To see the other types of publications on this topic, follow the link: Techniques: photometric.

Dissertations / Theses on the topic 'Techniques: photometric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Techniques: photometric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Domeniconi, Federico. "Deep Learning Techniques applied to Photometric Stereo." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20031/.

Full text
Abstract:
La tesi si focalizza sullo studio dello stato dell’arte della fotometria stereo con deep learning: Self-calibrating Deep Photometric Stereo Networks. Il modello è composto è composto di due reti, la prima predice la direzione e l’intensità delle luci, la seconda predice le normali della superficie. L’obiettivo della tesi è individuare i limiti del modello e capire se possa essere modifcato per avere buone prestazioni anche in scenari reali. Il progetto di tesi è basato su fine-tuning, una tecnica supervisionata di transfer learning. Per questo scopo un nuovo dataset è stato creato acquisendo immagini in laboratorio. La ground-truth è ottenuta tramite una tecnica di distillazione. In particolare la direzione delle luci è ottenuta utilizzando due algoritmi di calibrazione delle luci e unendo i due risultati. Analogamente le normali delle superfici sono ottenute unendo i risultati di vari algoritmi di fotometria stereo. I risultati della tesi sono molto promettenti. L’errore nella predizione della direzione e dell’intensità delle luci è un terzo dell’errore del modello originale. Le predizioni delle normali delle superfici possono essere analizzate solo qualitativamente, ma i miglioramenti sono evidenti. Il lavoro di questa tesi ha mostrato che è possibile applicare transfer-learning alla fotometria stereo con deep learning. Perciò non è necessario allenare un nuovo modello da zero ma è possibile approfittare di modelli già esistenti per migliorare le prestazioni e ridurre il tempo di allenamento.
APA, Harvard, Vancouver, ISO, and other styles
2

Bezanson, Rachel, David A. Wake, Gabriel B. Brammer, Pieter G. van Dokkum, Marijn Franx, Ivo Labbé, Joel Leja, et al. "LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621218.

Full text
Abstract:
We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH(IR) > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 +/- 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1 sigma scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z. <. 2.5 (for JH(IR) < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to similar to 0.1 (1+ z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to similar to 30% more scatter and similar to 5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to similar to 0.046 (1 + z) at H-F160W = 26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of similar to 1.1 - 1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.
APA, Harvard, Vancouver, ISO, and other styles
3

Zou, Hu, Tianmeng Zhang, Zhimin Zhou, Jundan Nie, Xiyan Peng, Xu Zhou, Linhua Jiang, et al. "The First Data Release of the Beijing-Arizona Sky Survey." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/624694.

Full text
Abstract:
The Beijing-Arizona Sky Survey (BASS) is a new wide-field legacy imaging survey in the northern Galactic cap using the 2.3 m Bok telescope. The survey will cover about 5400 deg(2) in the g and r bands, and the expected 5 sigma depths (corrected for the Galactic extinction) in these two bands are g = 24.0 and r = 23.4 mag (AB magnitude). BASS started observations in 2015 January. and had. completed about 41% of the. area as of 2016 July. The first data release contains calibrated images obtained in 2015 and 2016 and their corresponding single-epoch. and coadded catalogs. The actual depths of the. single-epoch images are g similar to 23.4 and r similar to 22.9 mag. The full depths of the. three epochs are g similar to 24.1 and r similar to 23.5 mag.
APA, Harvard, Vancouver, ISO, and other styles
4

Stritzinger, Maximilian. "Type Ia supernovae bolometric properties and new tools for photometric techniques /." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=979066697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mason, Justin R. "In search of red dwarf stars application of three-color photometric techniques /." Muncie, IN : Ball State University, 2009. http://cardinalscholar.bsu.edu/659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cartwright, Stephen J. "Application of digital image processing techniques to the photometric testing of vehicle headlamps." Thesis, Aston University, 1986. http://publications.aston.ac.uk/14614/.

Full text
Abstract:
The aim of this Interdisciplinary Higher Degrees project was the development of a high-speed method of photometrically testing vehicle headlamps, based on the use of image processing techniques, for Lucas Electrical Limited. Photometric testing involves measuring the illuminance produced by a lamp at certain points in its beam distribution. Headlamp performance is best represented by an iso-lux diagram, showing illuminance contours, produced from a two-dimensional array of data. Conventionally, the tens of thousands of measurements required are made using a single stationary photodetector and a two-dimensional mechanical scanning system which enables a lamp's horizontal and vertical orientation relative to the photodetector to be changed. Even using motorised scanning and computerised data-logging, the data acquisition time for a typical iso-lux test is about twenty minutes. A detailed study was made of the concept of using a video camera and a digital image processing system to scan and measure a lamp's beam without the need for the time-consuming mechanical movement. Although the concept was shown to be theoretically feasible, and a prototype system designed, it could not be implemented because of the technical limitations of commercially-available equipment. An alternative high-speed approach was developed, however, and a second prototype syqtem designed. The proposed arrangement again uses an image processing system, but in conjunction with a one-dimensional array of photodetectors and a one-dimensional mechanical scanning system in place of a video camera. This system can be implemented using commercially-available equipment and, although not entirely eliminating the need for mechanical movement, greatly reduces the amount required, resulting in a predicted data acquisiton time of about twenty seconds for a typical iso-lux test. As a consequence of the work undertaken, the company initiated an 80,000 programme to implement the system proposed by the author.
APA, Harvard, Vancouver, ISO, and other styles
7

Toyozumi, Hiroyuki Physics Faculty of Science UNSW. "The intra-pixel sensitivity variation of a CCD." Awarded by:University of New South Wales. School of Physics, 2005. http://handle.unsw.edu.au/1959.4/25995.

Full text
Abstract:
The effect of Intra-pixel sensitivity variation (IPSV) in charge-coupled devices (CCDs) can be important in astronomical applications. This thesis studies the IPSV in a front-illuminated three-phase EEV05-20 CCD used in the Automated Patrol Telescope (APT), from multiple points of view. To explore the detailed sensitivity variation within pixels, the CCD was scanned using a 4 \mu meter diameter light beam in four colour bands: B, V, R and I. The resulting images clearly show the IPSVs due to the CCD electrode structure, and its dependence on wavelength. Unexpected ghost images appear in the scan images that are most likely due to the charge transfer inefficiency (CTI) of the CCD. A correction procedure for the CTI effect is presented. Using the pixel response function (PRF) which was derived from the CCD scans, instrumental point spread functions (iPSFs) were calculated from dithered images observed by the APT. The accurate iPSFs allowed us to generate a variety of simulated images of APT observations, enabling us to analyse in detail the effect of IPSV on astronomical observations. One of the astronomical impacts of IPSV is on photometry. The IPSV effect on the precision for estimating star fluxes was studied using both observed and simulated images. The IPSV effect can be expressed as magnitude estimation error maps plotted against the fractional part of a star's coordinates. The IPSV effect introduces \pm 4% errors in star fluxes for observed images with the APT in V band. Another astronomical impact of IPSV is on astrometry. IPSV influences the precision for estimating star coordinates, and this was studied using a number of simulated images. The IPSV effect can be expressed as coordinate estimation error maps plotted against the fractional part of a star's coordinates. The IPSV effect introduces \sim 0.02 pixel errors in RMS for images observed with the APT in V band. The appearance of the unexpected ghost images in the CCD scans suggested that CTI might also affect observed images. We examined the effects on PSFs and photometry. The CTI effect does affect the shapes of PSFs, but only to a small fraction. Its effect on photometry is negligible.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Linlin, Shiyin Shen, Jinliang Hou, Fangting Yuan, Jing Zhong, Hu Zou, Xu Zhou, et al. "GALACTIC EXTINCTION AND REDDENING FROM THE SOUTH GALACTIC CAP u -BAND SKY SURVEY: u -BAND GALAXY NUMBER COUNTS AND u − r COLOR DISTRIBUTION." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/623264.

Full text
Abstract:
We study the integral Galactic extinction and reddening based on the galaxy catalog of the South Galactic Cap u-band Sky Survey (SCUSS), where u-band galaxy number counts and u - r color distribution are used to derive the Galactic extinction and reddening respectively. We compare these independent statistical measurements with the reddening map of Schlegel et al. (SFD) and find that both the extinction and reddening from the number counts and color distribution are in good agreement with the SFD results at low extinction regions (E(B - V)(SFD) < 0.12 mag). However, for high extinction regions (E(B - V)(SFD) > 0.12 mag), the SFD map overestimates the Galactic reddening systematically, which can be approximated by a linear relation Delta E(B - V)= 0.43[ E(B - V)(SFD) - 0.12]. By combining the results from galaxy number counts and color distribution, we find that the shape of the Galactic extinction curve is in good agreement with the standard R-V = 3.1 extinction law of O'Donnell.
APA, Harvard, Vancouver, ISO, and other styles
9

Christiansen, Jessie L., Andrew Vanderburg, Jennifer Burt, B. J. Fulton, Konstantin Batygin, Björn Benneke, John M. Brewer, et al. "Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625817.

Full text
Abstract:
HD 3167 is a bright (V = 8.9), nearby KO star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial-velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02 +/- 0.38 M-circle plus for HD 3167 b, a hot super-Earth with a likely rocky composition (rho(b) = 5.6(-1.43)(+2.15) g cm(-3)), and 9.80(-1.24)(+1.30) M-circle plus for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho(c) = 1.97(-0.59)(+0.94) g cm(-3)). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509 +/- 0.045 d (between planets b and c) and a minimum mass of 6.90 +/- 0.71 M-circle plus. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.degrees 3 because we do not observe transits of planet d. From 1.degrees 3 to 40 degrees, there are viewing geometries invoking special nodal configurations, which result in planet d not transiting some fraction of the time.
APA, Harvard, Vancouver, ISO, and other styles
10

Stefansson, Gudmundur, Suvrath Mahadevan, Leslie Hebb, John Wisniewski, Joseph Huehnerhoff, Brett Morris, Sam Halverson, et al. "Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626043.

Full text
Abstract:
We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating 62(-16)(+26) ppm precision in 30 minute bins on a nearby bright star 16 Cygni A (V = 5.95) using the ARC 3.5 m telescope-within a factor of similar to 2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V = 11.2) and TRES-3b (V = 12.4), where the residuals bin down to 180(-41)(+66) ppm in 30 minute bins for WASP-85-Ab-a factor of similar to 4 of the precision achieved by the K2 mission on this target-and to 101 ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests demonstrated 137(-36)(+64) ppm precision for a K-S = 10.8 star on the 200 inch. Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.
APA, Harvard, Vancouver, ISO, and other styles
11

Önehag, Anna. "Solar Type Stars as Calibrators : A Photometric and Spectroscopic Study on the Atmospheric Properties of Late-type Stars." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158709.

Full text
Abstract:
Detailed knowledge of solar-type stars is essential in the understanding of the evolutionary past, presence and future of the Sun as well as the formation of its planetary system. Moreover, solar-type stars are of key significance for the study of the evolution of the Galaxy. The ages of solar-type stars map the full galactic evolution. Their surface layers are well mixed and just little affected by the interior nuclear processes. They may therefore be used as samples of the gas from which the stars were once formed. Models of stellar atmospheres are used to derive fundamental stellar quantities such as chemical composition, effective temperature, surface gravity, age and rotation. It is therefore also important to investigate the progress and shortcomings of the atmospheric models and the reliability of calibrations based upon these. In this thesis we explore the potential of synthetic uvbyHβ colours for deriving atmospheric parameters. The theoretical colours are derived using high-resolution synthetic spectra based on 1D atmosphere models of late-type stars. Furthermore, possible applications of the established synthetic colours on globular stellar clusters are tested. Observations of solar-type stars have demonstrated the existence of stars very similar to the Sun, so-called solar twins. A detailed chemical analysis of these stars, however, shows that most solar-twins are systematically richer, as compared with the Sun, in refractory elements such as Fe, Ni and Al, relative to volatile elements like C, N and O. This chemical abundance pattern has been suggested to be related to the formation of planets or the birth environment of the respective star. In this thesis we present a high-accuracy study on a solar-twin star in the old open cluster M67. We find that the star is very similar to the Sun when comparing their atmospheric parameters, effective temperature, surface gravity and metallicity. Remarkably enough, unlike most solar twins observed in the solar vicinity, the cluster twin shows the same refractory to volatile pattern as the Sun.The reason for this similarity is still unknown but further observations of the cluster will help to clarify the matter. M dwarfs constitute a large fraction of the detectable baryonic matter. In spite of this, detailed knowledge on the numerous neighbouring low-mass stars is still not available. The presence of strong molecular features in the spectra, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for detailed spectroscopic abundance analysis. In this thesis we present a high resolution spectroscopic study of early-type M dwarfs in the infrared. The lack of prominent molecular bands in parts of the infrared J-band (1100--1400 nm) allows a precise continuum placement. Furthermore, we verify the adequacy of using the model atmospheres for abundance determination by observing a set of binary systems with a solar-type primary and an M dwarf companion. We present a reliable zero-point for the metallicity scale of early-type M dwarfs and verify the reliability of spectroscopic abundance analyses in the infrared.
APA, Harvard, Vancouver, ISO, and other styles
12

Kuhn, Rudolf Bruwer. "Photometric techniques for exoplanet detection: the construction and deployment of the KELT-South telescope." Doctoral thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/12920.

Full text
Abstract:
Includes bibliographical references.
In this thesis I present the work I performed during the initial construction and deployment of the second telescope in the KELT project and I report the results of the search for transiting exoplanets and variable stars using one of the first commissioning datasets obtained with the telescope. The KELT-South telescope is located in Sutherland, South Africa and construction started in 2008. The telescope has been operating at full capacity since 2010, after two commissioning seasons from late 2008 to early 2010. I developed all the code that allows it to be fully automatic and robotic and over the last 5 years I have been responsible for the observing operations and general maintenance of the telescope. I also developed many other software tools that help with the identification of the exoplanet candidates. The Kilodegree Extremely Little Telescope (KELT) project at present consists of two robotic, wide field, small aperture telescopes that are designed primarily to find transiting exoplanets around bright stars in the magnitude range 8 < V < 11. Transiting planets orbiting bright stars can be studied with intense follow-up programs with relative ease on larger telescopes, making them favourable targets to determine the atmospheric composition of the planet as well as a host of other properties that cannot be obtained from planets orbiting fainter stars. Of the known 1811 (August 2014) exoplanets only 60 are transiting stars with V < 11 and only 16 of those have been found from the southern hemisphere. The discovery of more of these exoplanets will help constrain the theories of formation and evolution of short period, gas giant exoplanets. Data reduction on one of the commissioning datasets was completed in 2012. The dataset spans 46 days and lightcurves for 78297 objects were obtained. I performed a search for periodicities in the lightcurves and found that 1411 stars showed clear signs of variability and these objects were compiled into a catalogue of possible variable stars. 1018 of the catalogue members were not previously known to be variable. I searched for planetary transits and eight possible exoplanet candidates were identified. Photometric follow-up observations of two targets eliminated them as exoplanet candidates, each being a blended eclipsing binary system. The remaining six candidates are awaiting follow-up observations at present. Although the commissioning dataset served primarily to refine the data reduction pipeline and the procedures I used to find variable stars, I have demonstrated that the KELT-South telescope is capable of detecting the kinds of signals required for exoplanet discovery.
APA, Harvard, Vancouver, ISO, and other styles
13

Landon, Jr George V. "Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/599.

Full text
Abstract:
Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets.
APA, Harvard, Vancouver, ISO, and other styles
14

Stevenson, Kevin B., Michael R. Line, Jacob L. Bean, Jean-Michel Désert, Jonathan J. Fortney, Adam P. Showman, Tiffany Kataria, Laura Kreidberg, and Y. Katherina Feng. "SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5μm." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/623051.

Full text
Abstract:
Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet's highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P = 0.813 days) at 3.6 and 4.5. mu m. The first 3.6. mu m visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day-night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet's cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating (less than or similar to 1 day) planets, this may explain an observed trend connecting measured day-night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance (2.5 x 10(-5)-1.1 x 10(-4) at 1 sigma confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4-1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3-1.7x solar. This is the first time that precise abundance and metallicity constraints have been determined from multiple molecular tracers for a transiting exoplanet.
APA, Harvard, Vancouver, ISO, and other styles
15

Graham, Matthew J., S. G. Djorgovski, Andrew J. Drake, Daniel Stern, Ashish A. Mahabal, Eilat Glikman, Steve Larson, and Eric Christensen. "Understanding extreme quasar optical variability with CRTS – I. Major AGN flares." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/625731.

Full text
Abstract:
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Delta m = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
APA, Harvard, Vancouver, ISO, and other styles
16

Lee, Bomee, Mauro Giavalisco, Katherine Whitaker, Christina C. Williams, Henry C. Ferguson, Viviana Acquaviva, Anton M. Koekemoer, et al. "The Intrinsic Characteristics of Galaxies on the SFR–M ∗ Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence." IOP PUBLISHING LTD, 2018. http://hdl.handle.net/10150/627039.

Full text
Abstract:
We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M-*), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2 < z < 4. We do this by making new measures of M-*, SFR, and stellar age thanks to an improved SED fitting procedure that allows various star formation history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the (M-*; SFR) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high Sigma(1) (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of Sigma(1), which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of Sigma(1) for fixed values of M* shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of Sigma(1) (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.
APA, Harvard, Vancouver, ISO, and other styles
17

Attrill, K. J. "Ellipsometric and photometric techniques for the measurement of the optical constants of thin films and surfaces." Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Larionov, V. M., M. Villata, C. M. Raiteri, S. G. Jorstad, A. P. Marscher, I. Agudo, P. S. Smith, et al. "Exceptional outburst of the blazar CTA 102 in 2012: the GASP–WEBT campaign and its extension." OXFORD UNIV PRESS, 2016. http://hdl.handle.net/10150/621728.

Full text
Abstract:
After several years of quiescence, the blazar CTA 102 underwent an exceptional outburst in 2012 September-October. The flare was tracked from gamma-ray to near-infrared (NIR) frequencies, including Fermi and Swift data as well as photometric and polarimetric data from several observatories. An intensive Glast-Agile support programme of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration campaign in optical and NIR bands, with an addition of previously unpublished archival data and extension through fall 2015, allows comparison of this outburst with the previous activity period of this blazar in 2004-2005. We find remarkable similarity between the optical and gamma-ray behaviour of CTA 102 during the outburst, with a time lag between the two light curves of approximate to 1 h, indicative of cospatiality of the optical and gamma-ray emission regions. The relation between the gamma-ray and optical fluxes is consistent with the synchrotron self-Compton (SSC) mechanism, with a quadratic dependence of the SSC gamma -ray flux on the synchrotron optical flux evident in the post-outburst stage. However, the gamma -ray/optical relationship is linear during the outburst; we attribute this to changes in the Doppler factor. A strong harder-when-brighter spectral dependence is seen both the in gamma-ray and optical non-thermal emission. This hardening can be explained by convexity of the UV-NIR spectrum that moves to higher frequencies owing to an increased Doppler shift as the viewing angle decreases during the outburst stage. The overall pattern of Stokes parameter variations agrees with a model of a radiating blob or shock wave that moves along a helical path down the jet.
APA, Harvard, Vancouver, ISO, and other styles
19

Obermeier, Christian, Thomas Henning, Joshua E. Schlieder, Ian J. M. Crossfield, Erik A. Petigura, Andrew W. Howard, Evan Sinukoff, et al. "K2 DISCOVERS A BUSY BEE: AN UNUSUAL TRANSITING NEPTUNE FOUND IN THE BEEHIVE CLUSTER." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/622698.

Full text
Abstract:
Open clusters have been the focus of several exoplanet surveys, but only a few planets have so far been discovered. The Kepler spacecraft revealed an abundance of small planets around small cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp = 15.5 mag) M3.0 +/- 0.5 dwarf from K2's Campaign 5 with an effective temperature of 3471 +/- 124 K, approximately solar metallicity and a radius of 0.402 +/- 0.050 R-circle dot. We detected a transiting planet with a radius of 3.47(-0.53)(+0.78)R(circle plus) and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging, and archival survey images to rule out any false-positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.
APA, Harvard, Vancouver, ISO, and other styles
20

Evans, Thomas M., David K. Sing, Hannah R. Wakeford, Nikolay Nikolov, Gilda E. Ballester, Benjamin Drummond, Tiffany Kataria, Neale P. Gibson, David S. Amundsen, and Jessica Spake. "DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/614712.

Full text
Abstract:
We present a primary transit observation for the ultra-hot (T-eq similar to 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 mu m wavelength range. The 1.4 mu m water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 mu m wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
APA, Harvard, Vancouver, ISO, and other styles
21

Sinukoff, Evan, Andrew W. Howard, Erik A. Petigura, Joshua E. Schlieder, Ian J. M. Crossfield, David R. Ciardi, Benjamin J. Fulton, et al. "ELEVEN MULTIPLANET SYSTEMS FROM K2 CAMPAIGNS 1 AND 2 AND THE MASSES OF TWO HOT SUPER-EARTHS." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621388.

Full text
Abstract:
We present a catalog of 11 multiplanet systems from Campaigns 1 and 2 of the K2 mission. We report the sizes and orbits of 26 planets split between seven two-planet systems and four three-planet systems. These planets stem from a systematic search of the K2 photometry for all dwarf stars observed by K2 in these fields. We precisely characterized the host stars with adaptive optics imaging and analysis of high-resolution optical spectra from Keck/HIRES and medium-resolution spectra from IRTF/SpeX. We confirm two planet candidates by mass detection and validate the remaining 24 candidates to >99% confidence. Thirteen planets were previously validated or confirmed by other studies, and 24 were previously identified as planet candidates. The planets are mostly smaller than Neptune (21/26 planets), as in the Kepler mission, and all have short periods (P < 50 days) due to the duration of the K2 photometry. The host stars are relatively bright (most have Kp < 12.5 mag) and are amenable to follow-up characterization. For K2-38, we measured precise radial velocities using Keck/HIRES and provide initial estimates of the planet masses. K2-38b is a short-period super-Earth with a radius of 1.55 +/- 0.16 R-circle plus, a mass of 12.0 +/- 2.9M(circle plus), and a high density consistent with an iron-rich composition. The outer planet K2-38c is a lower-density sub-Neptune-size planet with a radius of 2.42 +/- 0.29 R-circle plus and a mass of 9.9 +/- 4.6M(circle plus) that likely has a substantial envelope. This new planet sample demonstrates the capability of K2 to discover numerous planetary systems around bright stars.
APA, Harvard, Vancouver, ISO, and other styles
22

Karalidi, Theodora, Dániel Apai, Mark S. Marley, and Esther Buenzli. "MAPS OF EVOLVING CLOUD STRUCTURES IN LUHMAN 16AB FROM HST TIME-RESOLVED SPECTROSCOPY." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621380.

Full text
Abstract:
WISE J104915.57-531906.1 is the nearest brown dwarf binary to our solar system, consisting of two brown dwarfs in the L/T transition: Luhman 16A and B. In this paper, we present the first map of Luhman 16A, and maps of Luhman 16B for two epochs. Our maps were created by applying Aeolus, a Markov-Chain Monte Carlo code that maps the top-of-the-atmosphere (TOA) structure of brown dwarf and other ultracool atmospheres, to light curves of Luhman 16A and B using the Hubble Space Telescope's G141 and G102 grisms. Aeolus retrieved three or four spots in the TOA of Luhman 16A and B, with a surface coverage of 19%-32% (depending on an assumed rotational period of 5 hr or 8 hr) or 21%-38.5% (depending on the observational epoch), respectively. The brightness temperature of the spots of the best-fit models was similar to 200 K hotter than the background TOA. We compared our Luhman 16B map with the only previously published map. Interestingly, our map contained a large TOA spot that was cooler (Delta T similar to 51 K) than the background, which lay at low latitudes, in agreement with the previous Luhman 16B map. Finally, we report the detection of a feature reappearing in Luhman 16B light curves that are separated by tens of hundreds of rotations from each other. We speculate that this feature is related to TOA structures of Luhman 16B.
APA, Harvard, Vancouver, ISO, and other styles
23

Pearson, Kyle A., Leon Palafox, and Caitlin A. Griffith. "Searching for exoplanets using artificial intelligence." OXFORD UNIV PRESS, 2018. http://hdl.handle.net/10150/627143.

Full text
Abstract:
In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labour intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects that, unlike current methods, uses a neural network. Neural networks, also called 'deep learning' or 'deep nets', are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.
APA, Harvard, Vancouver, ISO, and other styles
24

Bell, Taylor J., Nikolay Nikolov, Nicolas B. Cowan, Joanna K. Barstow, Travis S. Barman, Ian J. M. Crossfield, Neale P. Gibson, et al. "The Very Low Albedo of WASP-12b from Spectral Eclipse Observations with Hubble." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625800.

Full text
Abstract:
We present an optical eclipse observation of the hot Jupiter WASP-12b using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These spectra allow us to place an upper limit of A(g) < 0.064 (97.5% confidence level) on the planet's white light geometric albedo across 290-570 nm. Using six wavelength bins across the same wavelength range also produces stringent limits on the geometric albedo for all bins. However, our uncertainties in eclipse depth are similar to 40% greater than the Poisson limit and may be limited by the intrinsic variability of the Sun-like host star-the solar luminosity is known to vary at the 10(-4) level on a timescale of minutes. We use our eclipse depth limits to test two previously suggested atmospheric models for this planet: Mie scattering from an aluminum-oxide haze or cloud-free Rayleigh scattering. Our stringent nondetection rules out both models and is consistent with thermal emission plus weak Rayleigh scattering from atomic hydrogen and helium. Our results are in stark contrast with those for the much cooler HD 189733b, the only other hot Jupiter with spectrally resolved reflected light observations; those data showed an increase in albedo with decreasing wavelength. The fact that the first two exoplanets with optical albedo spectra exhibit significant differences demonstrates the importance of spectrally resolved reflected light observations and highlights the great diversity among hot Jupiters.
APA, Harvard, Vancouver, ISO, and other styles
25

Crossfield, Ian J. M., David R. Ciardi, Erik A. Petigura, Evan Sinukoff, Joshua E. Schlieder, Andrew W. Howard, Charles A. Beichman, et al. "197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/624074.

Full text
Abstract:
We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R-P = 2.3 R-circle plus, P = 8.6 days, T-eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R-circle plus, Kp = 9-13. mag). Of particular interest are 76 planets smaller than 2 R-circle plus, 15 orbiting stars brighter than Kp = 11.5. mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2 R-circle plus) and larger for candidates with radii >8 R-circle plus and/or with P < 3 days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
APA, Harvard, Vancouver, ISO, and other styles
26

Wong, Ian, Heather A. Knutson, Tiffany Kataria, Nikole K. Lewis, Adam Burrows, Jonathan J. Fortney, Joel Schwartz, et al. "3.6 AND 4.5 μm SPITZER PHASE CURVES OF THE HIGHLY IRRADIATED HOT JUPITERS WASP-19b AND HAT-P-7b." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621241.

Full text
Abstract:
We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 mu m, obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485% +/- 0.024% and 0.584% +/- 0.029% at 3.6 and 4.5 mu m, which are consistent with a single blackbody with effective temperature 2372 +/- 60 K. The measured 3.6 and 4.5 mu m secondary eclipse depths for HAT-P-7b are 0.156% +/- 0.009% and 0.190% +/- 0.006%, which are well described by a single blackbody with effective temperature 2667 +/- 57 K. Comparing the phase curves to the predictions of one-dimensional and three-dimensional atmospheric models, we find that WASP-19b's dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day-night circulation. We also detect an eastward-shifted hotspot, which suggests the presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside emission suggests a dayside thermal inversion and relatively inefficient day-night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 mu m nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0.38 +/- 0.06 and 0 (<0.08 at 1 sigma) for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day-night heat recirculation with increasing irradiation.
APA, Harvard, Vancouver, ISO, and other styles
27

Cunha, Evandro Fernandes da. "Implementação de um aparato experimental para medição de instabilidade em superfície livre com fluido não-Newtoniano." Ilha Solteira, 2018. http://hdl.handle.net/11449/158313.

Full text
Abstract:
Orientador: Geraldo de Freitas Maciel
Resumo: Esta tese de doutorado traz uma abordagem experimental sobre mecanismos de geração, desenvolvimento e propagação em canal de instabilidade na superfície livre de um escoamento de fluido não-Newtoniano. Estas instabilidades, quando evoluem para um padrão estável, exibem comprimento, amplitude e celeridade bem definidos, sendo denominadas roll waves. Na literatura existe uma lacuna no que diz respeito às medições destes fenômenos em condições controladas de laboratório, e com pouquíssimos registros, quando presentes em eventos naturais. Assim, buscou-se neste trabalho projetar e implementar um aparato experimental operacional e de baixo custo com o objetivo de gerar e aferir tais instabilidades, sob condições controladas e sem a influência de vibrações externas (canalete posicionado sobre uma mesa inercial), seguindo metodologia de ensaio proposta e testada. O fluido teste utilizado foi o gel de carbopol 996, que apresentou boa estabilidade e propriedades reológicas aderentes ao modelo de Herschel-Bulkley, tal qual as lamas encontradas em pés de barragens, lamas oriundas de fluxos hiperconcentrados ou de corridas propriamente ditas. Um sistema de sucção-recalque, através de uma bomba hidráulica de cavidade progressiva, impulsionava o gel para o canal de ensaio, garantindo fluxo contínuo do material em regime de recirculação. Para gerar as instabilidades na superfície livre, foi imposta, a montante do canal, uma perturbação, por meio de um pulso de ar controlado em intensidade e... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
APA, Harvard, Vancouver, ISO, and other styles
28

Benneke, Björn, Michael Werner, Erik Petigura, Heather Knutson, Courtney Dressing, Ian J. M. Crossfield, Joshua E. Schlieder, et al. "SPITZER OBSERVATIONS CONFIRM AND RESCUE THE HABITABLE-ZONE SUPER-EARTH K2-18b FOR FUTURE CHARACTERIZATION." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/624028.

Full text
Abstract:
The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the solar system. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using the Hubble Space Telescope (HST) and James Webb Space Telescope (JWST). Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33 day orbit, ruling out the alternative scenario of two similarly sized, long-period planets transiting only once within the 75 day Kepler Space Telescope (K2) observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hr (7 sigma) before the predicted transit time. Our joint analysis of the Spitzer and K2 photometry reveals that this early occurrence of the transit is not caused by transit timing variations, but the result of an inaccurate ephemeris due to a previously undetected data anomaly in the K2 photometry. We refit the ephemeris and find that K2-18b would have been lost for future atmospheric characterizations with HST and JWST if we had not secured its ephemeris shortly after the discovery. We caution that immediate follow-up observations as presented here will also be critical for confirming and securing future planets discovered by the Transiting Exoplanet Survey Satellite (TESS), in particular if only two transit events are covered by the relatively short 27-day TESS campaigns.
APA, Harvard, Vancouver, ISO, and other styles
29

Ramiaramanantsoa, Tahina, Anthony F. J. Moffat, Robert Harmon, and Richard Ignace. "BRITE-Constellation High-Precision Time-Dependent Photometry of the Early O-Type Supergiant ζ Puppis Unveils the Photospheric Drivers of Its Small- and Large-Scale Wind Structures." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/2724.

Full text
Abstract:
From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He IIλ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.
APA, Harvard, Vancouver, ISO, and other styles
30

Burke, Christopher J. "Survey for transiting extrasolar planets in stellar systems stellar and planetary content of the Open Cluster NGC 1245 /." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1132168623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hallakoun, N., (许偲艺) S. Xu, D. Maoz, T. R. Marsh, V. D. Ivanov, V. S. Dhillon, M. C. P. Bours, et al. "Once in a blue moon: detection of ‘bluing' during debris transits in the white dwarf WD 1145+017." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/625505.

Full text
Abstract:
The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD 1145+017 and has been followed up intensively. The multiple, long and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u' band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD 1145+017 during transits, using simultaneous multiband fast-photometry ULTRACAM measurements over the u'g'r'i' bands. The observations reveal what appears to be 'bluing' during transits; transits are deeper in the redder bands, with a u' - r' colour difference of up to similar to-0.05 mag. We explore various possible explanations for the bluing, including limb darkening or peculiar dust properties. 'Spectral' photometry obtained by integrating over bandpasses in the spectroscopic data in and out of transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line of sight and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris and the dust emitting the infrared excess are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system using a global network of telescopes.
APA, Harvard, Vancouver, ISO, and other styles
32

Turner, Jake D., Robin M. Leiter, Lauren I. Biddle, Kyle A. Pearson, Kevin K. Hardegree-Ullman, Robert M. Thompson, Johanna K. Teske, et al. "Investigating the physical properties of transiting hot Jupiters with the 1.5-m Kuiper Telescope." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/626279.

Full text
Abstract:
We present new photometric data of 11 hot Jupiter transiting exoplanets (CoRoT-12b, HATP-5b, HAT-P-12b, HAT-P-33b, HAT-P-37b, WASP-2b, WASP-24b, WASP-60b, WASP-80b, WASP-103b and XO-3b) in order to update their planetary parameters and to constrain information about their atmospheres. These observations of CoRoT-12b, HAT-P-37b and WASP-60b are the first follow-up data since their discovery. Additionally, the first near-UV transits of WASP-80b and WASP-103b are presented. We compare the results of our analysis with previous work to search for transit timing variations (TTVs) and a wavelength dependence in the transit depth. TTVs may be evidence of a third body in the system, and variations in planetary radius with wavelength can help constrain the properties of the exoplanet's atmosphere. For WASP-103b and XO-3b, we find a possible variation in the transit depths which may be evidence of scattering in their atmospheres. The B-band transit depth of HAT-P-37b is found to be smaller than its near-IR transit depth and such a variation may indicate TiO/VO absorption. These variations are detected from 2-4.6s, so follow-up observations are needed to confirm these results. Additionally, a flat spectrum across optical wavelengths is found for five of the planets (HAT-P-5b, HAT-P-12b, WASP-2b, WASP-24b and WASP-80b), suggestive that clouds may be present in their atmospheres. We calculate a refined orbital period and ephemeris for all the targets, which will help with future observations. No TTVs are seen in our analysis with the exception of WASP-80b and follow-up observations are needed to confirm this possible detection.
APA, Harvard, Vancouver, ISO, and other styles
33

Shan, Yutong, Jennifer C. Yee, Brendan P. Bowler, Lucas A. Cieza, Benjamin T. Montet, Héctor Cánovas, Michael C. Liu, et al. "The Multiplicity of M Dwarfs in Young Moving Groups." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/627110.

Full text
Abstract:
We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence (PMS) members of nearby young moving groups (YMGs) with Magellan Adaptive Optics (MagAO) and identify 27 stellar binaries with instantaneous projected separation as small as 40 mas. Fifteen were previously unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw stellar multiplicity rate of at least 35(-4)(+5)% for this population. In the separation range of roughly 1-300 au in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least 24(-4)(+5)% for binaries resolved by the MagAO infrared camera (Clio). The M-star subsample of 87 stars yields a raw multiplicity of at least 30(-4)(+5)% over all separations, 21(-4)(+5)% for secondary companions resolved by Clio from 1 to 300 au (23(-4)(+5)% for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that stellar multiplicity fraction as a function of mass over the range of 0.2 to 1.2M(circle dot) appears to be linearly flat, in contrast to the field, where multiplicity increases with mass. After bias corrections are applied, the multiplicity of low-mass YMG members (0.2-0.6M(circle dot)) is in excess of the field. The overall multiplicity fraction is also consistent with being constant in age and across YMGs, which suggests that multiplicity rates for this mass range are largely set by 10 Myr without appreciable evolution thereafter.
APA, Harvard, Vancouver, ISO, and other styles
34

Ferreira, Joao. "Occultations stellaires. Une nouvelle approche grâce à la mission Gaia." Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4084.

Full text
Abstract:
Les astéroïdes participent à la compréhension de plusieurs problèmes clés liés à la science du système solaire et à l’environnement spatial de notre planète, tels que les conditions du système solaire lors de sa formation, l’apport d’eau et de molécules organiques sur la Terre, le danger potentiel des astéroïdes proches de la Terre et leur rôle dans l’influence du climat de la Terre.Les occultations stellaires sont une occasion unique d’obtenir du sol une astrométrie astéroïde très précise, proche de la performance de Gaia, ainsi que des formes pour les astéroïdes. Lorsqu’un astéroïde cache la lumière d’une étoile, l’incertitude de sa position instantanée peut être similaire à celle de l’étoile cible. En exploitant la précision de Gaia DR2 sur les astéroïdes et les étoiles, la prédiction et l’exploitation des occultations stellaires deviennent une méthode efficace pour collecter systématiquement l’astrométrie des astéroïdes.L’amélioration des prévisions via Gaia DR2 est prouvée par des statistiques de prévisions réelles et une comparaison entre les prédictions d’occultations stellaires avec Gaia DR2 pour les astéroïdes et autres données, comme Astorb et MPCORB, afin de vérifier lesquelles correspondent le mieux aux cordes observées d’occultations passées.En même temps, les occultations d’astéroïdes peuvent offrir la possibilité de confirmer ou de découvrir des étoiles doubles, dans une gamme de petites séparations angulaires très complémentaires de la résolution accessible à Gaia elle-même. Nous présentons des statistiques et des simulations montrant l’amélioration attendue de la prédiction des occultations d’astéroïdes grâce à l’astrométrie de Gaia, en particulier en ce qui concerne les incertitudes plus petites sur le mouvement propre des étoiles cibles.Par une approche bayésienne, le Modèle d’Inférence bayésienne, nous déterminons dans l’espace des le domaine des événements détectables à partir d’un site unique. Notre étude prépare l’exploitation du télescope robotique de 0,5 m UniversCity dans le "Plateau de Calern" (sud de la France), pour lequel nous déterminons l’étendue de la taille de l’astéroïde et de la luminosité de l’étoile que nous espérons atteindre. Cette installation ne sera pas opérationnelle qu’après le fin de ce travail. Les résultats obtenus concernant la performance du système sont comparés avec le méthode utilisé avant (Moindres Carrés), avec des signaux faux positifs, pour déterminer quand ils sont plus probables, et avec des observations réelles, pour vérifier la viabilité de de nouveau méthode.Après ce travail de simulation des performances attendues d’UniversCity avec le matériel disponible, il est prévu d’appliquer ces limitations aux événements prévus et d’optimiser l’efficacité de l’utilisation du télescope. Avec cet objectif, et compte tenu de tous ces facteurs, on a fait une estimation du nombre d’événements qui peuvent être observés pendant un période d’1 année avec les catalogues actuels d’étoiles et d’astéroïdes. Pour prendre en compte les améliorations des incertitudes des astéroïdes grâce à Gaia, pour chaque événement, on a vu l’impact sur ça probabilité si l’incertitude de l’astéroïde soit 2, 5, 10 ou 20 fois plus petite, et les résultats sont compilés pour chaque régime.Nous avons aussi analysé les données de DR2 pour les 14 099 astéroïdes sur le catalogue, comment ça impacte leur incertitude du demi-axe majeur, et comment ça change les prévisions d’occultations stellaires. Ça a été fait pour 2 méthodes de pondération, ce qui est utilisé dans AstDyS et un autre développé par l’équipe de Nice. En utilisant des résidus d’observation et occultations archivées, on a vérifié si ce nouveau méthode améliore les orbites.Grâce a des collaborations avec plusieurs astronomes, 16 observations ont été faîtes pendant ce travail, avec 3 occultations positives analysées par le méthode bayésien, qui a été utilisé aussi pour des autres observations avec les données de photométrie partagés avec nous
Asteroids are involved in understanding several key issues in Solar System science and the space environment of our planet, such as the conditions of the Solar System during its formation, the delivery of water and organic molecules to Earth, the potential danger of NEA and their role in affecting Earth's climate.Stellar occultation events are a unique opportunity to obtain from the ground very accurate asteroid astrometry, close to the performance of Gaia, and shapes/sizes. When an asteroid hides the light of a star, the uncertainty of its instantaneous position can be similar to that of the target star. By exploiting the accuracy of Gaia DR2 on both asteroids and stars, stellar occultation prediction and exploitation becomes an effective method to systematically collect asteroid astrometry.The improvement of predictions through Gaia DR2 is proven via statistics of real predictions and comparison between stellar occultation predictions with Gaia DR2 for asteroids and other, such as Astorb and MPCORB, to verify which fit better to observed chords of past occultations.At the same time, asteroid occultations can offer the possibility to confirm or discover double stars, in a range of small angular separations very complementary to the resolution accessible to Gaia itself. We will present statistics and simulations showing the improvement expected in the prediction of asteroid occultations thanks to Gaia astrometry, in particular regarding the smaller uncertainties on the proper motion of target stars.Through a bayesian approach, the Bayesian Inference Method (BIM), we determine in the parameter space (duration; centre epoch; flux drop; star brightness) the domain of detectable events from a single site. Our study prepares the exploitation of the 0.5-m robotic telescope at "Plateau de Calern" (Southern France) UniversCity, for which we determine the range of asteroid size and star brightness that we expect to reach. This facility will start operations after this work is over. The results obtained regarding the performance were compared with the previously used method to deriving all the relevant parameters (Least Squares Fit), with false positive signals to determine when these are most likely, and with several real observations, to verify the viability of this new method.After this work simulating the expected performance of UniversCity with the available equipment, the plan is to apply these limitations to predicted events and maximize the efficiency of the telescope's use. For that end, and accounting for all these factors, a survey was made to estimate how many events would be observable with a robotic telescope in a 1-year period with the current star and asteroid catalogues. To account for improvements in the asteroid uncertainties thanks to Gaia, for each event we checked what the impact on the likelihood would be if the asteroid had an uncertainty 2, 5, 10 or 20 times smaller, and results for each regime were compiled.We also analyzed the data of the 14 099 asteroids present DR2, how this impacted the semi-major axis (a) uncertainty, and how that would translate into improvements on stellar occultation predictions. This was made for two different weighting schemes, the one used for AstDyS (Farnocchia et al.) and one developed by the team, using observation residuals and occultations from the past to verify that the new weighting scheme would bring an improvement.Thanks to the collaboration with several astronomers, 16 observations were made throughout this work, with the three positives being analyzed with the new bayesian approach, which was also used for a few other observations where the photometric data was shared
APA, Harvard, Vancouver, ISO, and other styles
35

Rydberg, Claes-Erik. "Gravitational lensing as a probe of the first stars and galaxies." Doctoral thesis, Stockholms universitet, Institutionen för astronomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-110070.

Full text
Abstract:
This thesis investigates the potential for detection and identification of primordial stars, galaxies, and supernovae at high redshift. Simulations indicate that the first Population III stars should appear in minihalos of mass M = 105-106 Msol at z ≈ 10-30. To assess the detectability of these objects, theoretical models of these stars and their surrounding HII regions are used. We assess the plausibility of detection with the upcoming James Webb Space Telescope (JWST), using the gravitational lensing provided by the galaxy cluster MACSJ0717.5+3745. The conclusion is that the detection of these objects is highly improbable but not impossible. To investigate the prospects of detecting and identifying the first galaxies, the spectral synthesis code Yggdrasil is introduced. According to this code, JWST may be able to detect Population III galaxies with stellar masses as low as 105 Msol at z ≈ 10 in unlensed fields. We find that, over limited redshift intervals, it could be possible to use Hubble Space Telescope (HST) and/or JWST broadband color criteria to single out Population III galaxy candidates. The prospects of detecting gravitationally lensed Population III galaxies with JWST and HST is investigated. A lower limit to detect ≈1 Population III galaxy of ε ≈ 10-2 (HST/CLASH) and ε ≈ 10-3 (JWST using MACS J0717.5+3745 as lens) is derived, where ε is the baryon fraction converted to Population III stars in a host halo. By fitting HST/CLASH data to Yggdrasil and comparison grids, two Population III galaxy candidates are discovered. These two candidates are the first Population III galaxy candidates discovered at z > 6.5. A highly-magnified and doubly lensed extremely high-redshift (z ≈ 7.8) object is also identified. Finally the prospects of detecting core-collapse (CC) supernovae (SN) from the first galaxies at z ≈ 5-12 are investigated. The prediction is that no primordial SN is detectable, but 2-3 CC SN should be discovered by the HST/CLASH.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Submitted. Paper 6: Submitted. Paper 7: Manuscript.

APA, Harvard, Vancouver, ISO, and other styles
36

Joner, Michael Deloss. "High-Quality Broadband BVRI Photometry of Benchmark Open Clusters." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2495.

Full text
Abstract:
Photometric techniques are often used to observe stars and it can be demonstrated that fundamental stellar properties can be observationally determined using calibrated sets of photometric data. Many of the most powerful techniques utilized to calibrate stellar photometry employ the use of stars in clusters since the individual stars are believed to have many common properties such as age, composition, and approximate distance. Broadband photometric Johnson/Cousins BVRI observations are presented for several nearby open clusters. The new photometry has been tested for consistency relative to archival work and shown to be both accurate and precise. The careful use of a regular routine when making photometric observations, along with the monitoring of instrumental systems and the use of various quality control techniques when making observations or performing data reductions, will enhance an observer's ability to produce high-quality photometric measurements. This work contains a condensed review of the history of photometry, along with a brief description of several popular photometric systems that are often utilized in the field of stellar astrophysics. Publications written by Taylor or produced during the early Taylor and Joner collaboration are deemed especially relevant to the current work. A synopsis of seven archival publications is offered, along with a review of notable reports of VRI photometric observations for the nearby Hyades open star cluster. The body of this present work consists of four publications that appeared between the years 2005 and 2008, along with a soon to be submitted manuscript for a fifth publication. Each of these papers deals specifically with high-quality broadband photometry of open clusters with new data being presented for the Hyades, Coma, NGC 752, Praesepe, and M67. It is concluded that the VRI photometry produced during the Taylor and Joner collaborative investigations forms a high-quality data set that has been: 1) stable for a period of more than 25 years; 2) monitored and tested several times for consistency relative to the broadband Cousins system, and 3) shown to have well-understood transformations to other versions of broadband photometric systems. Further work is suggested for: 1) the transformation relationships for the reddest stars available for use as standards; 2) the standardization of more fields for use with CCD detectors; 3) a further investigation of transformations of blue color indices for observations done using CCD detectors with enhanced UV sensitivity, and 4) a continuation of work on methods to produce high-quality observations of assorted star clusters (both open and globular) with CCD-based instrumentation and intermediate-band photometric systems.
APA, Harvard, Vancouver, ISO, and other styles
37

Bell, Cameron Pearce MacDonald. "A critical assessment of ages derived using pre-main-sequence isochrones in colour-magnitude diagrams." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/4017.

Full text
Abstract:
In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs). Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method (known as the Q-method) for de-reddening individual stars in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed. The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies (especially of pre- MS objects) be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system. A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4−2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a given photometric band- pass. This analysis shows that for Teff ≤ 4000 K the models systematically overestimate the flux by a factor of 2 at 0.5 μm, though this decreases with wavelength, becoming negligible at 2.2 μm. Thus before the pre-MS models are used to derive ages, a recalibration of the models is performed by incorporating an empirical colour-Teff relation and bolometric corrections based on the Ks-band luminosity of Pleiades members, with theoretical corrections for the dependence on the surface gravity (log g). The recalibrated pre-MS model isochrones are used to derive ages from the pre-MS populations of the SFRs. These ages are then compared with the MS derivations, thus providing a powerful diagnostic tool with which to discriminate between the different pre- MS age scales that arise from a much stronger model dependency in the pre-MS regime. The revised ages assigned to each of the 14 SFRs are up to a factor two older than previous derivations, a result with wide-ranging implications, including that circumstellar discs survive longer and that the average Class II lifetime is greater than currently believed.
APA, Harvard, Vancouver, ISO, and other styles
38

Wit, Julien de, Nikole K. Lewis, Heather A. Knutson, Jim Fuller, Victoria Antoci, Benjamin J. Fulton, Gregory Laughlin, et al. "Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/624378.

Full text
Abstract:
Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet's atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet-star interactions in HAT-P-2's eccentric planetary system gained from the analysis of similar to 350 hr of 4.5 mu m observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2b's 4.5 mu m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet's orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.
APA, Harvard, Vancouver, ISO, and other styles
39

Papakonstantinou, Nikolaos. "Investigation of variable Ap Stars in TESS continuous viewing zone." Thesis, Uppsala universitet, Observationell astrofysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Grosset, Lucas. "Observations extragalactiques avec optique adaptative : polarisation dans les noyaux actifs de Galaxie et étude des super amas d'étoiles." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEO004/document.

Full text
Abstract:
Malgré l’existence de modèles précis, notre connaissance des structures à petite échelle des galaxies est toujours limitée par le manque de preuves observationnelles. Les progrès instrumentaux ont permis d’atteindre une haute résolution angulaire à l’aide des nouvelles générations de télescopes, mais celle-ci est restreinte à un faible nombre de cibles extragalactiques à causes des besoins de l’Optique Adaptative (OA). En effet, afin de permettre une mesure efficace du front d’onde, l’OA requiert une source brillante et ponctuelle proche de la cible scientifique, typiquement en dessous de 30 . La partie principale de cette thèse porte sur l’analyse de la dizaine de parsecs centrale des Galaxies à Noyaux Actifs (NAG) à l’aide de différentes techniques observationnelles et numériques. Nous avons dans ce contexte développé un code de transfert radiatif nous permettant d’analyser les données polarimétriques. La seconde partie de ce travail est dédiée à l’analyse d’images en proche infrarouges de galaxies à flambée d’étoiles afin de contraindre les paramètres décrivant les super amas stellaires, jeunes cocons de poussière très massifs abritant une formation d’étoiles très soutenue, à l’aide de données obtenues avec l’instrument CANARY, démonstrateur de nouvelles technologies d’OA
Despite having strong theoretical models, the current limitation in our understanding of the small-scale structures of galaxies is linked to the lack of observational evidences. Many powerful telescopes and instruments have been developed in the last decades, however one of these strongest tools, namely Adaptive Optics (AO), can only be used on a very limited number of targets. Indeed, for AO to be efficient, a bright star is required close to the scientific target, typically under 30 . This is mandatory for the AO systems to be able to measure the atmospheric turbulence and this condition is rarely satisfied for extended extragalactic targets such as galaxies. The main part of this thesis work consisted in going deeper in the analysis of the inner tens of parsecs of Active Nuclei (AGN) by combining different techniques to obtain and to interpret new data. In this context, we developed a new radiative transfer code to analyse the polarimetric data. A second part of my work was dedicated to a high angular resolution study of Super Star Clusters (SSC) in a new system, thanks to data obtained with the AO demonstrator CANARY instrument
APA, Harvard, Vancouver, ISO, and other styles
41

Hill, David T. "The optical and NIR luminous energy output of the Universe : the creation and utilisation of a 9 waveband consistent sample of galaxies using UKIDSS and SDSS observations with the GAMA and MGC spectroscopic datasets." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/1696.

Full text
Abstract:
Theories of how galaxies form and evolve depend greatly on constraints provided by observations. However, when those observations come from different datasets, systematic offsets may occur. This causes difficulties measuring variations in parameters between filters. In this thesis I present the variation in total luminosity density with wavelength in the nearby Universe (z<0.1), produced from a consistent reanalysis of NIR and optical observations, taken from the MGC, UKIDSS and SDSS surveys. I derive luminosity distributions, best-fitting Schechter function parameterisations and total luminosity densities in ugrizYJHK, and compare the variation in luminosity density with cosmic star formation history (CSFH) and initial mass function (IMF) models. I examine the r band luminosity distribution produced using different aperture definitions, the joint luminosity- surface brightness (bivariate brightness) distribution in ugrizYJHK, comparing them to previously derived distributions, and how the total luminosity density varies with wavelength when surface brightness incompleteness is accounted for. I find the following results. (1) The total luminosity density calculated using a non-Sersic (e.g. Kron or Petrosian) aperture is underestimated by at least 15%, (2) Changing the detection threshold has a minor effect on the best-fitting Schecter parameters, but the choice of Kron or Petrosian apertures causes an offset between datasets, regardless of the filter used to define the source list, (3) The decision to use circular or elliptical apertures causes an offset in M* of 0.20 mag, and best-fitting Schechter parameters from total magnitude photometric systems have a flatter faint-end slope than Kron or Petrosian photometry, (4) There is no surface brightness distribution evolution with luminosity for luminous galaxies, but at fainter magnitudes the distribution broadens and the peak surface brightness dims. A Choloniewski function that is modified to account for this surface brightness evolution fits the bivariate-brightness distribution better than an unmodified Choloniewski function, (5) The energy density per unit interval, vf(v) derived using MGC and GAMA samples agrees within 90% confidence intervals, but does not agree with predictions using standard CSFH and IMF models. Possible improvements to the data and alterations to the theory are suggested.
APA, Harvard, Vancouver, ISO, and other styles
42

Smart, R. L., D'aniel Apai, J. Davy Kirkpatrick, S. K. Leggett, F. Marocco, Jane E. Morrison, H. R. A. Jones, D. Pinfield, P. Tremblin, and D. S. Amundsen. "Parallaxes and infrared photometry of three Y0 dwarfs." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/624429.

Full text
Abstract:
We have followed up the three Y0 dwarfs WISEPA J041022.71+150248.5, WISEPA J173835.53+273258.9 and WISEPC J205628.90+145953.3 using the United Kingdom Infrared Telescope Wide Field Camera. We find parallaxes that are more consistent and accurate than previously published values. We estimate absolute magnitudes in photometric passbands from Y to W3 and find them to be consistent between the three Y0 dwarfs indicating that the inherent cosmic absolute magnitude spread of these objects is small. We examine the Mauna Kea Observatory system J magnitudes over the 4 yr time line and find small but significant monotonic variations. Finally, we estimate physical parameters from a comparison of spectra and parallax to equilibrium and non-equilibrium models finding values consistent with solar metallicity, an effective temperature of 450-475 K and log g of 4.0-4.5.
APA, Harvard, Vancouver, ISO, and other styles
43

Khayamian, Taghi. "Electrospray as a new sample introduction technique for the flame photometric detector." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24775.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Osborn, James. "Profiling the turbulent atmosphere and novel correction techniques for imaging and photometry in astronomy." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/513/.

Full text
Abstract:
The turbulent atmosphere has two detrimental effects in astronomy. The phase aberration induced by the turbulence broaden the point spread function (PSF) and limits the resolution for imaging. If there is strong turbulence high in the atmosphere then these phase aberration propagate and develop into intensity fluctuations (scintillation). This thesis describes three novel instruments related to these problems associated with atmospheric turbulence. The first is an optical turbulence profiler to measure the turbulence strength and its position within the atmospheric surface layer in real-time. The instrument is a development of the slope detection and ranging (SLODAR) method. Results from the prototype at Paranal Observatory are discussed. An instrument to improve the PSF for imaging is also discussed. The instrument works by adaptively blocking the telescope pupil to remove areas which are the most out of phase from the mean. This acts to flatten the wavefront and can therefore be used after an adaptive optics system as an additional clean up, or stand alone on a telescope as a relatively affordable and easy way to improve the PSF. The third instrument reduces the scintillation noise for high precision fast photometry. Simulation results show that it is possible to reduce the scintillation noise to a level where the measurements are photon noise dominated.
APA, Harvard, Vancouver, ISO, and other styles
45

Bony, Alexandre. "Modélisation de l'interaction lumière/matière pour l'analyse de surfaces rugueuses texturées par stéréo photométrie." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2301/document.

Full text
Abstract:
Les techniques de reconstruction 3d sont devenues incontournables pour des applicationstelles que la caractérisation et l'analyse de surfaces. Les travaux réalisés au coursde cette thèse ont pour objectif d'améliorer la qualité des reconstructions 3d par stéréophotométrie.Cette méthode repose sur deux principes, l'inversion d'un modèle d'interactionlumière/matière (BRDF) et la configuration d'un système d'éclairage et de prises de vues.Pour des surfaces diffuses, la stéréo-photométrie est réalisée à partir d'un minimum detrois images acquises d'un point de vue fixe pour des directions d'éclairages différentes.Son avantage est d'extraire simultanément les propriétés géométriques et colorimétriquesdes surfaces analysées même en cas de forte rugosité. Néanmoins, son application exige laformulation de plusieurs hypothèses qui sont difficilement respectables dans un contexteréel. Ceci génère des erreurs significatives dans les reconstructions. Pour les réduire, nousproposons différentes contributions qui s'articulent autour de la prise en compte globale de lachaine d'acquisition. Les apports de nos travaux se situent aux niveaux de la caractérisationet de la modélisation du système d'éclairage, du capteur d'acquisition et de l'améliorationde la qualité des images. Nous nous sommes aussi intéressés à l'optimisation des protocolesde prises de vues dans le cas de spécularité surfacique ou d'ombrage dus à la présence derugosité. Les résultats obtenus montrent que la prise en compte de ces caractéristiques dansl'inversion d'un modèle de BRDF permet une nette amélioration des reconstructions et offrela possibilité de réduire la taille des systèmes d'acquisition
Tridimensional reconstruction method has become essential for applications suchas the characterization and analysis of surfaces. In this thesis, aims are to increase the qualityof 3d reconstructions by photometric stereo. This method is based on two principles, reversinglight-matter interaction model and configuration of a lighting system. With diffuse surfaces,the photometric stereo use three captured images from a fixed point of view for differentillumination directions. Its main advantage is to extract the color and geometric propertiesfor the textured rough surfaces. However, its application requires to make assumptions thatare not credible in real cases. This problem generates significant errors in the reconstructions.To reduce them, we offer various solutions around the overall consideration of the acquisitionchain. Our contribution focuses on the characterization and modeling of the lighting system,the acquisition sensor and improved image quality. We are also interested to optimize acquisitionprotocol in the case of specular surface or shading due to the surface geometry. Ourresults show that the inclusion of these features in the inversion of a BRDF model allowsan improvement of 3d reconstructions as well as the possibility of reducing the size of theacquisition systems
APA, Harvard, Vancouver, ISO, and other styles
46

Fu, Nicole Christina. "Physical Properties of Massive, Star-Forming Galaxies When the Universe Was Only Two Billion Years Old." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19956.

Full text
Abstract:
Due to the finite speed of light and a vast, expanding universe, telescopes are just now receiving the light emitted by galaxies as they were forming in the very early universe. The light from these galaxies has been redshifted (stretched to longer, redder wavelengths) as a result of its journey through expanding space. Using sophisticated techniques and exceptional multi-wavelength optical and infrared data, we isolate a population of 378 galaxies in the process of formation when the Universe was only two billion years old. By matching the distinctive properties of the light spectra of these galaxies to models, the redshift, age, dust content, star formation rate and total stellar mass of each galaxy are determined. Comparing our results to similar surveys of galaxy populations at other redshifts, a picture emerges of the growth and evolution of massive, star-forming galaxies over the course of billions of years.
APA, Harvard, Vancouver, ISO, and other styles
47

Garcia, E. Victor, Thayne Currie, Olivier Guyon, Keivan G. Stassun, Nemanja Jovanovic, Julien Lozi, Tomoyuki Kudo, et al. "SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/623097.

Full text
Abstract:
We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957-1.120 mu m) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5(-0.5)(+1.0), where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000-3100 K, a surface gravity of log g - 4-4.5, a radius of. 1.55 +/- 0.10 R-J, and a luminosity of log L/L circle dot - 2.76 +/- 0.05. Neither the primary's Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80-125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70-90 M-J) If we consider HD 1160 A alone, younger ages (20-125 Myr) and a brown dwarf-like mass (35-90 M-J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system's age and how HD 1160 B fits within the context of (sub) stellar evolution.
APA, Harvard, Vancouver, ISO, and other styles
48

Demitri, Nevine [Verfasser], Abdelhak M. [Akademischer Betreuer] Zoubir, and Hamid [Akademischer Betreuer] Krim. "Signal and Image Processing Techniques for Image-Based Photometry With Application to Diabetes Care / Nevine Demitri. Betreuer: Abdelhak M. Zoubir ; Hamid Krim." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2016. http://d-nb.info/1113183470/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lindgren, Sara. "Metallicity determination of M dwarfs." Doctoral thesis, Uppsala universitet, Observationell astrofysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332102.

Full text
Abstract:
M dwarfs constitute around 70% of all stars in the local Galaxy. Their multitude together with their long main-sequence lifetimes make them important for studies of global properties of the Galaxy such as the initial mass function or the structure and kinematics of stellar populations. In addition, the exoplanet community is showing an increasing interest for those small, cold stars. However, very few M dwarfs are well characterized, and in the case of exoplanetary systems the stellar parameters have a direct influence on the derived planet properties. Stellar parameters of M dwarfs are difficult to determine because of their low surface temperatures that result in an optical spectrum dominated by molecular lines. Most previous works have therefore relied on empirical calibrations. High-resolution spectrographs operating in the infrared, a wavelength region less affected by molecular lines, have recently opened up a new window for the investigation of M dwarfs. In the two first papers of this thesis we have shown that we can determine the metallicity, and in some cases the effective temperature, using synthetic spectral fitting with improved accuracy. This method is time consuming and therefore not practical or even feasible for studies of large samples of M dwarfs. When comparing our results from the high-resolution studies with available photometric calibrations we find systematic differences. In the third paper we therefore used our sample to determine a new photometric metallicity calibration. Compared to previous calibrations our new photometric calibration shows improved statistical characteristics, and our calibration gives similar results as spectroscopic calibrations. In a comparison with theoretical calculations we find a good agreement of the shapes and slopes of iso-metallicity lines with our empirical relation. Applying the photometric calibration to a sample of M dwarfs with confirmed exoplanets we find a possible giant planet-metallicity correlation for M dwarfs.
APA, Harvard, Vancouver, ISO, and other styles
50

Skuljan, Ljiljana. "R Coronae Borealis stars : characteristics of their decline phase." Thesis, University of Canterbury. Physics and Astronomy, 2001. http://hdl.handle.net/10092/1308.

Full text
Abstract:
R Coronae Borealis (RCB) stars belong to a rare class of variable stars characterized by sudden and unpredictable declines, which are believed to be caused by dust cloud obscuration. In spite of the fact that these stars are so rare (only about 40 are known in our Galaxy), there are many reasons for investigating them. The unusual variability and peculiar chemical composition make them unique among all known types of variable stars. Their evolution and the nature of their unpredictable minima are still not entirely understood. Very few observations of RCB stars during the decline phase exist. Only three RCB stars (R CrB, RY Sgr and V854 Cen) have been studied in detail and only a few declines have been completely covered by observations. This thesis investigates the spectroscopic and photometric characteristics of RCB variables during their decline phases. A programme of photometric and spectroscopic observations of nine RCB and three HdC stars has been undertaken at Mt John University Observatory (MJUO) over a period of two and a half years. The programme includes some typical examples of RCB stars (Teff ~ 7000 K), as well as some cool ones (Teff ~ 5000 K). One of the most unusual of all RCB stars, V854 Cen, is also included. The photometric observations, as part of the long-term monitoring of RCB stars at MJUO, have provided the UBVRIphotometry and have served as a decline indicator. Complex colour changes during the declines were monitored and compared with the spectroscopy. The photometry during the recovery phases of the nine RCB stars in the last 12 years was used for studying the extinction properties of the gas obscuring the photosphere. An analysis of 26 different declines shows that the material causing the declines has extinction properties similar to those of the interstellar medium. The medium and high-resolution spectroscopy has been obtained for six declines of different programme stars using the 1-m telescope at MJUO. Although the duration and depth of the declines are very different, they all show similar photometric and spectroscopic characteristics. The results have been compared with other observations and used to examine a simple line-region model (E1/E2/BL), which attempts to describe the evolution and origin of emission lines during a decline. In general, the evolution of various emission lines observed in this work is consistent with their classification into these three groups. However, some characteristics of the emission lines indicate a different origin from that suggested by the model. A very rich emission line spectrum was monitored during the 1998 decline of V854 Cen, while only the most prominent lines were observed in the other stars. Short-lived high-excitation lines from the initial decline phase, such as CI and 01, were classified as Ei. They show a characteristic, shock-induced red shift indicating the photospheric origin. Lines classified as E2 are mainly from the low-excitation ions and neutral atoms. All lines from this group appear at the very beginning of the decline and are visible through to the late recovery phase, slightly blue-shifted relative to the stellar velocity. The lines of the low-excitation ions exhibit a complex structure with a strong central and two weaker components, one on each side. Their absolute flux evolution has been compared with the changes in the stellar continuum flux. The behaviour of these lines indicates that they are not affected by the dust cloud in the same way as the photospheric continuum. Assuming that the dust cloud is formed at about 2R* and taking into account the acceleration obtained from the analysis of the high-velocity Nal D absorption lines, the position of the E2 line emitting region was estimated to be about 3R* - 5R*. The third group (BL) consists of broad emission lines, which are a typical feature of all observed declines. The most prominent broad lines present in all RCB stars belong to the Nal D doublet. The observations demonstrate that these lines are the strongest in V854 Cen, due to the significant amount of material produced by its frequent declines. In contrast to the E2 lines, whose fluxes have been found to decrease during the decline, the absolute flux of the broad lines stays constant throughout the whole decline phase. This is consistent with the idea that the broad emission is a permanent feature, whose visibility depends only on the photospheric brightness. Various Nal D components (sharp and broad emission and high-velocity absorption) have been analysed in a number of RCB declines and presented in this thesis. The high-velocity blue-shifted Nal D absorption demonstrates similar velocities (between -230 kms-1 and -400 kms-1), structure and behaviour in the different declines. The observations from the 1998 decline of V854 Cen clearly show that the high-velocity absorption lines can also appear during the initial decline phase. This suggests that they can be associated with the clouds formed in some previous declines, as well as with the current one. The spectroscopic observations of the 1998 decline of V854 Cen obtained in this thesis represent the first almost complete coverage of a decline of this star.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography