Journal articles on the topic 'TD2 prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'TD2 prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ramani, A. L. "Prediction of First Lactation Milk Yield on The Basis of Test Day Yield Using Multiple Linear Regression in Gir Cows." Indian Journal of Pure & Applied Biosciences 12, no. 3 (June 30, 2024): 33–36. http://dx.doi.org/10.18782/2582-2845.9086.
Full textRíos, Rafael, Carmen Belén Lupiañez, Daniele Campa, Alessandro Martino, Joaquin Martínez-López, Manuel Martínez-Bueno, Judit Varkonyi, et al. "Type 2 diabetes-related variants influence the risk of developing multiple myeloma: results from the IMMEnSE consortium." Endocrine-Related Cancer 22, no. 4 (August 2015): 545–59. http://dx.doi.org/10.1530/erc-15-0029.
Full textKlein, Matthias S., and Jane Shearer. "Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application." Journal of Diabetes Research 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3898502.
Full textLuo, Yufang, Zi Guo, Honghui He, Youbo Yang, Shaoli Zhao, and Zhaohui Mo. "Predictive Model of Type 2 Diabetes Remission after Metabolic Surgery in Chinese Patients." International Journal of Endocrinology 2020 (October 8, 2020): 1–13. http://dx.doi.org/10.1155/2020/2965175.
Full textOrtiz Zuñiga, Angel Michael, Rafael Simó, Octavio Rodriguez-Gómez, Cristina Hernández, Adrian Rodrigo, Laura Jamilis, Laura Campo, Montserrat Alegret, Merce Boada, and Andreea Ciudin. "Clinical Applicability of the Specific Risk Score of Dementia in Type 2 Diabetes in the Identification of Patients with Early Cognitive Impairment: Results of the MOPEAD Study in Spain." Journal of Clinical Medicine 9, no. 9 (August 24, 2020): 2726. http://dx.doi.org/10.3390/jcm9092726.
Full textVettoretti, Martina, Enrico Longato, Alessandro Zandonà, Yan Li, José Antonio Pagán, David Siscovick, Mercedes R. Carnethon, Alain G. Bertoni, Andrea Facchinetti, and Barbara Di Camillo. "Addressing practical issues of predictive models translation into everyday practice and public health management: a combined model to predict the risk of type 2 diabetes improves incidence prediction and reduces the prevalence of missing risk predictions." BMJ Open Diabetes Research & Care 8, no. 1 (July 2020): e001223. http://dx.doi.org/10.1136/bmjdrc-2020-001223.
Full textWen, Min, Song Yang, Augustin Vintzileos, Wayne Higgins, and Renhe Zhang. "Impacts of Model Resolutions and Initial Conditions on Predictions of the Asian Summer Monsoon by the NCEP Climate Forecast System." Weather and Forecasting 27, no. 3 (June 1, 2012): 629–46. http://dx.doi.org/10.1175/waf-d-11-00128.1.
Full textKumar, Mukkesh, Li Ting Ang, Cindy Ho, Shu E. Soh, Kok Hian Tan, Jerry Kok Yen Chan, Keith M. Godfrey, et al. "Machine Learning–Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study." JMIR Diabetes 7, no. 3 (July 5, 2022): e32366. http://dx.doi.org/10.2196/32366.
Full textDi Camillo, Barbara, Liisa Hakaste, Francesco Sambo, Rafael Gabriel, Jasmina Kravic, Bo Isomaa, Jaakko Tuomilehto, et al. "HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability." European Journal of Endocrinology 178, no. 4 (April 2018): 331–41. http://dx.doi.org/10.1530/eje-17-0921.
Full textZhu, Jianlong, Dehui Guo, Liying Liu, and Jing Zhong. "Serum Galectin-3 Predicts Mortality in Venoarterial Extracorporeal Membrane Oxygenation Patients." Cardiology Research and Practice 2023 (September 30, 2023): 1–8. http://dx.doi.org/10.1155/2023/3917156.
Full textChikowore, Tinashe, Kenneth Ekoru, Marijana Vujkovi, Dipender Gill, Fraser Pirie, Elizabeth Young, Manjinder S. Sandhu, et al. "Polygenic Prediction of Type 2 Diabetes in Africa." Diabetes Care 45, no. 3 (January 11, 2022): 717–23. http://dx.doi.org/10.2337/dc21-0365.
Full textPan, Dikang, Hui Wang, Sensen Wu, Jingyu Wang, Yachan Ning, Jianming Guo, Cong Wang, and Yongquan Gu. "Unveiling the Hidden Burden: Estimating All-Cause Mortality Risk in Older Individuals with Type 2 Diabetes." Journal of Diabetes Research 2024 (January 20, 2024): 1–10. http://dx.doi.org/10.1155/2024/1741878.
Full textHa, Jane, Mi Jang, Yeongkeun Kwon, Young Suk Park, Do Joong Park, Joo-Ho Lee, Hyuk-Joon Lee, et al. "Metabolomic Profiles Predict Diabetes Remission after Bariatric Surgery." Journal of Clinical Medicine 9, no. 12 (December 1, 2020): 3897. http://dx.doi.org/10.3390/jcm9123897.
Full textKurasawa, Hisashi, Kayo Waki, Tomohisa Seki, Akihiro Chiba, Akinori Fujino, Katsuyoshi Hayashi, Eri Nakahara, Tsuneyuki Haga, Takashi Noguchi, and Kazuhiko Ohe. "Enhancing Type 2 Diabetes Treatment Decisions With Interpretable Machine Learning Models for Predicting Hemoglobin A1c Changes: Machine Learning Model Development." JMIR AI 3 (July 18, 2024): e56700. http://dx.doi.org/10.2196/56700.
Full textGuasch-Ferré, Marta, Miguel Ruiz-Canela, Jun Li, Yan Zheng, Mònica Bulló, Dong D. Wang, Estefanía Toledo, et al. "Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk." Journal of Clinical Endocrinology & Metabolism 104, no. 5 (November 13, 2018): 1508–19. http://dx.doi.org/10.1210/jc.2018-01000.
Full textYANG, JIN MIN. "PROBING NEW PHYSICS FROM TOP QUARK FCNC PROCESS AT LHC: A MINI REVIEW." International Journal of Modern Physics A 23, no. 21 (August 20, 2008): 3343–47. http://dx.doi.org/10.1142/s0217751x08042092.
Full textPapandreou, Christopher, Mònica Bulló, Miguel Ruiz-Canela, Courtney Dennis, Amy Deik, Daniel Wang, Marta Guasch-Ferré, et al. "Plasma metabolites predict both insulin resistance and incident type 2 diabetes: a metabolomics approach within the Prevención con Dieta Mediterránea (PREDIMED) study." American Journal of Clinical Nutrition 109, no. 3 (February 23, 2019): 626–34. http://dx.doi.org/10.1093/ajcn/nqy262.
Full textFenton, G. A., and D. V. Griffiths. "Bearing-capacity prediction of spatially random c ϕ soils." Canadian Geotechnical Journal 40, no. 1 (February 1, 2003): 54–65. http://dx.doi.org/10.1139/t02-086.
Full textDeberneh, Henock M., and Intaek Kim. "Prediction of Type 2 Diabetes Based on Machine Learning Algorithm." International Journal of Environmental Research and Public Health 18, no. 6 (March 23, 2021): 3317. http://dx.doi.org/10.3390/ijerph18063317.
Full textNixon, J. F. (Derick). "Discrete ice lens theory for frost heave beneath pipelines." Canadian Geotechnical Journal 29, no. 3 (June 1, 1992): 487–97. http://dx.doi.org/10.1139/t92-053.
Full textZhang, Meilin, Li Zheng, Ping Li, Yufeng Zhu, Hong Chang, Xuan Wang, Weiqiao Liu, Yuwen Zhang, and Guowei Huang. "4-Year Trajectory of Visceral Adiposity Index in the Development of Type 2 Diabetes: A Prospective Cohort Study." Annals of Nutrition and Metabolism 69, no. 2 (2016): 142–49. http://dx.doi.org/10.1159/000450657.
Full textFu, Yuanyuan, Ling Hu, Hong-Wei Ren, Yi Zuo, Shaoqiu Chen, Qiu-Shi Zhang, Chen Shao, et al. "Prognostic Factors for COVID-19 Hospitalized Patients with Preexisting Type 2 Diabetes." International Journal of Endocrinology 2022 (January 17, 2022): 1–13. http://dx.doi.org/10.1155/2022/9322332.
Full textCao, Yang, Ingmar Näslund, Erik Näslund, Johan Ottosson, Scott Montgomery, and Erik Stenberg. "Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register." JMIR Medical Informatics 9, no. 8 (August 19, 2021): e25612. http://dx.doi.org/10.2196/25612.
Full textSayyid, Hiba O., Salma A. Mahmood, and Saad S. Hamadi. "A Comparative Analysis of Machine Learning Models for Predicting Thyroid Disorders in Type 1 and Type 2 Diabetic Patients." Basrah Researches Sciences 50, no. 2 (December 31, 2024): 193–203. https://doi.org/10.56714/bjrs.50.2.16.
Full textWu, Chung-Ze, Li-Ying Huang, Fang-Yu Chen, Chun-Heng Kuo, and Dong-Feng Yeih. "Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes." Diagnostics 13, no. 11 (May 23, 2023): 1834. http://dx.doi.org/10.3390/diagnostics13111834.
Full textHu, W. P., Q. A. Shen, M. Zhang, Q. C. Meng, and X. Zhang. "Corrosion–Fatigue Life Prediction for 2024-T62 Aluminum Alloy Using Damage Mechanics-Based Approach." International Journal of Damage Mechanics 21, no. 8 (December 21, 2011): 1245–66. http://dx.doi.org/10.1177/1056789511432791.
Full textG, Revathi, and Gnanambal Ilango. "Topological Approaches to Diabetes Prediction Using TDA." Journal of Research in Applied Mathematics 10, no. 9 (September 2024): 09–14. http://dx.doi.org/10.35629/0743-10090914.
Full textElhefnawy, Marwa Elsaeed, Siti Maisharah Sheikh Ghadzi, and Sabariah Noor Harun. "Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review." Journal of Vascular Diseases 1, no. 1 (August 4, 2022): 13–23. http://dx.doi.org/10.3390/jvd1010003.
Full textAyensa-Vazquez, Jose Angel, Alfonso Leiva, Pedro Tauler, Angel Arturo López-González, Antoni Aguiló, Matías Tomás-Salvá, and Miquel Bennasar-Veny. "Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report." Journal of Clinical Medicine 9, no. 5 (May 20, 2020): 1546. http://dx.doi.org/10.3390/jcm9051546.
Full textJiang, Shimin, Jinying Fang, Tianyu Yu, Lin Liu, Guming Zou, Hongmei Gao, Li Zhuo, and Wenge Li. "Novel Model Predicts Diabetic Nephropathy in Type 2 Diabetes." American Journal of Nephrology 51, no. 2 (December 19, 2019): 130–38. http://dx.doi.org/10.1159/000505145.
Full textHong, Eun Pyo, Seong Gu Heo, and Ji Wan Park. "The Liability Threshold Model for Predicting the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A Multi-Cohort Study of Korean Adults." Metabolites 11, no. 1 (December 24, 2020): 6. http://dx.doi.org/10.3390/metabo11010006.
Full textMormile, Ilaria, Francescopaolo Granata, Aikaterini Detoraki, Daniela Pacella, Francesca Della Casa, Felicia De Rosa, Antonio Romano, Amato de Paulis, and Francesca Wanda Rossi. "Predictive Response to Immunotherapy Score: A Useful Tool for Identifying Eligible Patients for Allergen Immunotherapy." Biomedicines 10, no. 5 (April 22, 2022): 971. http://dx.doi.org/10.3390/biomedicines10050971.
Full textKleeman, Richard. "Limits, Variability, and General Behavior of Statistical Predictability of the Midlatitude Atmosphere." Journal of the Atmospheric Sciences 65, no. 1 (January 1, 2008): 263–75. http://dx.doi.org/10.1175/2007jas2234.1.
Full textYu, Daohua, Xin Zhou, Yu Pan, Zhendong Niu, Xu Yuan, and Huafei Sun. "University Academic Performance Development Prediction Based on TDA." Entropy 25, no. 1 (December 23, 2022): 24. http://dx.doi.org/10.3390/e25010024.
Full textKiseleva, A. V., A. G. Soplenkova, V. A. Kutsenko, E. A. Sotnikova, Yu V. Vyatkin, А. A. Zharikova, A. I. Ershova, et al. "Validation of genetic risk scores for type 2 diabetes on a Russian population sample from the biobank of the National Medical Research Center for Therapy and Preventive Medicine." Cardiovascular Therapy and Prevention 22, no. 11 (December 10, 2023): 3746. http://dx.doi.org/10.15829/1728-8800-20233746.
Full textCavati, Guido, Filippo Pirrotta, Daniela Merlotti, Elena Ceccarelli, Marco Calabrese, Luigi Gennari, and Christian Mingiano. "Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification." Antioxidants 12, no. 4 (April 14, 2023): 928. http://dx.doi.org/10.3390/antiox12040928.
Full textSun, Yue, Hao-Yu Gao, Zhi-Yuan Fan, Yan He, and Yu-Xiang Yan. "Metabolomics Signatures in Type 2 Diabetes: A Systematic Review and Integrative Analysis." Journal of Clinical Endocrinology & Metabolism 105, no. 4 (November 29, 2019): 1000–1008. http://dx.doi.org/10.1210/clinem/dgz240.
Full textKocbek, Simon, Primoz Kocbek, Andraz Stozer, Tina Zupanic, Tudor Groza, and Gregor Stiglic. "Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records." PeerJ 6 (October 12, 2018): e5765. http://dx.doi.org/10.7717/peerj.5765.
Full textKomine, Hideo, and Nobuhide Ogata. "New equations for swelling characteristics of bentonite-based buffer materials." Canadian Geotechnical Journal 40, no. 2 (April 1, 2003): 460–75. http://dx.doi.org/10.1139/t02-115.
Full textSUN, De-Chun, Zu-Jun LIU, and Ke-Chu YI. "Double-Scale Channel Prediction for Precoded TDD-MIMO Systems." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E96.A, no. 3 (2013): 745–46. http://dx.doi.org/10.1587/transfun.e96.a.745.
Full textChauhan, Kinsuk, Girish N. Nadkarni, Fergus Fleming, James McCullough, Cijiang J. He, John Quackenbush, Barbara Murphy, Michael J. Donovan, Steven G. Coca, and Joseph V. Bonventre. "Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes." Kidney360 1, no. 8 (June 30, 2020): 731–39. http://dx.doi.org/10.34067/kid.0002252020.
Full textPalmer, Daniel, Larissa Henze, Hugo Murua Escobar, Uwe Walter, Axel Kowald, and Georg Fuellen. "Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases." BMJ Open 14, no. 9 (September 2024): e088181. http://dx.doi.org/10.1136/bmjopen-2024-088181.
Full textKUMAR, VIJAY, A. K. CHAKRAVARTY, ANKIT MAGOTRA, C. S. PATIL, and P. R. SHIVAHRE. "Comparative study of ANN and conventional methods in forecasting first lactation milk yield in Murrah buffalo." Indian Journal of Animal Sciences 89, no. 11 (December 4, 2019). http://dx.doi.org/10.56093/ijans.v89i11.95887.
Full text"Prediction of first lactation milk yield on the basis of test day yield using artificial neural network versus multiple linear regression in Gir cows." Indian Journal of Dairy Science 77, no. 1 (2024): 91–96. https://doi.org/10.33785/ijds.2024.v77i01.013.
Full textJaeger, Byron C., Ramon Casanova, Brian Wells, Yitbarek Demesie, Jeanette Stafford, and Michael Bancks. "Abstract P131: Individualized Risk Prediction for Type 2 Diabetes: A Secondary Analysis of the Diabetes Prevention Program." Circulation 149, Suppl_1 (March 19, 2024). http://dx.doi.org/10.1161/circ.149.suppl_1.p131.
Full textLiu, Yang, Scott C. Ritchie, Shu Mei Teo, Matti O. Ruuskanen, Oleg Kambur, Qiyun Zhu, Jon Sanders, et al. "Integration of polygenic and gut metagenomic risk prediction for common diseases." Nature Aging, March 25, 2024. http://dx.doi.org/10.1038/s43587-024-00590-7.
Full textFan, Yuting, Enwu Long, Lulu Cai, Qiyuan Cao, Xingwei Wu, and Rongsheng Tong. "Machine Learning Approaches to Predict Risks of Diabetic Complications and Poor Glycemic Control in Nonadherent Type 2 Diabetes." Frontiers in Pharmacology 12 (June 22, 2021). http://dx.doi.org/10.3389/fphar.2021.665951.
Full textMarchiori, Marian, Alice Maguolo, Alexander Perfilyev, Marlena Maziarz, Mats Martinell, Maria F. Gomez, Emma Ahlqvist, Sonia García-Calzón, and Charlotte Ling. "Blood-based epigenetic biomarkers associated with incident chronic kidney disease in individuals with type 2 diabetes." Diabetes, December 23, 2024. https://doi.org/10.2337/db24-0483.
Full textJiang, Mingyang, Fu Gan, Meishe Gan, Huachu Deng, Xuxu Chen, Xintao Yuan, Danyi Huang, et al. "Predicting the Risk of Diabetic Foot Ulcers From Diabetics With Dysmetabolism: A Retrospective Clinical Trial." Frontiers in Endocrinology 13 (July 12, 2022). http://dx.doi.org/10.3389/fendo.2022.929864.
Full textZhu, Yun, Ying Zhang, Jianhui Zhu, Jason G. Umans, Shelley Cole, Elisa T. Lee, Barbara V. Howard, et al. "Abstract 22: Novel Plasma Lipids Predict Risk of Diabetes: A Longitudinal Lipidomics Study in American Indians." Circulation 141, Suppl_1 (March 3, 2020). http://dx.doi.org/10.1161/circ.141.suppl_1.22.
Full text