Academic literature on the topic 'TCRBV'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TCRBV.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TCRBV"

1

Zhao, T. M., S. E. Whitaker, and M. A. Robinson. "A genetically determined insertion/deletion related polymorphism in human T cell receptor beta chain (TCRB) includes functional variable gene segments." Journal of Experimental Medicine 180, no. 4 (October 1, 1994): 1405–14. http://dx.doi.org/10.1084/jem.180.4.1405.

Full text
Abstract:
Polymorphism in the human T cell receptor beta chain (TCRB) gene complex includes haplotypes with different numbers of TCRBV genes. An insertion/deletion related polymorphism (IDRP) in the human TCRBV region was found to involve TCRBV gene segments. Inserted TCRB haplotypes contain an additional 21.5 kb in which three TCRBV genes are encoded, members of the TCRBV7, TCRBV9, and TCRBV13 families. Two TCRBV gene segments were present only in inserted haplotypes; one of these, TCRBV7S3, is a functional gene and the other, TCRBV9S2(P), is a pseudogene because of an inframe termination colon. In addition, inserted haplotypes contain two identical copies of the TCRBV13S2 gene, whereas deleted haplotypes have only one copy. Deleted haplotypes could be subdivided into two types, deleted*1 and deleted*2, on the basis of sequence variations in TCRBV6S7 and TCRBV13S2 genes. Both deleted*1 and deleted*2 haplotypes contained the same number of TCRBV genes; both contain 60 genes of which 50 are functional, whereas, inserted haplotypes contained 63 genes of which 52 are functional. Comparisons of inserted region sequences with the homologous region in a deleted haplotype, and with sequences surrounding related TCRBV genes, revealed patterns of similarity that suggest insertion as well as deletion events have occurred in the evolution of the TCRBV gene complex. These data indicate that the genomic TCR repertoire is expanded in individuals who have inserted TCRBV haplotypes. The presence of additional TCRBV genes or, alternatively, the absence of certain TCRBV genes may have an impact upon immune responses and susceptibility to autoimmune diseases.
APA, Harvard, Vancouver, ISO, and other styles
2

Kiianitsa, Konstantin, Vladimir Lesnikov, Robert Jordan, and George E. Georges. "Development of Tools for T Cell Repertoire Analysis (TCRB Spectratyping) for the Canine Model of Hematopoietic Cell Transplantation." Blood 110, no. 11 (November 16, 2007): 4873. http://dx.doi.org/10.1182/blood.v110.11.4873.4873.

Full text
Abstract:
Abstract Analysis of the recombinatorial diversity of rearranged T cell receptor genes in mature T cells is an essential tool in the evaluation of immune status and immune reconstitution in hematopoietic cell transplantation studies. While the spectratyping technique is available in human clinical research and mouse models, the canine genome has not been sufficiently annotated to simply implement the assay on the dog TCRB locus. To this end, we have annotated by bioinformatics and experimentally all canine TCRBV segments, as well as TCRBD, TCRBC and most of TCRBJ segments. Of all 31 canine TCRBV found, 23 were functional and 8 were pseudogenes. A multiplex PCR-based assay was further designed to analyze the entire TCRBV spectratype in a set of 4 reactions each containing 4 to 5 V-segment specific forward primers and a common C-segment specific reverse primer. Direct sequencing of RT-PCR products confirmed that all amplified genes originated from predicted V-segments and that the designed V-specific PCR primers did not cross-react with other TCRBV family members. The usefulness of the spectratyping technique for canine model of transplantation was further demonstrated in analysis of T-cell repertoire reconstitution of irradiated dogs at different time points of recovery. Moreover, our simple and rapid V (J) annotation strategy relies on internet resources open to the general public and does not require specialized training in bioinformatics. It can be readily applied for de novo identification and mapping of TCRB gene families in other animal species where genome sequence drafts become available. Figure 1. TCRB spectratype of fetal canine thymus. (A) RT-PCR using TCRBV family-specific forward primers (V1 through V26) and a common C region-specific reverse primer. (B) Amplification products specific for family V1 (high abundance) and V26 (low abundance) were copied in run-off reactions with the fluorescent C-specific primer and resolved on capillary gel. Figure 1. TCRB spectratype of fetal canine thymus. (A) RT-PCR using TCRBV family-specific forward primers (V1 through V26) and a common C region-specific reverse primer. (B) Amplification products specific for family V1 (high abundance) and V26 (low abundance) were copied in run-off reactions with the fluorescent C-specific primer and resolved on capillary gel.
APA, Harvard, Vancouver, ISO, and other styles
3

Sottini, A., E. Quiros-Roldan, LD Notarangelo, A. Malagoli, D. Primi, and L. Imberti. "Engrafted maternal T cells in a severe combined immunodeficiency patient express T-cell receptor variable beta segments characterized by a restricted V-D-J junctional diversity." Blood 85, no. 8 (April 15, 1995): 2105–13. http://dx.doi.org/10.1182/blood.v85.8.2105.bloodjournal8582105.

Full text
Abstract:
To better understand the peculiar functional behavior of engrafted maternal T cells in a severe combined immunodeficiency (SCID) patient, we characterized, at the molecular level, the T-cell repertoire of a SCID child with a high number of engrafted, mature, activated lymphocytes. We found that, although these transplacentally acquired T cells express a random set of T-cell receptor variable beta (TCRBV) segments, the TCRBV transcripts are characterized by an extremely restricted V-D-J junctional diversity. Only a few cDNA clones were dominant among the TCRBV4+, TCRBV6+, and TCRBV20+ populations in engrafted cells, whereas the same TCRBV chains expressed by the mother's lymphocytes had the expected junctional hetero-geneity. Highly diverse and polyclonal junctions were also expressed by maternal cells activated in mixed lymphocyte reaction by Epstein-Barr virus (EBV)- transformed B lymphocytes from the patient, indicating that the strong clonal selection that characterizes the engrafted cells repertoire is probably not due to allorecognition. Furthermore, we report that the repertoire of the transplacentally acquired lymphocytes is dynamic over time and is characterized by waves of expression and contraction of selected clones, expressing different TCRBV segments. These results help to explain some of the abnormal functional behaviors of engrafted maternal cells and raise new questions regarding the mechanisms responsible for the restricted clonal diversity.
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider-Hohendorf, Tilman, Dennis Görlich, Paula Savola, Tiina Kelkka, Satu Mustjoki, Catharina C. Gross, Geoffrey C. Owens, et al. "Sex bias in MHC I-associated shaping of the adaptive immune system." Proceedings of the National Academy of Sciences 115, no. 9 (February 12, 2018): 2168–73. http://dx.doi.org/10.1073/pnas.1716146115.

Full text
Abstract:
HLA associations, T cell receptor (TCR) repertoire bias, and sex bias have independently been shown for many diseases. While some immunological differences between the sexes have been described, they do not fully explain bias in men toward many infections/cancers, and toward women in autoimmunity. Next-generation TCR variable beta chain (TCRBV) immunosequencing of 824 individuals was evaluated in a multiparametric analysis including HLA-A -B/MHC class I background, TCRBV usage, sex, age, ethnicity, and TCRBV selection/expansion dynamics. We found that HLA-associated shaping of TCRBV usage differed between the sexes. Furthermore, certain TCRBVs were selected and expanded in unison. Correlations between these TCRBV relationships and biochemical similarities in HLA-binding positions were different in CD8 T cells of patients with autoimmune diseases (multiple sclerosis and rheumatoid arthritis) compared with healthy controls. Within patients, men showed higher TCRBV relationship Spearman’s rhos in relation to HLA-binding position similarities compared with women. In line with this, CD8 T cells of men with autoimmune diseases also showed higher degrees of TCRBV perturbation compared with women. Concerted selection and expansion of CD8 T cells in patients with autoimmune diseases, but especially in men, appears to be less dependent on high HLA-binding similarity than in CD4 T cells. These findings are consistent with studies attributing autoimmunity to processes of epitope spreading and expansion of low-avidity T cell clones and may have further implications for the interpretation of pathogenic mechanisms of infectious and autoimmune diseases with known HLA associations. Reanalysis of some HLA association studies, separating the data by sex, could be informative.
APA, Harvard, Vancouver, ISO, and other styles
5

Moss, P., G. Gillespie, P. Frodsham, J. Bell, and H. Reyburn. "Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia." Blood 87, no. 8 (April 15, 1996): 3297–306. http://dx.doi.org/10.1182/blood.v87.8.3297.bloodjournal8783297.

Full text
Abstract:
Patients with paraproteinemia have abnormalities in their T-cell subsets including inversion of the CD4:CD8 ratio and increased expression of activation markers. Recently, distortions in T-cell receptor (TCR) TCRAV and TCRBV gene segment expression have been reported, although the significance of these observations is unclear given the finding of clonal populations of CD8+ T cells in healthy elderly individuals. We have used an extensive range of TCR V-region- specific monoclonal antibodies to assess TCRAV and TCRBV expression in patients with myeloma and paraproteinemia. TCR sequence analysis was used to assess the clonality of expansions and 3-color fluorescence- activated cell sorting analysis determined the phenotype of the expanded populations. The patients show novel oligoclonal expansions within the CD4+ subset and show an increased frequency of CD8+ expansions. Oligoclonal CD4+ T cells belong to the rare CD4+CD28- T- cell subset, a phenotype associated with granular morphology. CD45RA and CD11b are expressed on many of the CD8 T-cell expansions. Comparison of T-cell receptor sequences from two T-cell clones in one patient suggests a possible role for a common peptide antigen in the generation of the expansions. Further work is needed to identify the relevance of such T cells to the B-cell proliferation.
APA, Harvard, Vancouver, ISO, and other styles
6

Cabaniols, Jean-Pierre, Nicolas Fazilleau, Armanda Casrouge, Philippe Kourilsky, and Jean M. Kanellopoulos. "Most α/β T Cell Receptor Diversity Is Due to Terminal Deoxynucleotidyl Transferase." Journal of Experimental Medicine 194, no. 9 (November 5, 2001): 1385–90. http://dx.doi.org/10.1084/jem.194.9.1385.

Full text
Abstract:
The contribution of template-independent nucleotide addition to antigen receptor diversity is unknown. We therefore determined the size of the T cell receptor (TCR)α/β repertoire in mice bearing a null mutation on both alleles of the terminal deoxynucleotidyl transferase (Tdt) gene. We used a method based upon polymerase chain reaction amplification and exhaustive sequencing of various AV-AJ and BV-BJ combinations. In both wild-type and Tdt°/° mice, TCRAV diversity is one order of magnitude lower than the TCRBV diversity. In Tdt°/° animals, TCRBV chain diversity is reduced 10-fold compared with wild-type mice. In addition, in Tdt°/° mice, one BV chain can associate with three to four AV chains as in wild-type mice. The α/β repertoire size in Tdt°/° mice is estimated to be 105 distinct receptors, ∼5–10% of that calculated for wild-type mice. Thus, while Tdt activity is not involved in the combinatorial diversity resulting from α/β pairing, it contributes to at least 90% of TCRα/β diversity.
APA, Harvard, Vancouver, ISO, and other styles
7

Viëtor, Henk E., Gail E. Hawes, Claudia van den Oever, Els van Beelen, Humphrey H. H. Kanhai, Anneke Brand, and Peter J. Van den Elsen. "Intrauterine Transfusions Affect Fetal T-Cell Immunity." Blood 90, no. 6 (September 15, 1997): 2492–501. http://dx.doi.org/10.1182/blood.v90.6.2492.

Full text
Abstract:
Abstract Intrauterine transfusion (IUT) therapy is the treatment of choice in severe hemolytic disease of the fetus. This treatment automatically implies the introduction of alloantigens in the fetal circulation, which might potentially influence the unprimed fetal immune system. The present study provides evidence that the fetal immune system is indeed prone to modulations of the T-cell receptor BV (TCRBV) repertoire as a result of IUT treatment. Most notably, IUT therapy affects the composition of the CD4+ repertoire, whereas this effect may be obscured in the CD8+ subset. The CD8+ subset was found to be influenced by alterations of the TCRBV repertoire both in IUT patients and controls, suggesting that modulations in this subset could be the result of developmental influences. A more detailed analysis on the composition of the individual TCRBV families was performed by evaluating the distribution of the complementarity determining region 3 (CDR3) size lengths of [32P]-radiolabeled TCRBV transcripts. Using this technique, referred to as spectratyping, only marginal changes were observed in the CD4+ and CD8+ subset during the course of treatment and gestational development of both IUT-treated patients and controls. Therefore, the alterations in the overall TCRBV repertoire were of a quantitative rather than a qualitative nature. To evaluate whether the observed alterations in TCRBV usage-frequencies were a reflection of an allo-reactive response, a primed lymphocyte test (PLT) was performed in 3 IUT-treated patients. We observed that IUT, performed as early as 23 weeks of gestation, may induce the establishment of memory T cells against the IUT donor. However, there was no association between the observed changes in TCRBV repertoire and the magnitude of the secondary allo-reactive response.
APA, Harvard, Vancouver, ISO, and other styles
8

Viëtor, Henk E., Gail E. Hawes, Claudia van den Oever, Els van Beelen, Humphrey H. H. Kanhai, Anneke Brand, and Peter J. Van den Elsen. "Intrauterine Transfusions Affect Fetal T-Cell Immunity." Blood 90, no. 6 (September 15, 1997): 2492–501. http://dx.doi.org/10.1182/blood.v90.6.2492.2492_2492_2501.

Full text
Abstract:
Intrauterine transfusion (IUT) therapy is the treatment of choice in severe hemolytic disease of the fetus. This treatment automatically implies the introduction of alloantigens in the fetal circulation, which might potentially influence the unprimed fetal immune system. The present study provides evidence that the fetal immune system is indeed prone to modulations of the T-cell receptor BV (TCRBV) repertoire as a result of IUT treatment. Most notably, IUT therapy affects the composition of the CD4+ repertoire, whereas this effect may be obscured in the CD8+ subset. The CD8+ subset was found to be influenced by alterations of the TCRBV repertoire both in IUT patients and controls, suggesting that modulations in this subset could be the result of developmental influences. A more detailed analysis on the composition of the individual TCRBV families was performed by evaluating the distribution of the complementarity determining region 3 (CDR3) size lengths of [32P]-radiolabeled TCRBV transcripts. Using this technique, referred to as spectratyping, only marginal changes were observed in the CD4+ and CD8+ subset during the course of treatment and gestational development of both IUT-treated patients and controls. Therefore, the alterations in the overall TCRBV repertoire were of a quantitative rather than a qualitative nature. To evaluate whether the observed alterations in TCRBV usage-frequencies were a reflection of an allo-reactive response, a primed lymphocyte test (PLT) was performed in 3 IUT-treated patients. We observed that IUT, performed as early as 23 weeks of gestation, may induce the establishment of memory T cells against the IUT donor. However, there was no association between the observed changes in TCRBV repertoire and the magnitude of the secondary allo-reactive response.
APA, Harvard, Vancouver, ISO, and other styles
9

Kluin-Nelemans, Hanneke C., Michel G. D. Kester, Lisette van deCorput, Patrick P. C. Boor, Jim E. Landegent, Jacques J. M. van Dongen, Roel Willemze, and J. H. Frederik Falkenburg. "Correction of Abnormal T-Cell Receptor Repertoire During Interferon-α Therapy in Patients With Hairy Cell Leukemia." Blood 91, no. 11 (June 1, 1998): 4224–31. http://dx.doi.org/10.1182/blood.v91.11.4224.

Full text
Abstract:
Abstract Patients with the B-cell malignancy hairy cell leukemia (HCL) exhibit a skewed T-cell repertoire with oligoclonal expression or absence of many members of the T-cell receptor (TCR) BV gene families. To evaluate whether interferon-α (IFN-α) therapy would not only restore normal hematopoiesis, but also the abnormal T-cell repertoire, we studied T lymphocytes from a cohort of HCL patients treated by IFN-α in the past, at initiation, and at several intervals up to 6 years of IFN-α treatment. The junctional regions from 22 TCRBV gene families were analyzed after polymerase chain reaction amplification of cDNA (RT-PCR) using family specific primers. In all seven patients improvement of the skewed T-cell repertoire was not seen until 2 years of treatment. It consisted of disappearance of oligoclonal subpopulations and (polyclonal) reappearance of absent TCRBV gene families. The RT-PCR results were correlated with the TCRBV protein expression using TCRBV-specific monoclonal antibodies. T lymphocytes from four patients with active HCL contained large expansions of particular TCRBV-expressing cells (up to 25% of the CD3+cells; 600 to 700/μL whole blood), which decreased during IFN-α therapy in both patients tested. Finally, restoration of the TCR repertoire matched normalization of the functional immune repertoire as measured by proliferative, helper, and cytotoxic T-lymphocyte precursor frequencies against major histocompatibility complex–unrelated individuals. In conclusion, oligoclonal bands of TCRBV gene families found by RT-PCR correspond with a dramatic increase in circulating T lymphocytes expressing the same TCRBV family. Moreover, IFN-α can restore the skewed T-cell repertoire and suppress persistent T-cell clones upon treatment of the accompanying malignancy.
APA, Harvard, Vancouver, ISO, and other styles
10

Kluin-Nelemans, Hanneke C., Michel G. D. Kester, Lisette van deCorput, Patrick P. C. Boor, Jim E. Landegent, Jacques J. M. van Dongen, Roel Willemze, and J. H. Frederik Falkenburg. "Correction of Abnormal T-Cell Receptor Repertoire During Interferon-α Therapy in Patients With Hairy Cell Leukemia." Blood 91, no. 11 (June 1, 1998): 4224–31. http://dx.doi.org/10.1182/blood.v91.11.4224.411k19_4224_4231.

Full text
Abstract:
Patients with the B-cell malignancy hairy cell leukemia (HCL) exhibit a skewed T-cell repertoire with oligoclonal expression or absence of many members of the T-cell receptor (TCR) BV gene families. To evaluate whether interferon-α (IFN-α) therapy would not only restore normal hematopoiesis, but also the abnormal T-cell repertoire, we studied T lymphocytes from a cohort of HCL patients treated by IFN-α in the past, at initiation, and at several intervals up to 6 years of IFN-α treatment. The junctional regions from 22 TCRBV gene families were analyzed after polymerase chain reaction amplification of cDNA (RT-PCR) using family specific primers. In all seven patients improvement of the skewed T-cell repertoire was not seen until 2 years of treatment. It consisted of disappearance of oligoclonal subpopulations and (polyclonal) reappearance of absent TCRBV gene families. The RT-PCR results were correlated with the TCRBV protein expression using TCRBV-specific monoclonal antibodies. T lymphocytes from four patients with active HCL contained large expansions of particular TCRBV-expressing cells (up to 25% of the CD3+cells; 600 to 700/μL whole blood), which decreased during IFN-α therapy in both patients tested. Finally, restoration of the TCR repertoire matched normalization of the functional immune repertoire as measured by proliferative, helper, and cytotoxic T-lymphocyte precursor frequencies against major histocompatibility complex–unrelated individuals. In conclusion, oligoclonal bands of TCRBV gene families found by RT-PCR correspond with a dramatic increase in circulating T lymphocytes expressing the same TCRBV family. Moreover, IFN-α can restore the skewed T-cell repertoire and suppress persistent T-cell clones upon treatment of the accompanying malignancy.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "TCRBV"

1

Cowan, Teresa. "The TCRBJ and TCRBV repertoire in naive and memory human T-cells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ34173.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buhler, Marc McWilliams. "Genetics of the immune cell receptors TCRB and CCR5 in human disease." University of Sydney, 2003. http://hdl.handle.net/2123/601.

Full text
Abstract:
Abstract Early in the evolution of the vertebrates it is thought that two genomic duplications occurred, providing a basis for the evolution in body plan and neural crest of very early vertebrates and substantive material for further evolution of various gene families such as those making up a number of components of the adaptive vertebrate immune system. While the bony fish possibly had another, genome duplications are not generally a feature of vertebrate evolution and indeed the appearance of an antigen-adaptive immune recognition system may have served to limit the size that various vertebrate genomes, including that of the human, can in fact achieve. This initial step in vertebrate immune evolution, the establishment of recognition of non-self against the unique set of 'self' epitopes for an individual, provided an immensely powerful weapon in immune function with the ability to tailor a defense against as-yet-unseen dangers at any time albeit with the pitfall of autoimmune disease. As the recognition sites of the antigen receptor molecules such as TcR are produced by clonal modification of the segments provided in the germline and are thus not in the genome itself, pathogens have not been able to hijack this one component of the immune system in the way so many other components have been put to use throughout evolution, nor do these components necessarily reveal themselves as associated with disease through genome screens. Importantly, overall immune function is determined not just by the potential repertoire of recognition receptors but also by the ability of immunocompetent cells to migrate in a tissue specific fashion through the use of various chemokines and their receptors. Typical of the hijacking of an immune system component by a pathogen is the use of a chemokine ligand gene in the viral ancestor to SIV and HIV, allowing for virus binding to immunocompetent cells as is seen in the use of the CCR5 chemokine receptor by macrophage-tropic HIV strains. This thesis describes the allele and genotype frequencies for several TcR beta-chain variable segment polymorphisms in a population of MS patients compared with controls before and after stratification for HLA-DR15, polymorphism in the Apo-1 / Fas promoter, the DRB1 Val86/Val86 genotype, CCR5-delta32 and the HLA-DRA promoter. The thesis continues with CCR5-delta32 genotyping in IDDM, MS and SLE cohorts and then examines the question of the population of origin of the delta-32 allele of the CCR5 receptor for chemokine. Here, a case / control comparison of 122 RR-MS patients with 96 normal individuals was made for allele and genotype frequencies and for haplotypes formed by pairs of TCRB markers. Further analysis was made after HLA-DR15 stratification. Linkage disequilibrium was found between pairs of alleles of bv8s1, bv10s1, bv15s1 and bv3s1 loci in both patients and controls. In the RR-MS cohort, an increase in the allele frequency of bv8s1*2 was seen (p = 0.03) and the haplotype bv8s1*2 / bv3s1*1 was increased (p = 0.006), and both were found to be statistically significant. In the DR15-positive group, association between MS and TCRB was seen with the bv8s1*2 allele (p = 0.05) and the bv8s1*2 / bv10s1 haplotypes (p = 0.048), while the haplotype associations seen among the DR15-negative patients included the bv3s1*1 allele (bv10s1*1 / bv3s1*1, p = 0.022; bv8s1*2 / bv3s1*1, p = 0.048). While no associations were found after stratification for SDF1-3'A, Apo-1 / Fas or DRB1 there were modest interactions between bv3s1, bv10s1 and bv15s1 and the HLA-DRA promoter. These results support the involvement of the TCRB region in MS susceptibility. The further study of autoimmune disease here includes genotype analysis of CCR5-delta32 in type 1 diabetes (IDDM) and SLE. CCR5 is the major co-receptor for viral entry used by macrophage-tropic HIV strains and protection from infection is seen in homozygotes for CCR5-delta32. In diabetes, infiltration of pancreatic tissue by autoreactive T-cells involves secretion of multiple cytokines and chemokine receptor expression. Variation in the chemokine receptor CCR5 may result in differences in inflammatory cell migration in response to relevant chemokines. Adolescents with type 1 diabetes were genotyped for CCR5-delta32 (n = 626). The allele frequency was compared with that of 253 non-diabetic adolescents and with that of 92 adults with SLE. A reduced allele frequency was seen in type 1 diabetes compared with controls (0.092 vs 0.123, p = 0.05). This difference was not seen for the cohort of patients with SLE (freq = 0.114). A reduction in the number of CCR5-delta32/delta32 homozygotes, who lack CCR5, in the type 1 diabetes cohort was also seen and while not statistically significant (2 observed compared to 5.25 expected; p = 0.12) is interesting. These results suggest a partial protection from type 1 diabetes for CCR5-delta32 homozygous individuals is possible and that CCR5 has a potential role in the pathogenesis of type 1 diabetes. Global surveys of the CCR5-delta32 allele have confirmed a single mutation event in a Northeastern European population as the source of this allele. Here, Australian Ashkenazi Jews (n = 807) were found to have a CCR5-delta32 allele frequency of 14.6% while Australian Sephardic Jews (n = 35) had a frequency of 5.7% and non-Jewish Australian controls (n = 311) had an allele frequency of 11.25%. Data on birthplace of grandparents showed a gradient with highest CCR5-delta32 frequencies from Eastern European Ashkenazim (~19.5% for those whose four grandparents come only from Russia, Poland, Hungary, Austria and Czechoslovakia; n = 197) which differs significantly from the frequency seen in Ashkenazi Jews from Western Europe (n = 101, p = 0.001). Homozygotes for CCR5-delta32 were genotyped with 3p21 region microsatellites. This has defined an ancestral haplotype on which the mutation first occurred and helped to date this event to between 40 and 50 generations ago or just over a thousand years ago. The population gradient, combined with the dating of the mutation by microsatellite allele frequencies, suggests an origin for the CCR5-delta32 allele in a population ancestral to the Ashkenazim. The distribution in non-Jewish populations in northern Europe has led others to postulate spread of the mutation by Vikings. It is hypothesised here that the link between the two populations could be the kingdom of Khazaria with subsequent admixture into both Swedish Vikings and Ashkenazi Jews. The basic driving force of evolution is through selection and the immune system has a role which, through the survival pressure exerted by viruses and other pathogens, has the potential to exert a great deal of selective force on the various components of this system. The effects of this pronounced selection on an immune system component can be seen for example in the increase of the CCR5-delta32 allele over the last thousand years to the current frequency. As mentioned, some immune system components are not affected by such straightforward selection. In the case of the TCRBV segments, effects on the immune repertoire can occur through MHC interaction at the point of thymic entry and in the effects of various superantigens, but the actual binding pockets that recognise antigen are themselves unable to be selected for (or against). The findings presented in this thesis provide support for the association of TCRBV gene segments with multiple sclerosis and also provide support for the further study of the role of the CCR5-delta32 allele in type 1 diabetes. Furthermore, data presented here suggests that the CCR5-delta32 allele had an origin in the Khazar Kingdom just over a thousand years ago, accounting for the allele frequencies in both the Ashkenazi Jews and in lands frequented by the Vikings. The definition of an extended ancestral haplotype for the CCR5-delta32 allele shows how the effect of selection of an allele of one gene can carry with it specific alleles of a large number of other genes as well.
APA, Harvard, Vancouver, ISO, and other styles
3

Buhler, Marc McWilliam. "Genetics of the immune cell receptors TCRB and CCR5 in human disease /." Connect to full text, 2003. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20040405.141449/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gomez, Gregorio. "Differentiation of thymocyte precursors and restriction of TCRV[beta] selected lymphomas induced by methylnitrosourea /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amachawadi, Raghavendra G. "Effects of feeding elevated concentration of copper on prevalence and selection of fecal enterococci positive for transferable copper resistance gene in piglets." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/4097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Elizabeth Ann Wilcox. "The Role of Tcrb Subnuclear Positioning in V(D)J Recombination." Diss., 2014. http://hdl.handle.net/10161/8650.

Full text
Abstract:

T cells and B cells each express unique antigen receptors used to identify, eliminate, and remember pathogens. These receptors are generated through a process known as V(D)J recombination, in which T cell receptor and B cell receptor gene loci undergo genomic recombination. Interestingly, recombination at certain genes is regulated so that a single in-frame rearrangement is present on only one allele per cell. This phenomenon, termed allelic exclusion, requires two steps. First, recombination can occur only on one allele at a time. In the second step, additional recombination must be prevented. Though the mechanism of the second step is well-understood, the first step remains poorly understood.

The first step of recombination necessitates that alleles rearrange one at a time. This could be achieved either through inefficient recombination or by halting further recombination in the presence of recombination. To separate these mechanisms, we analyzed recombination in nuclei unable to complete recombination. We found that rearrangement events accumulated at antigen receptor loci, suggesting that the presence of recombination does not stop additional rearrangements and asynchronous recombination likely results from inefficient recombination at both alleles.

Association with repressive subnuclear compartments has been proposed to reduce the recombination efficiency of allelically excluded antigen receptor loci. Of the alleleically excluded loci, Tcrb alleles are uniquely regulated during development. Other allelically excluded alleles are positioned at the transcriptionally-repressive nuclear periphery prior to recombination, and relocate to the nuclear interior at the stage in which they recombine. However Tcrb alleles remain highly associated with the nuclear periphery during rearrangement. Here we provide evidence that this peripheral subnuclear positioning of Tcrb alleles does suppress recombination. We go on to suggest that peripheral localization mediates the first step of allelic exclusion.

In search of the mechanism by which recombination is suppressed on peripheral Tcrb alleles, we investigated the subnuclear localization of a recombinase protein. Two recombinase proteins are required for recombination, one of which is recruited to actively transcribing (and more centrally located) DNA. Here we demonstrate that one recombinase protein is unable to localize to peripheral Tcrb alleles, potentially serving as the mechanism by which recombination is suppressed on peripheral alleles.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
7

Schlimgen, Ryan Jon. "The Role of Nuclear Position and Locus Conformation in Regulating V(D)J Recombination of the Tcrb Locus." Diss., 2008. http://hdl.handle.net/10161/878.

Full text
Abstract:

Recombination of Tcrb gene segments in DN thymocytes is subject to allelic exclusion, such that only a single functional Vβ - DJβ rearrangement is generated per T cell. For Tcrb to be allelically excluded the two alleles must initiate recombination asynchronously and once a β-protein is selected, feedback signals must suppress further recombination. Earlier studies of antigen-receptor loci implicated directed monoallelic association with pericentromeric heterochromatin in the initiation or maintenance of allelic exclusion. In this study we used three-dimensional fluorescent in situ hybridization to directly visualize the nuclear localization of Tcra and Tcrb, pericentromeric heterochromatin, and the nuclear lamina. Here we provide evidence for a fundamentally different basis for Tcrb allelic exclusion. We demonstrate that Tcrb is highly associated with pericentromeric heterochromatin and the nuclear lamina in pro-B cells and in DN and DP thymocytes. We also find that Tcrb does not associate with peri-centromeric heterochromatin and the nuclear lamina in a strict monoallelic fashion. Rather, Tcrb alleles independently associate with the two compartments, leading to a stochastic distribution of nuclei containing both, one, or neither allele associated. In the subset of DN thymocyte nuclei with monoallelically associated Tcrb alleles, the non-rearranged allele is most often associated with repressive compartments. This suggests that association with these compartments inhibits recombination prior to β-selection. This inhibition occurs without altering the conformation of the locus. Moreover, the introduction of an ectopic enhancer into Tcrb, led to both a repositioning of Tcrb away from these repressive compartments. This repositioning was correlated with an increase in the frequency of recombination and a break in allelic exclusion. These data lead us to propose that stochastic rather than directed interactions of Tcrb alleles with repressive nuclear compartments bias initial Tcrb recombination to be monoallelic in developing thymocytes and that such interactions are essential for Tcrb allelic exclusion.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
8

Braunstein, Marsela. "Regulation of Early T-cell Development and Commitment by HEB." Thesis, 2011. http://hdl.handle.net/1807/29668.

Full text
Abstract:
Early T-cell development is regulated by a complex interplay between transcription factors and developmental cues which ensure that functional T-cells are produced within the thymus. Early thymocytes integrate these signals in a step-wise fashion that progressively restricts their lineage potential as they transition through the early stages of T-cell development. Gene knockout studies have shown that the E-protein transcription factor HEB is required for normal thymocyte development. Furthermore, many additional key regulators such as Notch1 have been identified, but the connections among them and their specific roles in early T-cell development have not been well established. In this thesis, I set out to determine the specific roles of HEB at the beta-selection checkpoint and to establish connections between HEB and the key regulators within the gene regulatory network that orchestrates early T-cell development. To facilitate these studies, I generated a series of new mouse models including HEBAlt transgenic mice that express a short form of HEB called HEBAlt, which enabled me to answer specific questions and examine rare populations. First, my studies of HEB-/- mice allowed me to identify an early block in T-cell development, which was alleviated upon the addition of an HEBAlt transgene. Furthermore, I identified pTa and CD3e signalling as specific targets of HEBAlt during -selection. Second, my studies on HEB-/- mice revealed that they have a defect in T-cell commitment, with compromised Notch1 function and a tendency to become DN1-like cells. Moreover, the DN1-like cells could be induced to differentiate into thymic NK cells, revealing a role for HEB in the T/NK cell lineage decision. This study has revealed a new set of interactions among HEB, Notch1, and GATA3 that regulate the T-cell fate choice in developing thymocytes. Unexpectedly, my studies have also provided evidence for a role of HEBAlt in lymphomagenesis, highlighting the strict regulation of E-protein function that is necessary to ensure normal T-cell development.
APA, Harvard, Vancouver, ISO, and other styles
9

Kondilis-Mangum, Hrisavgi Demetrios. "The Role of Epigenetics in Regulating V(D)J Recombination and Allelic Exclusion." Diss., 2011. http://hdl.handle.net/10161/3912.

Full text
Abstract:

As members of the adaptive immune response, T- and B- cells express unique antigen receptors generated from antigen receptor loci. These loci encode multiple Variable (V), Diversity (D), and Joining (J) gene segments. Through a process known as V(D)J recombination, genomic rearrangements occur to generate a unique antigen receptor proteins. During each stage of lymphocyte development, antigen receptor loci are epigenetically regulated. The epigenetic regulation promotes and inhibits V(D)J recombination through different mechanisms. To generate an antigen receptor protein, the substrates for rearrangement (recombination signal sequences, RSSs) must be made accessible to the recombination machinery. Moreover, once an antigen receptor locus has rearranged and produced a successful in-frame protein, a mechanism known as allelic exclusion prevents further recombination.

The nucleosome can positively and negatively regulate V(D)J recombination. Therefore, we defined the in vivo nucleosome organization of accessible and inaccessible RSSs on the Tcr loci. We used Tcrb and Tcra alleles which lack various cis-elements (e.g. enhancers and promoters) and terminate transcription. By comparing nucleosome organization and histone octamer occupancy, we found that accessible alleles are characterized by lower histone octamer occupancy and in some cases movement of nucleosomes. Also, we found that some these changes are mediated by transcription through the RSS. We concluded that one mechanism by which cis-elements epigenetically regulate RSS accessibility is by histone octamer loss and nucleosome repositioning and that some of these changes are mediated by transcription.

In addition, we further investigated how allelic exclusion prevents Tcrb locus recombination in CD4, CD8 double positive (DP) thymocytes. A previous study had introduced the Tcra enhancer (Eα) into the middle of the Tcrb locus to test if allelic exclusion was mediated solely by RSS accessibility. That study found that Eα could force RSS accessibility in DP thymocytes, but Vβ RSS accessibility did not overcome additional mechanisms involved in allelic exclusion. One potential mechanism that has been suggested in the literature is changes in locus conformation. Thus, we tested if RSS accessibility and locus conformation together mediate allelic exclusion. We generated two alleles that overcome changes in RSS accessibility, due to the presence of Eα and that overcome changes in locus conformation, due to a decrease in distance between Vβ and DJβ RSSs. We found that both alleles are accessible in DP thymocytes and we detected Vβ to DJβ recombination in DP thymocytes. Therefore, the epigenetic mechanisms that regulate Tcrb allelic exclusion consists of changes in RSS accessibility and changes in locus conformation.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "TCRBV"

1

Sikes, Michael L., and Eugene M. Oltz. "Genetic and Epigenetic Regulation of Tcrb Gene Assembly." In Current Topics in Microbiology and Immunology, 91–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/82_2011_138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Libero, G., G. Casorati, N. Migone, and A. Lanzavecchia. "Correlation Between TCRV Gene Usage and Antigen Specificities in Human γδ T Cells." In Function and Specificity of γ/δ T Cells, 235–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Majumder, Kinjal, Craig H. Bassing, and Eugene M. Oltz. "Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms." In Advances in Immunology, 273–306. Elsevier, 2015. http://dx.doi.org/10.1016/bs.ai.2015.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "TCRBV"

1

Looney, T., L. Miller, G. Lowman, E. Linch, J. Zheng, and D. Topacio-Hall. "23 Evidence for antigen-driven TCRB chain convergence in the tumourinfiltrating t cell repertoire of 148 research subjects with melanoma." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, Jennifer, Frances Chan, Jiajie Huang, Marina Sedova, Timothy Looney, and Fiona Hyland. "Abstract 4279: Automated TRB locus haplotype analysis by long-amplicon TCRB chain sequencing for immune-related adverse events biomarker research." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Looney, Timothy J. "Abstract 1347: Peripheral blood TCRB chain convergence in chronic viral infection and cancer: Emerging trends from a novel immune repertoire biomarker." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Looney, Timothy J. "Abstract 1347: Peripheral blood TCRB chain convergence in chronic viral infection and cancer: Emerging trends from a novel immune repertoire biomarker." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Looney, Timothy J., Sean Glenn, Sarabjot Pabla, Jeff Conroy, Carl Morrison, Alice Zheng, Lauren Miller, et al. "Abstract 4668: Evidence for antigen-driven TCRB chain convergence in the tumor infiltrating T cell repertoire of 85 research subjects with melanoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography