To see the other types of publications on this topic, follow the link: Telomere.

Journal articles on the topic 'Telomere'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Telomere.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lin, Chi-Ying, Hsih-Hsuan Chang, Kou-Juey Wu, Shun-Fu Tseng, Chuan-Chuan Lin, Chao-Po Lin, and Shu-Chun Teng. "Extrachromosomal Telomeric Circles Contribute to Rad52-, Rad50-, and Polymerase δ-Mediated Telomere-Telomere Recombination in Saccharomyces cerevisiae." Eukaryotic Cell 4, no. 2 (February 2005): 327–36. http://dx.doi.org/10.1128/ec.4.2.327-336.2005.

Full text
Abstract:
ABSTRACT Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the telomerase reverse transcriptase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. By using an in vivo inducible Cre-loxP system to generate and trace the fate of marked telomeric DNA-containing rings, the efficiency of telomere-telomere recombination can be determined quantitatively. We show that the telomeric loci are the primary sites at which a marked telomeric ring-containing DNA is observed among wild-type and surviving cells lacking telomerase. Marked telomeric DNAs can be transferred to telomeres and form tandem arrays through Rad52-, Rad50-, and polymerase δ-mediated recombination. Moreover, increases of extrachromosomal telomeric and Y′ rings were observed in telomerase-deficient cells. These results imply that telomeres can use looped-out telomeric rings to promote telomere-telomere recombination in telomerase-deficient Saccharomyces cerevisiae.
APA, Harvard, Vancouver, ISO, and other styles
2

Brault, Marie Eve, and Chantal Autexier. "Telomeric recombination induced by dysfunctional telomeres." Molecular Biology of the Cell 22, no. 2 (January 15, 2011): 179–88. http://dx.doi.org/10.1091/mbc.e10-02-0173.

Full text
Abstract:
Telomere maintenance is essential for cellular immortality, and most cancer cells maintain their telomeres through the enzyme telomerase. Telomeres and telomerase represent promising anticancer targets. However, 15% of cancer cells maintain their telomeres through alternative recombination-based mechanisms, and previous analyses showed that recombination-based telomere maintenance can be activated after telomerase inhibition. We determined whether telomeric recombination can also be promoted by telomere dysfunction. We report for the first time that telomeric recombination can be induced in human telomerase-positive cancer cells with dysfunctional telomeres.
APA, Harvard, Vancouver, ISO, and other styles
3

Kishtagari, Ashwin, and Justin Watts. "Biological and clinical implications of telomere dysfunction in myeloid malignancies." Therapeutic Advances in Hematology 8, no. 11 (October 6, 2017): 317–26. http://dx.doi.org/10.1177/2040620717731549.

Full text
Abstract:
Telomeres at the ends of linear chromosomes protect the genome. Telomeres shorten with each round of cell division, placing a finite limit on cell growth. Telomere attrition is associated with cell senescence and apoptosis. Telomerase, a specialized ribonucleoprotein complex, maintains telomeres homeostasis through repeat addition of telomere sequences to the 3′ telomeric overhang. Telomere biology is closely related to cancer and normal aging. Upregulation of telomerase or activation of the alternative pathway of telomere lengthening is a hallmark of cancer cells, making telomerase an attractive target for cancer therapeutics. In this review, we will discuss telomere biology and the prognostic implications of telomere length in acute myeloid leukemia, and review exciting new investigational approaches using telomerase inhibitors in acute myeloid leukemia and other myeloid malignancies.
APA, Harvard, Vancouver, ISO, and other styles
4

Bechard, Laura H., Bilge D. Butuner, George J. Peterson, Will McRae, Zeki Topcu, and Michael J. McEachern. "Mutant Telomeric Repeats in Yeast Can Disrupt the Negative Regulation of Recombination-Mediated Telomere Maintenance and Create an Alternative Lengthening of Telomeres-Like Phenotype." Molecular and Cellular Biology 29, no. 3 (November 24, 2008): 626–39. http://dx.doi.org/10.1128/mcb.00423-08.

Full text
Abstract:
ABSTRACT Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.
APA, Harvard, Vancouver, ISO, and other styles
5

Smogorzewska, Agata, Bas van Steensel, Alessandro Bianchi, Stefan Oelmann, Matthias R. Schaefer, Gisela Schnapp, and Titia de Lange. "Control of Human Telomere Length by TRF1 and TRF2." Molecular and Cellular Biology 20, no. 5 (March 1, 2000): 1659–68. http://dx.doi.org/10.1128/mcb.20.5.1659-1668.2000.

Full text
Abstract:
ABSTRACT Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3′ telomere terminus in TRF1- and TRF2-induced telomeric loops.
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Aegina Adams, Isabelle Dionne, Raymund J. Wellinger, and Connie Holm. "The Function of DNA Polymerase α at Telomeric G Tails Is Important for Telomere Homeostasis." Molecular and Cellular Biology 20, no. 3 (February 1, 2000): 786–96. http://dx.doi.org/10.1128/mcb.20.3.786-796.2000.

Full text
Abstract:
ABSTRACT Telomere length control is influenced by several factors, including telomerase, the components of telomeric chromatin structure, and the conventional replication machinery. Although known components of the replication machinery can influence telomere length equilibrium, little is known about why mutations in certain replication proteins cause dramatic telomere lengthening. To investigate the cause of telomere elongation in cdc17/pol1 (DNA polymerase α) mutants, we examined telomeric chromatin, as measured by its ability to repress transcription on telomere-proximal genes, and telomeric DNA end structures in pol1-17 mutants. pol1-17 mutants with elongated telomeres show a dramatic loss of the repression of telomere-proximal genes, or telomeric silencing. In addition,cdc17/pol1 mutants grown under telomere-elongating conditions exhibit significant increases in single-stranded character in telomeric DNA but not at internal sequences. The single strandedness is manifested as a terminal extension of the G-rich strand (G tails) that can occur independently of telomerase, suggesting thatcdc17/pol1 mutants exhibit defects in telomeric lagging-strand synthesis. Interestingly, the loss of telomeric silencing and the increase in the sizes of the G tails at the telomeres temporally coincide and occur before any detectable telomere lengthening is observed. Moreover, the G tails observed incdc17/pol1 mutants incubated at the semipermissive temperature appear only when the cells pass through S phase and are processed by the time cells reach G1. These results suggest that lagging-strand synthesis is coordinated with telomerase-mediated telomere maintenance to ensure proper telomere length control.
APA, Harvard, Vancouver, ISO, and other styles
7

Kondratieva, Yu A., and L. P. Mendeleeva. "Characteristics of telomere length in patients with hematological diseases (literature review)." Oncohematology 16, no. 1 (April 14, 2021): 23–30. http://dx.doi.org/10.17650/1818-8346-2021-16-1-23-30.

Full text
Abstract:
Telomeres are protein structures that regulate the process of cellular aging and play the role of a protective “cap” on the end sections of chromosomes. The telomeres of nucleated cells undergo permanent shortening during their lifetime as a result of multiple cycles of DNA replication. The enzyme that provides completion of the missing telomeric repeats at the ends of chromosomes is called “telomerase”. However, recovery of critically short telomeres by telomerase or recombination in somatic cells is limited due to the presence of a large accumulation of unclosed telomeres, which triggers apoptosis. The death of stem cells due to telomere depletion ensures the selection of abnormal cells in which the genome instability contributes to malignant progression. During carcinogenesis, cells acquire mechanisms for maintaining telomeres in order to avoid programmed death. In addition, tumor cells are able to support the telomere's DNA, counteracting its shortening and premature death. Activation of telomere length maintenance mechanisms is a hallmark of most types of cancers. In the modern world, there is an increasing interest in studying the biological characteristics of telomeres. The development of new methods for measuring telomere length has provided numerous studies to understand the relationship between telomere length of human nucleated cells and cancer. Perhaps maintaining telomere length will be an important step, determining the course and prognosis of the disease. The purpose of this review is to provide an analysis of published data of the role and significance of telomere length in patients with hematological malignancies.
APA, Harvard, Vancouver, ISO, and other styles
8

Perera, Omesha N., Alexander P. Sobinoff, Erdahl T. Teber, Ashley Harman, Michelle F. Maritz, Sile F. Yang, Hilda A. Pickett, et al. "Telomerase promotes formation of a telomere protective complex in cancer cells." Science Advances 5, no. 10 (October 2019): eaav4409. http://dx.doi.org/10.1126/sciadv.aav4409.

Full text
Abstract:
Telomerase is a ribonucleoprotein complex that catalyzes addition of telomeric DNA repeats to maintain telomeres in replicating cells. Here, we demonstrate that the telomerase protein hTERT performs an additional role at telomeres that is independent of telomerase catalytic activity yet essential for telomere integrity and cell proliferation. Short-term depletion of endogenous hTERT reduced the levels of heat shock protein 70 (Hsp70-1) and the telomere protective protein Apollo at telomeres, and induced telomere deprotection and cell cycle arrest, in the absence of telomere shortening. Short-term expression of hTERT promoted colocalization of Hsp70-1 with telomeres and Apollo and reduced numbers of deprotected telomeres, in a manner independent of telomerase catalytic activity. These data reveal a previously unidentified noncanonical function of hTERT that promotes formation of a telomere protective complex containing Hsp70-1 and Apollo and is essential for sustained proliferation of telomerase-positive cancer cells, likely contributing to the known cancer-promoting effects of both hTERT and Hsp70-1.
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandes, Stina George, Rebecca Dsouza, Gouri Pandya, Anuradha Kirtonia, Vinay Tergaonkar, Sook Y. Lee, Manoj Garg, and Ekta Khattar. "Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential." Cancers 12, no. 7 (July 14, 2020): 1901. http://dx.doi.org/10.3390/cancers12071901.

Full text
Abstract:
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Henderson, S., R. Allsopp, D. Spector, S. S. Wang, and C. Harley. "In situ analysis of changes in telomere size during replicative aging and cell transformation." Journal of Cell Biology 134, no. 1 (July 1, 1996): 1–12. http://dx.doi.org/10.1083/jcb.134.1.1.

Full text
Abstract:
Telomeres have been shown to gradually shorten during replicative aging in human somatic cells by Southern analysis. This study examines telomere shortening at the single cell level by fluorescence in situ hybridization (FISH). FISH and confocal microscopy of interphase human diploid fibroblasts (HDFs) demonstrate that telomeres are distributed throughout the nucleus with an interchromosomal heterogeneity in size. Analysis of HDFs at increasing population doubling levels shows a gradual increase in spot size, intensity, and detectability of telomeric signal. FISH of metaphase chromosomes prepared from young and old HDFs shows a heterogeneity in detection frequency for telomeres on chromosomes 1, 9, 15, and Y. The interchromosomal distribution of detection frequencies was similar for cells at early and late passage. The telomeric detection frequency for metaphase chromosomes also decreased with age. These observations suggest that telomeres shorten at similar rates in normal human somatic cels. T-antigen transformed HDFs near crisis contained telomere signals that were low compared to nontransformed HDFs. A large intracellular heterogeneity in telomere lengths was detected in two telomerase-negative cell lines compared to normal somatic cells and the telomerase-positive 293 cell line. Many telomerase-negative immortal cells had telomeric signals stronger than those in young HDFs, suggesting a different mechanism for telomere length regulation in telomerase-negative immortal cells. These studies provide an in situ demonstration of interchromosomal heterogeneity in telomere lengths. Furthermore, FISH is a reliable and sensitive method for detecting changes in telomere size at the single cell level.
APA, Harvard, Vancouver, ISO, and other styles
11

Underwood, Dana H., Coleen Carroll, and Michael J. McEachern. "Genetic Dissection of the Kluyveromyces lactis Telomere and Evidence for Telomere Capping Defects in TER1 Mutants with Long Telomeres." Eukaryotic Cell 3, no. 2 (April 2004): 369–84. http://dx.doi.org/10.1128/ec.3.2.369-384.2004.

Full text
Abstract:
ABSTRACT In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3′ of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3′ terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.
APA, Harvard, Vancouver, ISO, and other styles
12

Smolikov, Sarit, and Anat Krauskopf. "The Rap1p-Telomere Complex Does Not Determine the Replicative Capacity of Telomerase-Deficient Yeast." Molecular and Cellular Biology 23, no. 23 (December 1, 2003): 8729–39. http://dx.doi.org/10.1128/mcb.23.23.8729-8739.2003.

Full text
Abstract:
ABSTRACT Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.
APA, Harvard, Vancouver, ISO, and other styles
13

Ancelin, Katia, Michele Brunori, Serge Bauwens, Catherine-Elaine Koering, Christine Brun, Michelle Ricoul, Jean-Patrick Pommier, Laure Sabatier, and Eric Gilson. "Targeting Assay To Study the cis Functions of Human Telomeric Proteins: Evidence for Inhibition of Telomerase by TRF1 and for Activation of Telomere Degradation by TRF2." Molecular and Cellular Biology 22, no. 10 (May 15, 2002): 3474–87. http://dx.doi.org/10.1128/mcb.22.10.3474-3487.2002.

Full text
Abstract:
ABSTRACT We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.
APA, Harvard, Vancouver, ISO, and other styles
14

Natarajan, Shobhana, Cindy Groff-Vindman, and Michael J. McEachern. "Factors Influencing the Recombinational Expansion and Spread of Telomeric Tandem Arrays in Kluyveromyces lactis." Eukaryotic Cell 2, no. 5 (October 2003): 1115–27. http://dx.doi.org/10.1128/ec.2.5.1115-1127.2003.

Full text
Abstract:
ABSTRACT We have previously shown that DNA circles containing telomeric repeats and a marker gene can promote the recombinational elongation of telomeres in Kluyveromyces lactis by a mechanism proposed to involve rolling-circle DNA synthesis. Wild-type cells acquire a long tandem array at a single telomere, while telomerase deletion (ter1-Δ) cells, acquire an array and also spread it to multiple telomeres. In this study, we further examine the factors that affect the formation and spread of telomeric tandem arrays. We show that a telomerase+ strain with short telomeres and high levels of subtelomeric gene conversion can efficiently form and spread arrays, while a telomere fusion mutant is not efficient at either process. This indicates that an elevated level of gene conversion near telomeres is required for spreading but that growth senescence and a tendency to elongate telomeres in the absence of exogenously added circles are not. Surprisingly, telomeric repeats are frequently deleted from a transforming URA3-telomere circle at or prior to the time of array formation by a mechanism dependent upon the presence of subtelomeric DNA in the circle. We further show that in a ter1-Δ strain, long tandem arrays can arise from telomeres initially containing a single-copy insert of the URA3-telomere sequence. However, the reduced rate of array formation in such strains suggests that single-copy inserts are not typical intermediates in arrays formed from URA3-telomere circles. Using heteroduplex circles, we have demonstrated that either strand of a URA3-telomere circle can be utilized to form telomeric tandem arrays. Consistent with this, we demonstrate that 100-nucleotide single-stranded telomeric circles of either strand can promote recombinational telomere elongation.
APA, Harvard, Vancouver, ISO, and other styles
15

Choe, Wonchae, Martin Budd, Osamu Imamura, Laura Hoopes, and Judith L. Campbell. "Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication." Molecular and Cellular Biology 22, no. 12 (June 15, 2002): 4202–17. http://dx.doi.org/10.1128/mcb.22.12.4202-4217.2002.

Full text
Abstract:
ABSTRACT We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G1 phase, when there is no telomere replication and the telomere is transcriptionally silenced. In S phase, there is a dramatic redistribution of Dna2p from telomeres to sites throughout the replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G2 and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount of Dna2p found at telomeres by two different assays, one-hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of double-strand-break-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase.
APA, Harvard, Vancouver, ISO, and other styles
16

Donate, Luis E., and Maria A. Blasco. "Telomeres in cancer and ageing." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1561 (January 12, 2011): 76–84. http://dx.doi.org/10.1098/rstb.2010.0291.

Full text
Abstract:
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
17

Cook, Brandoch D., Jasmin N. Dynek, William Chang, Grigoriy Shostak, and Susan Smith. "Role for the Related Poly(ADP-Ribose) Polymerases Tankyrase 1 and 2 at Human Telomeres." Molecular and Cellular Biology 22, no. 1 (January 1, 2002): 332–42. http://dx.doi.org/10.1128/mcb.22.1.332-342.2002.

Full text
Abstract:
ABSTRACT Telomere maintenance is essential for the continuous growth of tumor cells. In most human tumors telomeres are maintained by telomerase, a specialized reverse transcriptase. Tankyrase 1, a human telomeric poly(ADP-ribose) polymerase (PARP), positively regulates telomere length through its interaction with TRF1, a telomeric DNA-binding protein. Tankyrase 1 ADP-ribosylates TRF1, inhibiting its binding to telomeric DNA. Overexpression of tankyrase 1 in the nucleus promotes telomere elongation, suggesting that tankyrase 1 regulates access of telomerase to the telomeric complex. The recent identification of a closely related homolog of tankyrase 1, tankyrase 2, opens the possibility for a second PARP at telomeres. We therefore sought to establish the role of tankyrase 1 at telomeres and to determine if tankyrase 2 might have a telomeric function. We show that endogenous tankyrase 1 is a component of the human telomeric complex. We demonstrate that telomere elongation by tankyrase 1 requires the catalytic activity of the PARP domain and does not occur in telomerase-negative primary human cells. To investigate a potential role for tankyrase 2 at telomeres, recombinant tankyrase 2 was subjected to an in vitro PARP assay. Tankyrase 2 poly(ADP-ribosyl)ated itself and TRF1. Overexpression of tankyrase 2 in the nucleus released endogenous TRF1 from telomeres. These findings establish tankyrase 2 as a bona fide PARP, with itself and TRF1 as acceptors of ADP-ribosylation, and suggest the possibility of a role for tankyrase 2 at telomeres.
APA, Harvard, Vancouver, ISO, and other styles
18

Chan, Simon R. W. L., and Elizabeth H. Blackburn. "Telomeres and telomerase." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, no. 1441 (January 29, 2004): 109–22. http://dx.doi.org/10.1098/rstb.2003.1370.

Full text
Abstract:
Telomeres are the protective DNA–protein complexes found at the ends of eukaryotic chromosomes. Telomeric DNA consists of tandem repeats of a simple, often G–rich, sequence specified by the action of telomerase, and complete replication of telomeric DNA requires telomerase. Telomerase is a specialized cellular ribonucleoprotein reverse transcriptase. By copying a short template sequence within its intrinsic RNA moiety, telomerase synthesizes the telomeric DNA strand running 5' to 3' towards the distal end of the chromosome, thus extending it. Fusion of a telomere, either with another telomere or with a broken DNA end, generally constitutes a catastrophic event for genomic stability. Telomerase acts to prevent such fusions. The molecular consequences of telomere failure, and the molecular contributors to telomere function, with an emphasis on telomerase, are discussed here.
APA, Harvard, Vancouver, ISO, and other styles
19

Prescott, John C., and Elizabeth H. Blackburn. "Telomerase RNA Template Mutations Reveal Sequence-Specific Requirements for the Activation and Repression of Telomerase Action at Telomeres." Molecular and Cellular Biology 20, no. 8 (April 15, 2000): 2941–48. http://dx.doi.org/10.1128/mcb.20.8.2941-2948.2000.

Full text
Abstract:
ABSTRACT Telomeric DNA is maintained within a length range characteristic of an organism or cell type. Significant deviations outside this range are associated with altered telomere function. The yeast telomere-binding protein Rap1p negatively regulates telomere length. Telomere elongation is responsive to both the number of Rap1p molecules bound to a telomere and the Rap1p-centered DNA-protein complex at the extreme telomeric end. Previously, we showed that a specific trinucleotide substitution in the Saccharomyces cerevisiae telomerase gene (TLC1) RNA template abolished the enzymatic activity of telomerase, causing the same cell senescence and telomere shortening phenotypes as a complete tlc1 deletion. Here we analyze effects of six single- and double-base changes within these same three positions. All six mutant telomerases had in vitro enzymatic activity levels similar to the wild-type levels. The base changes predicted from the mutations all disrupted Rap1p binding in vitro to the corresponding duplex DNAs. However, they caused two classes of effects on telomere homeostasis: (i) rapid, RAD52-independent telomere lengthening and poor length regulation, whose severity correlated with the decrease in in vitro Rap1p binding affinity (this is consistent with loss of negative regulation of telomerase action at these telomeres; and (ii) telomere shortening that, depending on the template mutation, either established a new short telomere set length with normal cell growth or was progressive and led to cellular senescence. Hence, disrupting Rap1p binding at the telomeric terminus is not sufficient to deregulate telomere elongation. This provides further evidence that both positive and negativecis-acting regulators of telomerase act at telomeres.
APA, Harvard, Vancouver, ISO, and other styles
20

Marchesini, M., R. Matocci, L. Tasselli, V. Cambiaghi, A. Orleth, L. Furia, C. Marinelli, et al. "PML is required for telomere stability in non-neoplastic human cells." Oncogene 35, no. 14 (June 29, 2015): 1811–21. http://dx.doi.org/10.1038/onc.2015.246.

Full text
Abstract:
Abstract Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
21

Datta, Neelabh. "Unravelling the Intricacies of Telomere Replication: A Molecular Conundrum." Canadian Journal for the Academic Mind 2, no. 1 (July 16, 2024): 97–127. http://dx.doi.org/10.25071/2817-5344/74.

Full text
Abstract:
Telomeres are specialized structures at the ends of linear chromosomes that protect them from degradation and fusion. It’s replication is a complex process that involves both DNA polymerases and a specialized enzyme called telomerase which is a ribonucleoprotein complex that synthesizes telomeric DNA by using an internal RNA template. However, telomerase alone cannot fully replicate the telomeric DNA, and requires the cooperation of other factors, such as shelterin, CST, and DNA repair proteins. Telomere replication is tightly regulated by various mechanisms, such as cell cycle checkpoints, telomere length homeostasis, and telomere position effect and dysregulation of it can lead to genomic instability, cellular senescence, and cancer. Therefore, understanding the molecular details of telomere replication is crucial for elucidating the role of telomeres in aging and disease.
APA, Harvard, Vancouver, ISO, and other styles
22

Dreesen, Oliver, and George A. M. Cross. "Telomerase-Independent Stabilization of Short Telomeres in Trypanosoma brucei." Molecular and Cellular Biology 26, no. 13 (July 1, 2006): 4911–19. http://dx.doi.org/10.1128/mcb.00212-06.

Full text
Abstract:
ABSTRACT In cancer cells and germ cells, shortening of chromosome ends is prevented by telomerase. Telomerase-deficient cells have a replicative life span, after which they enter senescence. Senescent cells can give rise to survivors that maintain chromosome ends through recombination-based amplification of telomeric or subtelomeric repeats. We found that in Trypanosoma brucei, critically short telomeres are stable in the absence of telomerase. Telomere stabilization ensured genomic integrity and could have implications for telomere maintenance in human telomerase-deficient cells. Cloning and sequencing revealed 7 to 27 TTAGGG repeats on stabilized telomeres and no changes in the subtelomeric region. Clones with short telomeres were used to study telomere elongation dynamics, which differed dramatically at transcriptionally active and silent telomeres, after restoration of telomerase. We propose that transcription makes the termini of short telomeres accessible for rapid elongation by telomerase and that telomere elongation in T. brucei is not regulated by a protein-counting mechanism. Many minichromosomes were lost after long-term culture in the absence of telomerase, which may reflect their different mitotic segregation properties.
APA, Harvard, Vancouver, ISO, and other styles
23

Evans, S. K., and V. Lundblad. "Positive and negative regulation of telomerase access to the telomere." Journal of Cell Science 113, no. 19 (October 1, 2000): 3357–64. http://dx.doi.org/10.1242/jcs.113.19.3357.

Full text
Abstract:
The protective caps on chromosome ends - known as telomeres - consist of DNA and associated proteins that are essential for chromosome integrity. A fundamental part of ensuring proper telomere function is maintaining adequate length of the telomeric DNA tract. Telomeric repeat sequences are synthesized by the telomerase reverse transcriptase, and, as such, telomerase is a central player in the maintenance of steady-state telomere length. Evidence from both yeast and mammals suggests that telomere-associated proteins positively or negatively control access of telomerase to the chromosome terminus. In yeast, positive regulation of telomerase access appears to be achieved through recruitment of the enzyme by the end-binding protein Cdc13p. In contrast, duplex-DNA-binding proteins assembled along the telomeric tract exert a feedback system that negatively modulates telomere length by limiting the action of telomerase. In mammalian cells, and perhaps also in yeast, binding of these proteins probably promotes a higher-order structure that renders the telomere inaccessible to the telomerase enzyme.
APA, Harvard, Vancouver, ISO, and other styles
24

Ji, Hong, Christopher J. Adkins, Bethany R. Cartwright, and Katherine L. Friedman. "Yeast Est2p Affects Telomere Length by Influencing Association of Rap1p with Telomeric Chromatin." Molecular and Cellular Biology 28, no. 7 (January 22, 2008): 2380–90. http://dx.doi.org/10.1128/mcb.01648-07.

Full text
Abstract:
ABSTRACT In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Bibo, and Titia de Lange. "Rap1 Affects the Length and Heterogeneity of Human Telomeres." Molecular Biology of the Cell 14, no. 12 (December 2003): 5060–68. http://dx.doi.org/10.1091/mbc.e03-06-0403.

Full text
Abstract:
Telomere length is controlled in part by cis-acting negative regulators that limit telomere extension by telomerase. In budding yeast, the major telomere length regulator scRap1 binds to telomeric DNA and acts to inhibit telomere elongation in cis. Because the human Rap1 ortholog hRap1 does not bind to telomeric DNA directly but is recruited to telomeres by TRF2, we examined its role in telomere length control. The data are consistent with hRap1 being a negative regulator of telomere length, indicating functional conservation. Deletion mapping confirmed that hRap1 is tethered to telomeres through interaction of its C terminus with TRF2. The telomere length phenotypes of hRap1 deletion mutants implicated both the BRCT and Myb domain as protein interaction domains involved in telomere length regulation. By contrast, scRap1 binds to telomeres with its Myb domains and uses its C terminus to recruit the telomere length regulators Rif1 and Rif2. Together, our data show that although the role of Rap1 at telomeres has been largely conserved, the domains of Rap1 have undergone extensive functional changes during eukaryotic evolution. Surprisingly, hRap1 alleles lacking the BRCT domain diminished the heterogeneity of human telomeres, indicating that hRap1 also plays a role in the regulation of telomere length distribution.
APA, Harvard, Vancouver, ISO, and other styles
26

Schmidt, Tobias T., Carly Tyer, Preeyesh Rughani, Candy Haggblom, Jeff Jones, Xiaoguang Dai, Kelly A. Frazer, et al. "Abstract 1639: Telomere dynamics in aging and cancer by nanopore long-read sequencing." Cancer Research 84, no. 6_Supplement (March 22, 2024): 1639. http://dx.doi.org/10.1158/1538-7445.am2024-1639.

Full text
Abstract:
Abstract Telomeres are the protective, nucleoprotein structure at the ends of linear eukaryotic chromosomes. The accurate measurement of both telomeric length and composition of individual telomeres in mammalian cells has been challenged by the length and repetitive nature of telomeres. With the advent of third generation sequencing technologies, it is now technically possible to sequence entire telomeres and map them to individual chromosome arms. Here, we report a reliable method to enrich, sequence and analyze human telomeres using Oxford Nanopore Technologies long-read sequencing. To enrich for telomeric sequences we combine the ligation of adapters complementary to the telomeric G-overhang with restriction enzyme digest to sequence the telomeric C-strand and part of the adjacent subtelomere. The subtelomeric information is harvested to map individual telomeric reads to specific chromosome arms and even alleles. We have measured bulk, chromosome-arm-specific telomere length dynamics during cellular aging of cultured primary cells and in a patient-derived aging cohort. To address the impact of the telomere maintenance mechanism on telomere length and composition, we have sequenced matched pairs of fibroblasts and induced pluripotent stem cells, as well as five well-established telomerase- and ALT-positive cancer cell lines. Our results suggest that based on nanopore telomere long-read sequencing ALT-positive cells can be easily discriminated from normal and telomerase-positive cancer cells. Further, telomere sequencing allows to evaluate the methylation status of the subtelomeric CpG islands adjacent to telomeres. In summary, nanopore telomere long-read sequencing allows to measure the length and composition of individual telomeres and their mapping to specific chromosome arms. Telomere long read sequencing methods will be valuable tools to study telomere biology during aging and cancer. Citation Format: Tobias T. Schmidt, Carly Tyer, Preeyesh Rughani, Candy Haggblom, Jeff Jones, Xiaoguang Dai, Kelly A. Frazer, Fred H. Gage, Sissel Juul, Scott Hickey, Jan Karlseder. Telomere dynamics in aging and cancer by nanopore long-read sequencing [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 1639.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Baomin, Sonali P. Jog, Sita Reddy, and Lucio Comai. "WRN Controls Formation of Extrachromosomal Telomeric Circles and Is Required for TRF2ΔB-Mediated Telomere Shortening." Molecular and Cellular Biology 28, no. 6 (January 22, 2008): 1892–904. http://dx.doi.org/10.1128/mcb.01364-07.

Full text
Abstract:
ABSTRACT Telomere dysfunction has been proposed to contribute to the pathogenesis of Werner syndrome (WS), a premature-aging disorder. The WS protein WRN binds TRF2, a telomere-specific factor that protects chromosome ends. TRF2 possesses an amino-terminal domain that plays an essential role in preventing telomere shortening, as expression of TRF2ΔB, which lacks this domain, leads to the formation of telomeric circles, telomere shortening, and cell senescence. Our data show that the TRF2ΔB-induced telomeric-loop homologous-recombination pathway requires WRN helicase. In addition, we show that WRN represses the formation of spontaneous telomeric circles, as demonstrated by the increased levels of telomeric circles observed in telomerase-positive WS fibroblasts. The mechanism of circle formation in WS cells does not involve XRCC3 function. Circle formation in WS cells is reduced by reconstitution with wild-type WRN but not mutant forms lacking either exonuclease or helicase activity, demonstrating that both enzymatic activities of WRN are required to suppress telomeric-circle formation in normal cells expressing telomerase reverse transcriptase. Thus, WRN has a key protective function at telomeres which influences telomere topology and inhibits accelerated attrition of telomeres.
APA, Harvard, Vancouver, ISO, and other styles
28

Hahn, William C. "Role of Telomeres and Telomerase in the Pathogenesis of Human Cancer." Journal of Clinical Oncology 21, no. 10 (May 15, 2003): 2034–43. http://dx.doi.org/10.1200/jco.2003.06.018.

Full text
Abstract:
Specialized nucleoprotein structures, termed telomeres, cap the ends of human chromosomes. These terminal structures, composed of repetitive arrays of guanine-rich hexameric DNA together with specific telomere-binding proteins, play essential roles in protecting the chromosome from damage and degradation. In addition, several lines of evidence implicate telomere maintenance as an important regulator of cell life span. Activation of telomerase, a dedicated reverse transcriptase that synthesizes telomeric sequences, is strongly associated with cancer, and recent observations confirm that telomeres and telomerase perform important roles in both suppressing and facilitating malignant transformation. These dual functions of telomere biology are evident in the clinical manifestations of the multisystem syndrome, dyskeratosis congenita, forms of which display defects in telomerase function. Recent advances in our understanding of telomere biology indicate that the manipulation of telomeres and telomerase will lead to clinically significant applications in the diagnosis, prevention, and treatment of neoplastic disease.
APA, Harvard, Vancouver, ISO, and other styles
29

Jády, Beáta E., Patricia Richard, Edouard Bertrand, and Tamás Kiss. "Cell Cycle-dependent Recruitment of Telomerase RNA and Cajal Bodies to Human Telomeres." Molecular Biology of the Cell 17, no. 2 (February 2006): 944–54. http://dx.doi.org/10.1091/mbc.e05-09-0904.

Full text
Abstract:
Telomerase is a ribonucleoprotein enzyme that counteracts replicative telomere erosion by adding telomeric sequence repeats onto chromosome ends. Despite its well-established role in telomere synthesis, telomerase has not yet been detected at telomeres. The RNA component of human telomerase (hTR) resides in the nucleoplasmic Cajal bodies (CBs) of interphase cancer cells. Here, in situ hybridization demonstrates that in human HeLa and Hep2 S phase cells, besides accumulating in CBs, hTR specifically concentrates at a few telomeres that also accumulate the TRF1 and TRF2 telomere marker proteins. Surprisingly, telomeres accumulating hTR exhibit a great accessibility for in situ oligonucleotide hybridization without chromatin denaturation, suggesting that they represent a structurally distinct, minor subset of HeLa telomeres. Moreover, we demonstrate that more than 25% of telomeres accumulating hTR colocalize with CBs. Time-lapse fluorescence microscopy demonstrates that CBs moving in the nucleoplasm of S phase cells transiently associate for 10-40 min with telomeres. Our data raise the intriguing possibility that CBs may deliver hTR to telomeres and/or may function in other aspects of telomere maintenance.
APA, Harvard, Vancouver, ISO, and other styles
30

Cohn, Marita, Ahu Karademir Andersson, Raquel Quintilla Mateo, and Mirja Carlsson Möller. "Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii." G3: Genes|Genomes|Genetics 9, no. 10 (August 19, 2019): 3345–58. http://dx.doi.org/10.1534/g3.119.400428.

Full text
Abstract:
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
31

Smith, Christopher D., and Elizabeth H. Blackburn. "Uncapping and Deregulation of Telomeres Lead to Detrimental Cellular Consequences in Yeast." Journal of Cell Biology 145, no. 2 (April 19, 1999): 203–14. http://dx.doi.org/10.1083/jcb.145.2.203.

Full text
Abstract:
Telomeres are the protein–nucleic acid structures at the ends of eukaryote chromosomes. Tandem repeats of telomeric DNA are templated by the RNA component (TER1) of the ribonucleoprotein telomerase. These repeats are bound by telomere binding proteins, which are thought to interact with other factors to create a higher-order cap complex that stabilizes the chromosome end. In the budding yeast Kluyveromyces lactis, the incorporation of certain mutant DNA sequences into telomeres leads to uncapping of telomeres, manifested by dramatic telomere elongation and increased length heterogeneity (telomere deregulation). Here we show that telomere deregulation leads to enlarged, misshapen “monster” cells with increased DNA content and apparent defects in cell division. However, such deregulated telomeres became stabilized at their elongated lengths upon addition of only a few functionally wild-type telomeric repeats to their ends, after which the frequency of monster cells decreased to wild-type levels. These results provide evidence for the importance of the most terminal repeats at the telomere in maintaining the cap complex essential for normal telomere function. Analysis of uncapped and capped telomeres also show that it is the deregulation resulting from telomere uncapping, rather than excessive telomere length per se, that is associated with DNA aberrations and morphological defects.
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Jia-Cheng, Qian-Jin Li, Ming-Hong He, Can Hu, Pengfei Dai, Fei-Long Meng, Bo O. Zhou, and Jin-Qiu Zhou. "Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes." Nucleic Acids Research 48, no. 22 (December 3, 2020): 12792–803. http://dx.doi.org/10.1093/nar/gkaa1150.

Full text
Abstract:
Abstract Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
APA, Harvard, Vancouver, ISO, and other styles
33

Armbruster, Blaine N., Corinne M. Linardic, Tim Veldman, Niharika P. Bansal, Diane L. Downie, and Christopher M. Counter. "Rescue of an hTERT Mutant Defective in Telomere Elongation by Fusion with hPot1." Molecular and Cellular Biology 24, no. 8 (April 15, 2004): 3552–61. http://dx.doi.org/10.1128/mcb.24.8.3552-3561.2004.

Full text
Abstract:
ABSTRACT The protein hPot1 shares homology with telomere-binding proteins in lower eukaryotes and associates with single-stranded telomeric DNA in vitro as well as colocalizing with telomere-binding proteins in vivo. We now show that hPot1 is coimmunoprecipitated with telomeric DNA and that stable expression of this protein in telomerase-positive cells results in telomere elongation, supporting the idea that hPot1 is a bona fide mammalian telomere-binding protein. We previously found that mutations in the N-terminal DAT domain of the hTERT catalytic subunit of telomerase rendered the enzyme catalytically active but unable to elongate telomeres in vivo. This phenotype could be partially rescued by fusion with the double-stranded telomeric protein hTRF2. Given that hPot1 binds to single-stranded DNA in vitro (at the same site that hTERT binds to in vivo), we addressed whether fusion of hPot1 can rescue the DAT mutations more efficiently than that of hTRF2. We now report that a DAT mutant of hTERT is indeed efficiently rescued upon fusion to hPot1. However, this rescue depended on the ability of hPot1 to localize to telomeres rather than binding to DNA per se. These data support a model whereby the DAT domain of hTERT is implicated in telomere-telomerase associations.
APA, Harvard, Vancouver, ISO, and other styles
34

Han, Xuesheng, Alice Hirschel, Menelaos Tsapekos, Diego Perez, and David Vollmer. "In Vitro Assessment of Gold Nanoparticles on Telomerase Activity and Telomere Length in Human Fibroblasts." International Journal of Molecular Sciences 24, no. 18 (September 19, 2023): 14273. http://dx.doi.org/10.3390/ijms241814273.

Full text
Abstract:
Telomerase activity coincides with lengthening of the ends of chromosomes known as telomeres. Telomere length is used as a marker for cellular aging. Telomeres shorten over time as cells divide, and certain bioactive compounds such as gold nanoparticles (AuNPs) may slow the shortening of telomeres by increasing telomerase activity. The objective of the present study is to assess the effect of AuNPs on telomerase activity and telomere length in human fibroblasts. Telomerase activity was measured using enzyme-linked immunosorbent assay (ELISA) in primary human lung fibroblasts (IMR90) and using quantitative PCR-based telomeric repeat amplification protocol (Q-TRAP) in primary human dermal fibroblasts, neonatal (HDFn). Telomere length was determined by Telomere Analysis Technology (TAT®)assay in HDFn. In IMR90, all AuNP treatments showed significant increases in telomerase activity when compared to earlier passages. HDFn treated with AuNPs at 0 ppm, 0.05 ppm, 0.5 ppm, or 5 ppm did not show significant differences in telomerase activity compared to the control group. Significant differences in telomere length in HDFn were observed at 2 weeks of 0.05 and 0.5 ppm AuNPs under oxidative culture conditions as compared to the control group. The study showed preliminary evidence that AuNPs may increase telomerase activity and decelerate the shortening of telomeres in human fibroblasts, suggesting its potential anti-aging effects, which warrants further investigation.
APA, Harvard, Vancouver, ISO, and other styles
35

Tsai, Yun-Luen, Shun-Fu Tseng, Shih-Husan Chang, Chuan-Chuan Lin, and Shu-Chun Teng. "Involvement of Replicative Polymerases, Tel1p, Mec1p, Cdc13p, and the Ku Complex in Telomere-Telomere Recombination." Molecular and Cellular Biology 22, no. 16 (August 15, 2002): 5679–87. http://dx.doi.org/10.1128/mcb.22.16.5679-5687.2002.

Full text
Abstract:
ABSTRACT Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of the reverse transcriptase telomerase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Genetic studies have led to the identification of DNA polymerases, cell cycle checkpoint proteins, and telomere binding proteins involved in the telomerase pathway. However, how these proteins affect telomere-telomere recombination has not been identified to date. Using an assay to trace the in vivo recombinational products throughout the course of survivor development, we show here that three major replicative polymerases, α, δ, and ε, play roles in telomere-telomere recombination and that each causes different effects and phenotypes when they as well as the telomerase are defective. Polymerase δ appears to be the main activity for telomere extension, since neither type I nor type II survivors arising via telomere-telomere recombination were seen in its absence. The frequency of type I versus type II is altered in the polymerase α and ε mutants relative to the wild type. Each prefers to develop a particular type of survivor. Moreover, type II recombination is mediated by the cell cycle checkpoint proteins Tel1 and Mec1, and telomere-telomere recombination is regulated by telomere binding protein Cdc13 and the Ku complex. Together, our results suggest that coordination between DNA replication machinery, DNA damage signaling, DNA recombination machinery, and the telomere protein-DNA complex allows telomere recombination to repair telomeric ends in the absence of telomerase.
APA, Harvard, Vancouver, ISO, and other styles
36

Schaetzlein, S., and K. L. Rudolph. "Telomere length regulation during cloning, embryogenesis and ageing." Reproduction, Fertility and Development 17, no. 2 (2005): 85. http://dx.doi.org/10.1071/rd04112.

Full text
Abstract:
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.
APA, Harvard, Vancouver, ISO, and other styles
37

Kelleher, Colleen, Isabel Kurth, and Joachim Lingner. "Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro." Molecular and Cellular Biology 25, no. 2 (January 15, 2005): 808–18. http://dx.doi.org/10.1128/mcb.25.2.808-818.2005.

Full text
Abstract:
ABSTRACT The telomeric single-strand DNA binding protein protection of telomeres 1 (POT1) protects telomeres from rapid degradation in Schizosaccharomyces pombe and has been implicated in positive and negative telomere length regulation in humans. Human POT1 appears to interact with telomeres both through direct binding to the 3′ overhanging G-strand DNA and through interaction with the TRF1 duplex telomere DNA binding complex. The influence of POT1 on telomerase activity has not been studied at the molecular level. We show here that POT1 negatively effects telomerase activity in vitro. We find that the DNA binding activity of POT1 is required for telomerase inhibition. Furthermore, POT1 is incapable of inhibiting telomeric repeat addition to substrate primers that are defective for POT1 binding, suggesting that in vivo, POT1 likely affects substrate access to telomerase.
APA, Harvard, Vancouver, ISO, and other styles
38

Swiggers, Susan J. J., Marianne A. Kuijpers, Maartje J. de Cort, Berna Beverloo, and J. Mark J. M. Zijlmans. "Extensive Chromosome Instability in Acute Myeloid Leukemia Is Associated with Critical Telomere Shortening." Blood 104, no. 11 (November 16, 2004): 3376. http://dx.doi.org/10.1182/blood.v104.11.3376.3376.

Full text
Abstract:
Abstract Telomeres, the ends of linear chromosomes, have a critical role in protection against chromosome end-to-end fusion. Telomeres shorten in every cell division due to the end replication problem. Telomerase is a reverse transcriptase that adds telomeric DNA repeats to the ultimate chromosome end. In vitro models of long-term fibroblast cultures have identified two sequential mortality stages, senescence (M1) and crisis (M2). Senescence can be bypassed by loss of p53 or Rb function, whereas escape from crisis can only be achieved by activating a telomere maintenance mechanism, mostly telomerase reactivation. Cells that bypass senescence (M1) did not reactivate telomerase, resulting in further telomere shortening to a critical telomere length upon reaching crisis (M2). In these models, critical telomere shortening induces extensive chromosome instability, most likely via chromosome end-to-end fusions. Dicentric chromosomes lead to anaphase breakage-fusion-bridges resulting in multiple chromosomal aberrations. To investigate whether similar mechanisms may be involved in the development of genetic instability in human cancer, we studied telomere length and expression of critical telomeric proteins (TRF2 and POT1) in acute myeloid leukemia (AML) patients. AML is a good model for these studies since distinct subgroups of AML are characterized by either exchanges along chromosome arms (translocation or inversion), or by a complex karyotype with multiple chromosome aberrations. Groups were age-matched. Telomere length was studied in metaphase arrested leukemic cells using quantitative fluorescence in situ hybridization (Q-FISH) using a telomere-specific probe. Subsequently, metaphase spreads were hybridized with a leukemia-specific probe to confirm leukemic origin of each metaphase. Telomeres were significantly shorter in AML samples with multiple chromosomal abnormalities in comparison to AML samples with a reciprocal translocation/inversion or no abnormalities (mean±SEM=16±1.7 AFU, n=12 versus 29±4.3 AFU, n=18; p=0.015). Interestingly, telomerase activity level is significantly higher in AML samples with multiple chromosomal abnormalities, compared to AML samples with a reciprocal translocation or inversion (mean±SEM=330±95, n=11 versus 70±21, n=13; p=0.02). Expression levels of telomeric proteins TRF2 and POT1 were similar in these AML groups. Our observations suggest that, consistent with previous in vitro models in fibroblasts, critical telomere shortening may have a role in the development of genetic instability in human AML. Critically short telomeres in association with high levels of telomerase activity suggest that AML cells with multiple chromosomal abnormalities have bypassed crisis (M2). The longer telomeres and low levels of telomerase activity in AML cells with a reciprocal translocation or inversion suggest that they originate from an earlier stage, preceding crisis. Consequently, telomere length modulation may have a role in cancer prevention.
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Jun, Lihui Wang, Zhiguo Wang, and Jun-Ping Liu. "Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing." Cells 8, no. 1 (January 15, 2019): 54. http://dx.doi.org/10.3390/cells8010054.

Full text
Abstract:
Telomeres with G-rich repetitive DNA and particular proteins as special heterochromatin structures at the termini of eukaryotic chromosomes are tightly maintained to safeguard genetic integrity and functionality. Telomerase as a specialized reverse transcriptase uses its intrinsic RNA template to lengthen telomeric G-rich strand in yeast and human cells. Cells sense telomere length shortening and respond with cell cycle arrest at a certain size of telomeres referring to the “Hayflick limit.” In addition to regulating the cell replicative senescence, telomere biology plays a fundamental role in regulating the chronological post-mitotic cell ageing. In this review, we summarize the current understandings of telomere regulation of cell replicative and chronological ageing in the pioneer model system Saccharomyces cerevisiae and provide an overview on telomere regulation of animal lifespans. We focus on the mechanisms of survivals by telomere elongation, DNA damage response and environmental factors in the absence of telomerase maintenance of telomeres in the yeast and mammals.
APA, Harvard, Vancouver, ISO, and other styles
40

Osterhage, Jennifer L., and Katherine L. Friedman. "Chromosome End Maintenance by Telomerase." Journal of Biological Chemistry 284, no. 24 (March 12, 2009): 16061–65. http://dx.doi.org/10.1074/jbc.r900011200.

Full text
Abstract:
Telomeres, protein-DNA complexes at the ends of eukaryotic linear chromosomes, are essential for genome stability. The accumulation of chromosomal abnormalities in the absence of proper telomere function is implicated in human aging and cancer. Repetitive telomeric sequences are maintained by telomerase, a ribonucleoprotein complex containing a reverse transcriptase subunit, a template RNA, and accessory components. Telomere elongation is regulated at multiple levels, including assembly of the telomerase holoenzyme, recruitment of telomerase to the chromosome terminus, and telomere accessibility. This minireview provides an overview of telomerase structure, function, and regulation and the role of telomerase in human disease.
APA, Harvard, Vancouver, ISO, and other styles
41

Stock, Carmel J. W., and Elisabetta A. Renzoni. "Telomeres in Interstitial Lung Disease." Journal of Clinical Medicine 10, no. 7 (March 30, 2021): 1384. http://dx.doi.org/10.3390/jcm10071384.

Full text
Abstract:
Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.
APA, Harvard, Vancouver, ISO, and other styles
42

Mondello, Chiara, and A. Ivana Scovassi. "Telomeres, telomerase, and apoptosis." Biochemistry and Cell Biology 82, no. 4 (August 1, 2004): 498–507. http://dx.doi.org/10.1139/o04-048.

Full text
Abstract:
Telomeres are specialized high-order chromatin structures that cap the ends of eukaryotic chromosomes. In vertebrates, telomeric DNA is composed of repetitions of the TTAGGG hexanucleotide, is bound to a set of specific proteins, and is elongated by the reverse transcriptase enzyme telomerase. Telomerase activity is promptly detected in cells with an indefinite replicative potential, such as cancer cells, while is almost undetectable in normal cells, which are characterized by a limited life span. Mounting evidence indicates that the maintenance of telomere integrity and telomerase protect cells from apoptosis. Disruption of the telomere capping function and (or) telomerase inhibition elicit an apoptotic response in cancer cells, while restoration of telomerase activity in somatic cells confers resistance to apoptosis. The possible mechanisms linking telomeres, telomerase and apoptosis are discussed in this review, together with the impact of this field in anticancer research.Key words: telomeres, telomerase, telomeric proteins, apoptosis, tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
43

De Vitis, Marco, Francesco Berardinelli, Elisa Coluzzi, Jessica Marinaccio, Roderick J. O’Sullivan, and Antonella Sgura. "X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells." Cells 8, no. 7 (July 12, 2019): 708. http://dx.doi.org/10.3390/cells8070708.

Full text
Abstract:
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
APA, Harvard, Vancouver, ISO, and other styles
44

Basenko, Evelina, Zeki Topcu, and Michael J. McEachern. "Recombination Can either Help Maintain Very Short Telomeres or Generate Longer Telomeres in Yeast Cells with Weak Telomerase Activity." Eukaryotic Cell 10, no. 8 (June 10, 2011): 1131–42. http://dx.doi.org/10.1128/ec.05079-11.

Full text
Abstract:
ABSTRACT Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.
APA, Harvard, Vancouver, ISO, and other styles
45

Dahlén, Maria, Per Sunnerhagen, and Teresa S. F. Wang. "Replication Proteins Influence the Maintenance of Telomere Length and Telomerase Protein Stability." Molecular and Cellular Biology 23, no. 9 (May 1, 2003): 3031–42. http://dx.doi.org/10.1128/mcb.23.9.3031-3042.2003.

Full text
Abstract:
ABSTRACT We investigated the effects of fission yeast replication genes on telomere length maintenance and identified 20 mutant alleles that confer lengthening or shortening of telomeres. The telomere elongation was telomerase dependent in the replication mutants analyzed. Furthermore, the telomerase catalytic subunit, Trt1, and the principal initiation and lagging-strand synthesis DNA polymerase, Polα, were reciprocally coimmunoprecipitated, indicating these proteins physically coexist as a complex in vivo. In a polα mutant that exhibited abnormal telomere lengthening and slightly reduced telomere position effect, the cellular level of the Trt1 protein was significantly lower and the coimmunoprecipitation of Trt1 and Polα was severely compromised compared to those in the wild-type polα cells. Interestingly, ectopic expression of wild-type polα in this polα mutant restored the cellular Trt1 protein to the wild-type level and shortened the telomeres to near-wild-type length. These results suggest that there is a close physical relationship between the replication and telomerase complexes. Thus, mutation of a component of the replication complex can affect the telomeric complex in maintaining both telomere length equilibrium and telomerase protein stability.
APA, Harvard, Vancouver, ISO, and other styles
46

Groff-Vindman, Cindy, Anthony J. Cesare, Shobhana Natarajan, Jack D. Griffith, and Michael J. McEachern. "Recombination at Long Mutant Telomeres Produces Tiny Single- and Double-Stranded Telomeric Circles." Molecular and Cellular Biology 25, no. 11 (June 1, 2005): 4406–12. http://dx.doi.org/10.1128/mcb.25.11.4406-4412.2005.

Full text
Abstract:
ABSTRACT Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small (∼100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, Shuang, Feng Wang, and Lin Liu. "Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells." Genes 10, no. 12 (December 10, 2019): 1030. http://dx.doi.org/10.3390/genes10121030.

Full text
Abstract:
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
APA, Harvard, Vancouver, ISO, and other styles
48

Raseley, Kaitlin, Zeal Jinwala, Dong Zhang, and Ming Xiao. "Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM) Can Potentially Define the ALT Positivity of Cancer." Genes 14, no. 6 (June 16, 2023): 1278. http://dx.doi.org/10.3390/genes14061278.

Full text
Abstract:
Telomeres play an essential role in protecting the ends of linear chromosomes and maintaining the integrity of the human genome. One of the key hallmarks of cancers is their replicative immortality. As many as 85–90% of cancers activate the expression of telomerase (TEL+) as the telomere maintenance mechanism (TMM), and 10–15% of cancers utilize the homology-dependent repair (HDR)-based Alternative Lengthening of Telomere (ALT+) pathway. Here, we performed statistical analysis of our previously reported telomere profiling results from Single Molecule Telomere Assay Optical Mapping (SMTA-OM), which is capable of quantifying individual telomeres from single molecules across all chromosomes. By comparing the telomeric features from SMTA-OM in TEL+ and ALT+ cancer cells, we demonstrated that ALT+ cancer cells display certain unique telomeric profiles, including increased fusions/internal telomere-like sequence (ITS+), fusions/internal telomere-like sequence loss (ITS−), telomere-free ends (TFE), super-long telomeres, and telomere length heterogeneity, compared to TEL+ cancer cells. Therefore, we propose that ALT+ cancer cells can be differentiated from TEL+ cancer cells using the SMTA-OM readouts as biomarkers. In addition, we observed variations in SMTA-OM readouts between different ALT+ cell lines that may potentially be used as biomarkers for discerning types of ALT+ cancer and monitoring cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
49

Calado, Rodrigo T., Solomon A. Graf, and Neal S. Young. "Telomeric Recombination in Lymphocytes Implicates ALT, an Alternative Mechanism for Telomere Length Maintenance, in Normal Human Hematopoietic Cells." Blood 110, no. 11 (November 16, 2007): 1332. http://dx.doi.org/10.1182/blood.v110.11.1332.1332.

Full text
Abstract:
Abstract Telomeres are the very ends of chromosomes and protect the genome from recombination, end-to-end-fusion, and recognition as damaged DNA. Telomeres are eroded with each cell division, eventually reaching such critically short length as to cause cell cycle arrest, apoptosis, or genomic instability. In most highly proliferative cells, including hematopoietic stem cells and T lymphocytes, telomere attrition is countered by telomere extension by telomerase reverse transcriptase complex. The majority of cancer cells also express telomerase, which maintains telomere length and allows indefinite cell proliferation. However, about 10% of tumors maintain telomere length in the absence of telomerase by mechanisms collectively termed alternative lengthening of telomeres (ALT). ALT mainly acts through asymmetrical exchange of telomeric material between chromosomes or sister chromatids, producing one daughter-cell with short telomeres and a limited life-span and its sister with long telomeres and higher proliferative capacity. To date, ALT has only been reported in cancer cells or through genetic engineering of mammalian cells. Here we investigated whether ALT mechanisms were active in hematopoietic cells using chromosome orientation fluorescent in situ hybridization (CO-FISH). In standard FISH, a telomeric probe produces fours signals per chromosome, one at each end of the two chromatids. Using CO-FISH, the newly synthesized DNA strand is fragmented by BrdU incorporation and UV light exposure and then digested by exonucleases. In CO-FISH, a telomeric probe produces two signals only, one at each end of the chromosome; in the presence of telomeric recombination, the telomeric signal is split, generating more than two signals per chromosome. Peripheral blood lymphocytes from three healthy volunteers, normal human fibroblasts, K562 cells, telomerase-positive HeLa cells (known to be negative for ALT),and telomerase-negative VA13 cells (known to be positive for ALT) were investigated for telomeric sister chromatid exchange (t-SCE); at least 20 metaphases per cell type were examined. Cultured peripheral blood lymphocytes and VA13 cells both showed increased levels of telomeric sister chromatid exchange in comparison to the other cells (P=0.0001): telomeric probe generated 2.62±0.11 telomeric signals/chromosome in lymphocytes; 2.23±0.04 in VA13 cells; 2.09±0.01 in HeLa cells; 2.02±0.01 in K562 cells; and 2.02±0.01 in human skin fibroblasts. Staining incorporated-BrdU over 24 hours and evaluation of “harlequin” chromosomes point to a similar rate of genomic sister chromatid exchange in lymphocytes, VA13 cells, and HeLa cells, suggesting that high chromatid exchange is confined to the telomeric region. A physical association between promyelocytic leukemia protein (PML) and telomeres is characteristic of some ALT-positive cells, but confocal microscopy failed to co-localize the telomeric probe and anti-PML monoclonal antibody in peripheral blood lymphocytes, suggesting that t-SCE in lymphocytes is not mediated by PML. This is the first demonstration of ALT activation in normal mammalian cells. ALT may be activated in peripheral blood lymphocytes as a complementary mechanism to maintain telomere length, and may explain the differences in age-related telomere shortening observed between lymphocytes and granulocytes.
APA, Harvard, Vancouver, ISO, and other styles
50

Kibe, Tatsuya, Yuuki Ono, Koichiro Sato, and Masaru Ueno. "Fission Yeast Taz1 and RPA Are Synergistically Required to Prevent Rapid Telomere Loss." Molecular Biology of the Cell 18, no. 6 (June 2007): 2378–87. http://dx.doi.org/10.1091/mbc.e06-12-1084.

Full text
Abstract:
The telomere complex must allow nucleases and helicases to process chromosome ends to make them substrates for telomerase, while preventing these same activities from disrupting chromosome end-protection. Replication protein A (RPA) binds to single-stranded DNA and is required for DNA replication, recombination, repair, and telomere maintenance. In fission yeast, the telomere binding protein Taz1 protects telomeres and negatively regulates telomerase. Here, we show that taz1-d rad11-D223Y double mutants lose their telomeric DNA, indicating that RPA (Rad11) and Taz1 are synergistically required to prevent telomere loss. Telomere loss in the taz1-d rad11-D223Y double mutants was suppressed by additional mutation of the helicase domain in a RecQ helicase (Rqh1), or by overexpression of Pot1, a single-strand telomere binding protein that is essential for protection of chromosome ends. From our results, we propose that in the absence of Taz1 and functional RPA, Pot1 cannot function properly and the helicase activity of Rqh1 promotes telomere loss. Our results suggest that controlling the activity of Rqh1 at telomeres is critical for the prevention of genomic instability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography