Academic literature on the topic 'Teichmüller disc'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Teichmüller disc.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Teichmüller disc"

1

Hubert, Pascal, Erwan Lanneau, and Martin Möller. "The Arnoux–Yoccoz Teichmüller disc." Geometric and Functional Analysis 18, no. 6 (February 11, 2009): 1988–2016. http://dx.doi.org/10.1007/s00039-009-0706-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chaika, Jon, and Pascal Hubert. "Circle averages and disjointness in typical translation surfaces on every Teichmüller disc." Bulletin of the London Mathematical Society 49, no. 5 (July 4, 2017): 755–69. http://dx.doi.org/10.1112/blms.12065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YAO, GUOWU. "HAMILTON SEQUENCES FOR EXTREMAL QUASICONFORMAL MAPPINGS OF DOUBLY-CONNECTED DOMAINS." Bulletin of the Australian Mathematical Society 88, no. 3 (March 22, 2013): 376–79. http://dx.doi.org/10.1017/s0004972713000191.

Full text
Abstract:
AbstractLet $T(S)$ be the Teichmüller space of a hyperbolic Riemann surface $S$. Suppose that $\mu $ is an extremal Beltrami differential at a given point $\tau $ of $T(S)$ and $\{ {\phi }_{n} \} $ is a Hamilton sequence for $\mu $. It is an open problem whether the sequence $\{ {\phi }_{n} \} $ is always a Hamilton sequence for all extremal differentials in $\tau $. S. Wu [‘Hamilton sequences for extremal quasiconformal mappings of the unit disk’, Sci. China Ser. A 42 (1999), 1033–1042] gave a positive answer to this problem in the case where $S$ is the unit disc. In this paper, we show that it is also true when $S$ is a doubly-connected domain.
APA, Harvard, Vancouver, ISO, and other styles
4

Tanigawa, Harumi. "Holomorphic families of geodesic discs in infinite dimensional Teichmüller spaces." Nagoya Mathematical Journal 127 (September 1992): 117–28. http://dx.doi.org/10.1017/s0027763000004128.

Full text
Abstract:
The theory of quasiconformal mappings plays an important role in Teichmüller theory. The Teichmüller spaces of Riemann surfaces are defined as quotient spaces of the spaces of Beltrami differentials, and the Teichmüller distances are defined to measure quasiconformal deformations between the Riemann surfaces representing points in the Teichmüller spaces. The Teichmüller spaces are complex Banach manifolds equipped with natural complex structures such that the canonical projections are holomorphic. It is known (see Gardinar [4]) that the Teichmüller distance, defined independently of the complex structures, coincides with the Kobayashi distance.In spite of the naturality of the definition of a Teichmüller space as a quotient of Beltrami differentials, for given two Beltrami differentials it is hard to determine whether they are equivalent or not. For this reason, it is not trivial to describe geodesic lines with respect to the Teichmüller-Kobayashi metric.
APA, Harvard, Vancouver, ISO, and other styles
5

JINHUA, FAN, and CHEN JIXIU. "ON INFINITESIMAL TEICHMÜLLER SPACE." Bulletin of the Australian Mathematical Society 78, no. 2 (October 2008): 293–300. http://dx.doi.org/10.1017/s0004972708000749.

Full text
Abstract:
AbstractMuch research has been done on the geometry of Teichmüller space and Hamilton sequences of extremal Beltrami differentials. This paper discusses some problems concerning infinitesimal Teichmüller geodesic discs and Hamilton sequences of extremal Beltrami differentials in the tangent space of an infinite-dimensional Teichmüller space.
APA, Harvard, Vancouver, ISO, and other styles
6

LI, Zhong. "Geodesic discs in Teichmüller space." Science in China Series A 48, no. 8 (2005): 1075. http://dx.doi.org/10.1360/04ys0122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aulicino, David. "Teichmüller discs with completely degenerate Kontsevich–Zorich spectrum." Commentarii Mathematici Helvetici 90, no. 3 (2015): 573–643. http://dx.doi.org/10.4171/cmh/365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Robert, and Richard C. H. Webb. "Shadows of Teichmüller Discs in the Curve Graph." International Mathematics Research Notices 2018, no. 11 (February 4, 2017): 3301–41. http://dx.doi.org/10.1093/imrn/rnw318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hubert, Pascal, and Samuel Lelièvre. "Prime arithmetic Teichmüller discs in $$\mathcal{H}(2)$$." Israel Journal of Mathematics 151, no. 1 (December 2006): 281–321. http://dx.doi.org/10.1007/bf02777365.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Teichmüller disc"

1

Viglioni, Humberto Henrique de Barros. "Dinâmica de vórtices em superfícies com aplicações ao problema de dois vórtices no toro plano." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03042017-161053/.

Full text
Abstract:
Este trabalho apresenta uma dedução das equações para a dinâmica de vórtices em superfícies utilizando argumentos físicos e balanço de momento, obtendo o resultado já conhecido devido a Boatto/Koiller e Hally. Na primeira parte, elaboramos uma releitura da contribuição de diversos pesquisadores incluindo, além dos já citados, o trabalho de Marchioro e Pulvirenti sobre a propriedade de localização para a equação de Euler e também a importante contribuição de Flucher e Gustafsson no que diz respeito à determinação da função de Green e função de Robin hidrodinâmicas em domínios do plano. Na segunda parte revisamos o problema da dinâmica de um traçador passivo induzida por um vórtice no disco unitário e estendemos para o caso com vorticidade de fundo constante. Por fim, analisamos a dinâmica de dois vórtices no toro plano, a qual reduz-se ao estudo da dinâmica do centro de vorticidade com hamiltoniana dada pela função de Green. É feita uma descrição das bifurcações das curvas de níveis desta hamiltoniana com respeito a variações do parâmetro modular. Mostramos que o campo hamiltoniano em questão é preservado por biholomorfismos e, portanto, o espaço dos parâmetros pode ser reduzido ao espaço de Moduli do toro plano. Mudanças dentro de uma mesma classe de equivalência por biholomorfismos podem alterar apenas a classe de homotopia das curvas de nível.
In this thesis the equations for the motion of vortices on Riemannian surfaces is studied. Using conservation of momentum and physical arguments, the classical equations of Hally and Boatto/Koiller are recovered. Then the localization result for the Euler\'s equation with flat metric (Marchioro and Pulvirenti) and the determination of the Green\'s and Robin\'s functions on plane domains are revisited in the context of Riemannian surfaces. On a second part of the thesis two examples are analyzed. At first the dynamics of a passive tracer in the unit disk on the flat plane with constant background vorticity. At second the dynamics of two vortices on flat tori. This last system is integrable. The dynamics is determined by the level sets of the Green\'s function which depends on the modular parameter of the torus. The full bifurcation diagram of the system as a function of the module parameter is determined.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheboui, Smail. "Intersection Algébrique sur les surfaces à petits carreaux." Electronic Thesis or Diss., Montpellier, 2021. http://www.theses.fr/2021MONTS006.

Full text
Abstract:
ON étudie la quantité notée Kvol définie par KVol(X,g) = Vol(X,g)*sup_{alpha,beta} frac{Int(alpha,beta)}{l_g (alpha)l_g(beta)} où X est une surface compacte de genre s, Vol(X,g) est le volume (l'aire) de la surface par rapport à la métrique g et alpha, beta deux courbes simples fermées sur la surface X. Les résultats principaux de cette thèse se trouvent dans les chapitres 3 et 4. Dans le chapitre 3 intitulé "Algebraic intersection for translation surfaces in the stratum H(2)" on s'intéresse à la suite des kvol des surfaces L(n,n) et on montre que KVol(L(n,n)) tend vers 2 quand n tend vers l'infini.Dans le chapitre 4 intitulé "Algebraic intersection for translation surfaces in a family of Teichmüller disks" on s'intéresse au Kvol des surfaces appartenant à la strate H(2s-2) qui sont des revêtements ramifiés à n feuillets d'un tore plat. On s'intéresse aussi aux surfaces St(2s-1) et on montre que kvol(St(2s-1))=2s-1 où s est le genre de la surface St(2s-1). On s'intéresse aussi au minimum du Kvol sur le disque de Teichmüller de la surface St(2s-1) qui sera (2s-1)sqrt{frac{143}{144}} et il est atteint aux deux points (pm frac{9}{14}, frac{sqrt{143}}{14})
We study the quantity denoted Kvol defined by KVol(X,g) = Vol(X,g)*sup_{alpha,beta} frac{Int(alpha,beta)}{l_g (alpha)l_g(beta)} where X is a compact surface of genus s, Vol(X,g) is the volume (area) of the surface with respect to the metric g and alpha, beta two simple closed curves on the surface X.The main results of this thesis can be found in Chapters 3 and 4. In Chapter 3 titled "Algebraic intersection for translation surfaces in the stratum H(2)" we are interested in the sequence of kvol of surfaces L(n,n) and we provide that KVol(L(n,n)) goes to 2 when n goes to infinity. In Chapter 4 titled "Algebraic intersection for translation surfaces in a family of Teichmüller disks" we are interested in the Kvol for a surfaces belonging to the stratum H(2s-2) wich is an n-fold ramified cover of a flat torus. We are also interested in the surfaces St(2s-1) and we show that kvol(St(2s-1))=2s-1. We are also interested in the minimum of Kvol on the Teichmüller disk of the surface St(2s-1) which will be (2s-1)sqrt {frac {143}{ 144}} and it is achieved at the two points (pm frac{9}{14}, frac{sqrt{143}}{14})
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Teichmüller disc"

1

Fresse, Benoit. "Little discs operads, graph complexes and Grothendieck-Teichmüller groups." In Handbook of Homotopy Theory, 405–41. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781351251624-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography