their resolution. I find that the initial error often arises in or near the telomere and frequently forms unstable chromosomes that later resolve to an internal "collection site" in the middle of the chromosome. The initial telomere-proximal unstable chromosome is increased in cells mutant for telomerase, the Tel1 checkpoint kinase and even the Rad9 checkpoint protein, with no known telomere-specific function. Defects in Tel1 and the Rrm3 DNA helicase, or the Tel1-MRX complex and 9-1-1 checkpoint clamp, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. I performed a candidate genetic screen of instability in telomere maintenance and DNA damage response (DDR) proteins to characterize the interplay of pathways regulating senescence and genomic instability. Collectively, my results suggest that unstable chromosomes form in or near damaged telomeres, independently of end degradation (Exo1-independent), by either nonhomologous end joining (partially Lig4-dependent) or by faulty template switch during replication (Lig4- and Rad52-independent). The telomere-proximal unstable chromosomes then rearrange further to the middle of the chromosome. These results implicate telomere replication errors as a common source of widespread genomic changes and make substantial progress to our understanding of the initiation and fate of unstable chromosomes in the eukaryotic genome.
APA, Harvard, Vancouver, ISO, and other styles
8

Silva, João Paulo Lopes da. "Comparação dos Perfis Transcricionais de Genes de Reparo e Duplicação do DNA e Medidas de Comprimento Telomérico entre Grupos de Indivíduos Jovens, Idosos e Centenários." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-28072015-114601/.

Full text
Abstract:
A instabilidade genômica tem sido implicada como um dos principais fatores relacionados ao processo de envelhecimento. Esta é consequência do acumulo de danos no DNA em células somáticas continuamente expostas a fatores endógenos e exógenos. Um grupo de proteínas que desempenha diversos papéis na manutenção e estabilidade do genoma é formado pelas RecQ helicases, atuando em vários processos do metabolismo celular, tais como replicação do DNA, recombinação, reparo do DNA e manutenção dos telômeros. Algumas evidencias relacionam a expressão aberrante destas proteínas ao envelhecimento precoce. Com o objetivo de determinar os perfis de expressão transcricional de genes da família RecQ helicase e alguns genes envolvidos na via BER (Base excision repair), como PARP1, POL e APEX1 em células mononucleares do sangue periférico (PBMCs, do inglês Peripheral Blood Mononuclear Cells), comparamos grupos de indivíduos jovens (n = 20), idosos (n = 17) e centenários (n = 27). Além disso, foi também foi avaliado o comprimento telomérico em amostras de DNA desses indivíduos, buscando uma comparação entre os mesmos. Foi observada uma diminuição no nível de expressão transcricional do gene BLM nos grupos idoso e centenário quando comparados ao grupo jovem (p<0,05). Também foi observado uma diminuição na expressão do gene RECQL5 no grupo idoso comparado ao grupo jovem. Para os genes da via BER, foi observada uma repressão na expressão transcricional de PARP1 no grupo idoso em relação ao grupo jovem (p<0,05). Em relação ao comprimento telomérico, nossos resultados demonstraram associação entre a diminuição do comprimento telomérico e a idade. Obtivemos diferença significativa na comparação do comprimento telomérico de idosos e centenários comparados ao grupo jovem. Porém, não foi observada diferença entre os grupos idosos e centenários. Assim, nossos resultados mostram uma associação do processo de envelhecimento com a modulação de alguns genes da família RecQ helicase e participantes da via BER, e com o encurtamento telomérico. Os resultados gerados nesse trabalho são inéditos, sendo que relevantes para melhor compreensão do processo de envelhecimento.
Genomic instability plays a major role in the aging process due to the accumulation of DNA damage in somatic cells continuously exposed to endogenous and exogenous factors. A group of proteins essential in maintaining genome stability is composed by RecQ helicase, acting in several cell metabolism processes such as DNA replication, recombination, DNA repair and telomere maintenance. Some evidence related the aberrant expression of these proteins to premature aging. In order to determine the transcriptional expression profile of RecQ helicase gene family and some genes involved in the BER (Base excision repair) pathway, such as PARP1, POL and APEX1 in peripheral blood mononuclear cells (PBMCs), we compared groups of young (n = 20), elderly (n = 17) and centenarians (n = 27). Furthermore, it was also evaluated telomere length in DNA samples from these individuals. It was observed a decrease in the transcriptional expression of BLM gene in elderly and centenarians compared to the young group (p <0.05). It was also observed a decrease in expression of RECQL5 gene in the elderly compared to the younger group. For the BER genes, it was observed a transcriptional repression of PARP1 in the elderly group compared to the young group (p <0.05). Regarding the telomere length, our results demonstrated an association between reduction of telomere length and age. We obtained significant difference in comparing the telomere length of the elderly and centenarians compared to the younger group. However, no difference was observed between the elderly and centenarians groups. Thus, our results show an association of aging process with the modulation of certain genes from RecQ helicase family and participants of the BER pathway and the telomere shortening. The results generated in this study are promising, and relevant to better understanding the aging process.
APA, Harvard, Vancouver, ISO, and other styles
9

Monfouilloux, Sylvaine. "Etude de la structure et de l'évolution d'une région de translocations sous télomériques chez l'homme." Rouen, 1997. http://www.theses.fr/1997ROUES065.

Full text
Abstract:
Les extrémités des chromosomes comportent le télomère puis la région sous télomérique. Ces deux domaines se distinguent des autres régions chromosomiques car ils évoluent par des échanges entre les chromosomes hétérologues. Le télomère est une structure spécialisée constituant la fin des chromosomes et indispensable à leur stabilité. Il joue un rôle important dans l'organisation spatiale des chromosomes en particulier dans l'agglutination des extrémités chromosomiques en périphérie nucléaire. La région sous télomérique, adjacente au télomère est très redondante entre les chromosomes hétérologues et se termine avec les séquences uniques spécifiques à chaque chromosome. Sa fonction ainsi que sa structure ne sont pas bien connues. Plusieurs familles de séquences répétées y sont présentes. Certaines sont localisées uniquement à proximité du télomère, d'autres comme les minisatellites sont en majorité localisées dans les derniers mégabases des chromosomes. Nous avons étudié en détail une région sous télomérique présente sur une dizaine de chromosomes chez tous les individus. Nous montrons qu'elle s'est propagée par des translocations successives de domaines chromosomiques terminaux de 80 a 200 Kb, impliquant des processus de recombinaison divers. Ces translocations se sont produites après la séparation de l'homme et du chimpanzé. La stabilité de la région apparaît variable suivant les chromosomes ce qui se traduit par un polymorphisme des localisations de la région entre les individus. Cette région sous télomérique a évolué de façon très différente entre l'homme et le chimpanzé. Nous proposons que cette évolution pourrait être conditionnée par la présence de gènes adjacents à la région sous télomerique. Nous avons en effet montré que des gènes ubiquitaires se trouvent à quelques dizaines de Kb en aval de la région sous télomérique. Leur expression pourrait être influencée par la chromatine adjacente, c'est à dire par la nature de la région sous télomérique. Nous proposons enfin que l'évolution de la région sous télomérique constitue un modèle pour l'étude de l'évolution du génome humain.
APA, Harvard, Vancouver, ISO, and other styles
10

Burkert, Christian Martin. "Cis-regulation and genetic control of gene expression in neuroblastoma." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23008.

Full text
Abstract:
Genregulation beeinflusst Phänotypen im Kontext von Gesundheit und Krankheit. In Krebszellen regulieren genetische und epigenetische Faktoren die Genexpression in cis. Das Neuroblastom ist eine Krebserkrankung, die häufig im Kindesalter auftritt. Es ist gekennzeichnet durch eine geringe Anzahl exonischer Mutationen und durch häufige Veränderungen der somatischen Kopienzahl, einschließlich Genamplifikationen auf extrachromosomaler zirkulärer DNA. Bisher ist wenig darüber bekannt, wie lokale genetische und epigenetische Faktoren Gene im Neuroblastom regulieren. In dieser Arbeit kombiniere ich die allelspezifische Analyse ganzer Genome (WGS), Transkriptome und zirkulärer DNA von Neuroblastom-Patienten, um genetische und cis-regulatorische Effekte zu charakterisieren. Ich zeige, dass somatische Dosis-Effekte der Kopienzahl andere lokale genetische Effekte dominieren und wichtige Signalwege regulieren. Genamplifikationen zeigen starke Dosis-Effekte und befinden sich häufig auf großen extrachromosomalen zirkulären DNAs. Die vorgestellte Analyse zeigt, dass der Verlust von 11q zu einer Hochregulation von Histonvarianten H3.3 und H2A in Tumoren mit alternativer Verlängerung der Telomere (ALT) führt, und dass erhöhte somatische Kopienzahl die Expression der TERT Gens verstärken können. Weitere Erkenntnisse sind, dass 17p-Ungleichgewichte und die damit verbundene Herunterregulierung neuronaler Gene sowie die Hochregulierung des genomisch geprägten Gens RTL1 durch Kopienzahl-unabhängige allelische Dosis-Effekte mit einer ungünstigen Prognose verbunden sind. Die cis-QTL-Analyse bestätigt eine zuvor beschriebene Regulation des LMO1 Gens durch einen Enhancer-Polymorphismus und charakterisiert das regulatorische Potenzial weiterer GWAS-Risiko-Loci. Die Arbeit unterstreicht die Bedeutung von Dosis-Effekten im Neuroblastom und liefert eine detaillierte Übersicht regulatorischer Varianten, die in dieser Krankheit aktiv sind.
Gene regulation controls phenotypes in health and disease. In cancer, the interplay between germline variation, genetic aberrations and epigenetic factors modulate gene expression in cis. The childhood cancer neuroblastoma originates from progenitor cells of the sympathetic nervous system. It is characterized by a sparsity of recurrent exonic mutations but frequent somatic copy-number alterations, including gene amplifications on extrachromosomal circular DNA. So far, little is known on how local genetic and epigenetic factors regulate genes in neuroblastoma to establish disease phenotypes. I here combine allele-specific analysis of whole genomes, transcriptomes and circular DNA from neuroblastoma patients to characterize genetic and cis-regulatory effects, and prioritize germline regulatory variants by cis-QTLs mapping and chromatin profiles. The results show that somatic copy-number dosage dominates local genetic effects and regulates pathways involved in telomere maintenance, genomic stability and neuronal processes. Gene amplifications show strong dosage effects and are frequently located on large but not small extrachromosomal circular DNAs. My analysis implicates 11q loss in the upregulation of histone variants H3.3 and H2A in tumors with alternative lengthening of telomeres and cooperative effects of somatic rearrangements and somatic copy-number gains in the upregulation of TERT. Both 17p copy-number imbalances and associated downregulation of neuronal genes as well as upregulation of the imprinted gene RTL1 by copy-number-independent allelic dosage effects is associated with an unfavorable prognosis. cis-QTL analysis confirms the previously reported regulation of the LMO1 gene by a super-enhancer risk polymorphism and characterizes the regulatory potential of additional GWAS risk loci. My work highlights the importance of dosage effects in neuroblastoma and provides a detailed map of regulatory variation active in this disease.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Telomeric DNA; Genome"

1

Dodds, Chris, Chandra M. Kumar, and Frédérique Servin. Pathophysiological changes of ageing and their relevance to anaesthesia. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198735571.003.0002.

Full text
Abstract:
The molecular basis of ageing is reviewed. This includes the concept of a summation of DNA damage over a lifetime causing genome instability. Epigenetic alterations, telomeric shortening, and the possibility of their modification are discussed. Oxidative and mitochondrial DNA damage and the resulting dysfunction leading to senescence are briefly described. Systemic problems and resultant behavioural adaptation may mask the decline in functional reserve and cause some of the difficulties in identifying its presence in ill elderly patients. Specific organ system changes are then described in some detail. These include the major concerns with the cardiovascular, respiratory, renal, hepatic, neurologic, endocrine, and musculoskeletal systems. The effect of ageing on the special senses of vision and hearing are covered, with emphasis on issues of informed consent.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Telomeric DNA; Genome"

1

Paro, Renato, Ueli Grossniklaus, Raffaella Santoro, and Anton Wutz. "Biology of Chromatin." In Introduction to Epigenetics, 1–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.

Full text
Abstract:
AbstractThis chapter provides an introduction to chromatin. We will examine the organization of the genome into a nucleosomal structure. DNA is wrapped around a globular complex of 8 core histone proteins, two of each histone H2A, H2B, H3, and H4. This nucleosomal arrangement is the context in which information can be established along the sequence of the DNA for regulating different aspects of the chromosome, including transcription, DNA replication and repair processes, recombination, kinetochore function, and telomere function. Posttranslational modifications of histone proteins and modifications of DNA bases underlie chromatin-based epigenetic regulation. Enzymes that catalyze histone modifications are considered writers. Conceptually, erasers remove these modifications, and readers are proteins binding these modifications and can target specific functions. On a larger scale, the 3-dimensional (3D) organization of chromatin in the nucleus also contributes to gene regulation. Whereas chromosomes are condensed during mitosis and segregated during cell division, they occupy discrete volumes called chromosome territories during interphase. Looping or folding of DNA can bring regulatory elements including enhancers close to gene promoters. Recent techniques facilitate understanding of 3D contacts at high resolution. Lastly, chromatin is dynamic and changes in histone occupancy, histone modifications, and accessibility of DNA contribute to epigenetic regulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Simon, Marie-Noelle, Alkmini Kalousi, Evi Soutoglou, Vincent Géli, and Catherine Dargemont. "Nuclear Pore Complexes in DNA Repair and Telomere Maintenance." In Nuclear Pore Complexes in Genome Organization, Function and Maintenance, 201–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71614-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monson, Ellen K., Vincent P. Schulz, and Virginia A. Zakian. "Telomere Length Regulation by the Pif1 DNA Helicase." In Genomic Instability and Immortality in Cancer, 97–110. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5365-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dewar, James M., and David Lydall. "Simple, Non-radioactive Measurement of Single-Stranded DNA at Telomeric, Sub-telomeric, and Genomic Loci in Budding Yeast." In Methods in Molecular Biology, 341–48. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-998-3_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fouquerel, Elise, Ryan P. Barnes, Hong Wang, and Patricia L. Opresko. "Measuring UV Photoproduct Repair in Isolated Telomeres and Bulk Genomic DNA." In Methods in Molecular Biology, 295–306. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9500-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lucchesi, John C. "Aging, cellular senescence and cancer: the role of genomic instability, cellular homeostasis and telomeres." In Epigenetics, Nuclear Organization & Gene Function, 227–37. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.003.0020.

Full text
Abstract:
Aging hallmarks are causative factors of oncogenesis. Genomic instability results from the accumulation of errors that occur during DNA replication or from exposure to endogenous or environmental insults. The genome contains genes responsible for normal cell division and differentiation (oncogenes), and genes that regulate cell division and limit cell growth and proliferation (tumor suppressor genes). Over-expression of oncogenes or inactivation of tumor suppressors results in cancer. During aging, alterations in proteostasis result in the disruption of metabolic pathways that connect with environmental factors. Telomeres are terminal regions of chromosomes that protect the DNA from attack by exonucleases, prevent end-to-end fusions and prevent the shortening of the DNA molecules at each replication cycle. Using RNA as a template, telomerase synthesizes telomeric DNA. Telomerase is absent in most adult human tissues, resulting in a progressive shortening of all telomeres and causing cells to senesce. Cancer cells must activate telomerase to gain “immortality.”
APA, Harvard, Vancouver, ISO, and other styles
7

Buscemi, Giacomo. "DNA repair and genome integrity." In Oxford Textbook of Cancer Biology, edited by Francesco Pezzella, Mahvash Tavassoli, and David J. Kerr, 13–32. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198779452.003.0002.

Full text
Abstract:
The DNA damage response (DDR) is a complex network of pathways involving hundreds of proteins with the main goal to detect and fix lesions occurring to DNA structure, thus preserving genome stability throughout generations. To enhance repair efficiency and eventually clear unrepaired harmful cells, the DDR has under its own control the progression of cell cycle, the induction of cellular senescence and the apoptotic programme. Furthermore, cells take advantage of DDR to manage break-like structures, such as telomeres, and to check processes involving DNA ‘cut and paste’ steps like meiosis and immune response. Since all these aspects of a cell life are frequently altered in cancer, not unexpectedly, deregulation of DDR is an essential step during carcinogenesis. Indeed, even if mutations in DDR genes partially reduce the repair ability of a precancerous cell, they also enhance the possibility of oncogene mutation, allow hyper-replication and promote cell survival and adaptation in stressed conditions. On the other side, impairment of DNA repair sensitizes cancer cells to radio and chemotherapeutic agents inducing DNA damage and DDR components are promising targets to enhance therapy efficiency.
APA, Harvard, Vancouver, ISO, and other styles
8

McHughen, Alan. "Is Human DNA Special?" In DNA Demystified, 83–99. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190092962.003.0004.

Full text
Abstract:
Chapter 3 explores “Human DNA” and the genetic features of human beings. Genetic inheritance in humans follows the same patterns and principles as those of other animals and plants, but far more scientists have studied humans than have studied any other species. Thus, scientists have accumulated a hugely disproportionate amount of information directly relevant to humans. This chapter examines some curious features of human evolution. Is there a genetic basis for human race and genetic “purity”? Are telomeres ticking time bombs inside cells limiting the human life span? How did most humans end up with Neanderthal DNA in their genomes? It’s just the way the DNA cookie crumbles. This chapter also introduces the use of technology based on DNA, from human DNA fingerprinting to probing human history.
APA, Harvard, Vancouver, ISO, and other styles
9

Raimondo, Salvatore, Mariacira Gentile, Tommaso Gentile, and Luigi Montano. "Presence of p53 Protein on Spermatozoa DNA: A Novel Environmental Bio-Marker and Implications for Male Fertility." In P53 - A Guardian of the Genome and Beyond [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99559.

Full text
Abstract:
Many studies suggest a direct relationship between toxic effects and an increase in the p53 protein on cellular DNA. For our studies, we used sperm DNA as an indicator of environmental toxic effects, dosing p53 quantitatively. To assess possible variations, we used semen samples from two homogeneous male groups living permanently in areas with different environmental impact. The toxic effects of the selected high environmental impact area are caused by both soil and air pollution, while the selected low environmental impact area is a nature reserve where there are no landfills, but only rural factories. As we work with reproductive cells, our interest was inevitably focused on sperm DNA damage and whether this damage could affect their fertilizing capacity. The length of telomeres and the quantification of protamines are being studied to better define the possible damage.
APA, Harvard, Vancouver, ISO, and other styles
10

"Structure of DNA and Telomeres." In Anatomy of Gene Regulation, 14–25. Cambridge University Press, 2003. http://dx.doi.org/10.1017/cbo9780511606403.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Telomeric DNA; Genome"

1

Kant, Nimita, and Perumal Senthiappan Jayaraj. "Evaluation of Telomerase Reverse Transcriptase Expression in Squamous Cell Carcinoma of the Skin." In Annual Conference of Indian Society of Medical and Paediatric Oncology (ISMPO). Thieme Medical and Scientific Publishers Pvt. Ltd., 2021. http://dx.doi.org/10.1055/s-0041-1735375.

Full text
Abstract:
Abstract Introduction Squamous cell carcinoma (SCC) is highly invasive malignant tumor showing keratinocytic differentiation and is often associated with chronic exposure to UV light. Telomerase is RNA dependent DNA polymerase that causes addition of telomeric repeat DNA sequences to chromosomal ends. Recently, UV signature mutations have been identified in core promoter region of TERT gene, which encodes the main catalytic subunit leading to overexpression in cutaneous melanoma. However, its role and expression pattern have not been studied in eyelid skin SCC. Objectives Present study aimed to analyze the presence of telomerase reverse transcriptase (TERT) in eyelid SCC, as its expression pattern and mutational status have not been studied in SCC. Materials and Methods Nineteen cases of eyelid SCC were evaluated for the presence of TERT protein using monoclonal antibody against TERT, and its mutational status was verified using PCR and DNA sequencing. Bioedit software was used for analyzes and primers were vindicated using NCBI Primer Blast. Results were correlated with clinicopathological features of SCC. Results A C to T mutation was observed in 6 of 19 SCC cases. Positive expression of TERT was found in 57% of the cases analyzed and it showed a significant association with keratinocytic differentiation (p = 0.04). Conclusion Relation between TERT promoter mutation and TERT immunohistochemistry is studied for the first time in eyelid skin SCC. Our results suggested that overexpression of TERT may contribute to the aggressive behavior associated with SCC and such patients may warrant aggressive treatment.
APA, Harvard, Vancouver, ISO, and other styles
2

Sadler, J. Evan. "THE MOLECULAR BIOLOGY OF VON WILLEBRAND FACTOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643930.

Full text
Abstract:
Human von Willebrand factor (vWF) is a plasma glycoprotein that is synthesized by endothelial cells and megakaryocytes, and perhaps by syncytiotrophoblast of placenta. The biosynthesis of vWF is very complex, involving proteolytic processing, glycosyla-tion, disulfide bond formation, and sulfation. Mature vWF consists of a single subunit of ∼ 250,000 daltons that is assembled into multimer ranging from dimers to species of over 10 million daltons. vWF performs its essential hemostatic function through several binding interactions, forming a bridge between specific receptors on the platelet surface and components of damaged vascular subendothelial connective tissue. Inherited deficiency of vWF, or von Willebrand disease (vWD), is the most common genetically transmitted bleeding disorder worldwide. The last two years has been a time of very rapid progress in understanding the molecular biology of vWF. Four research groups have independently isolated and sequenced the 9 kilobase full-length vWF cDNA. The predicted protein sequence has provided a foundation for understanding the biosynthetic processing of vWF, and has clarified the relationship between vWF and a 75-100 kilodalton plasma protein of unknown function, von Willebrand antigen II (vWAgll)/ vWAgll is co-distributed with vWF in endothelial cells and platelets, and is deficient in patients with vWD. The cDNA sequence of vWF shows that vWAgll is a rather large pro-peptide for vWF, explaining the biochemical and genetic association between the two proteins. vWF has a complex evolutionary history marked by many separate gene segment duplications. The primary structure of the protein contains four distinct types of repeated domains present in two to four copies each. Repeated domains account for over 90 percent of the protein sequence. This sequence provides a framework for ordering the functional domains that have been defined by protein chemistry methods. A tryptic peptide from the amino-terminus of vWF that overlaps domain D3 binds to factor VIII and also appears to bind to heparin. Peptides that include domain A1 bind to collagens, to heparin, and to platelet glycoprotein Ib. A second collagen binding site appears to lie within domain A3. The vWF cDNA has been expressed in heterologous cells to produce small amounts of functionally and structurally normal vWF, indicating that endothelial cells are not unique in their ability to process and assemble vWF multimers. Site-directed mutagenesis has been used to show that deletion of the propeptide of vWF prevents the formation of multimers. Cloned cDNA probes have been employed to isolate vWF genomic DNA from cosmid and λ-phage libraries, and the size of the vWF gene appears to be ∼ 150 kilobases. The vWF locus has been localized to human chromosome 12p12—pter. Several intragenic RFLPs have been characterized. With them, vWF has been placed on the human genetic linkage map as the most telomeric marker currently available for the short arm of chromosome 12. A second apparently homologous locus has been identified on chromosome 22, but the relationship of this locus to the authentic vWF gene is not yet known. The mechanism of vWD has been studied by Southern blotting of genomic DNA with cDNA probes in a few patients. Three unrelated pedigrees have been shown to have total deletions of the vWF gene as the cause of severe vWD (type III). This form of gene deletion appears to predispose to the development of inhibitory alloantibodies to vWF during therapy with cryoprecipitate. During the next several years recombinant DNA methods will continue to contribute our understanding of the evolution, biosynthesis, and structure-function relationships of vWF, as well as the mechanism of additional variants of vWD at the level of gene structure.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography