Journal articles on the topic 'Tbc1D3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tbc1D3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Frittoli, Emanuela, Andrea Palamidessi, Alessandro Pizzigoni, Letizia Lanzetti, Massimiliano Garrè, Flavia Troglio, Albino Troilo, et al. "The Primate-specific Protein TBC1D3 Is Required for Optimal Macropinocytosis in a Novel ARF6-dependent Pathway." Molecular Biology of the Cell 19, no. 4 (April 2008): 1304–16. http://dx.doi.org/10.1091/mbc.e07-06-0594.
Full textTobias, Irene S., Kara K. Lazauskas, Jeremy Siu, Pablo B. Costa, Jared W. Coburn, and Andrew J. Galpin. "Sex and fiber type independently influence AMPK, TBC1D1, and TBC1D4 at rest and during recovery from high-intensity exercise in humans." Journal of Applied Physiology 128, no. 2 (February 1, 2020): 350–61. http://dx.doi.org/10.1152/japplphysiol.00704.2019.
Full textPenisson, Maxime, Mingyue Jin, Shengming Wang, Shinji Hirotsune, Fiona Francis, and Richard Belvindrah. "Lis1 mutation prevents basal radial glia-like cell production in the mouse." Human Molecular Genetics 31, no. 6 (October 12, 2021): 942–57. http://dx.doi.org/10.1093/hmg/ddab295.
Full textEspelage, Lena, Hadi Al-Hasani, and Alexandra Chadt. "RabGAPs in skeletal muscle function and exercise." Journal of Molecular Endocrinology 64, no. 1 (January 2020): R1—R19. http://dx.doi.org/10.1530/jme-19-0143.
Full textMikłosz, Agnieszka, Bartłomiej Łukaszuk, Elżbieta Supruniuk, Kamil Grubczak, Marcin Moniuszko, Barbara Choromańska, Piotr Myśliwiec, and Adrian Chabowski. "Does TBC1D4 (AS160) or TBC1D1 Deficiency Affect the Expression of Fatty Acid Handling Proteins in the Adipocytes Differentiated from Human Adipose-Derived Mesenchymal Stem Cells (ADMSCs) Obtained from Subcutaneous and Visceral Fat Depots?" Cells 10, no. 6 (June 16, 2021): 1515. http://dx.doi.org/10.3390/cells10061515.
Full textZhou, Qiong L., Zhen Y. Jiang, John Holik, Anil Chawla, G. Nana Hagan, John Leszyk, and Michael P. Czech. "Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes." Biochemical Journal 411, no. 3 (April 14, 2008): 647–55. http://dx.doi.org/10.1042/bj20071084.
Full textMafakheri, Samaneh, Alexandra Chadt, and Hadi Al-Hasani. "Regulation of RabGAPs involved in insulin action." Biochemical Society Transactions 46, no. 3 (May 21, 2018): 683–90. http://dx.doi.org/10.1042/bst20170479.
Full textQin, Shu, Robert A. Dorschner, Irene Masini, Ophelia Lavoie‐Gagne, Philip D. Stahl, Todd W. Costantini, Andrew Baird, and Brian P. Eliceiri. "TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair." FASEB Journal 33, no. 5 (February 4, 2019): 6129–39. http://dx.doi.org/10.1096/fj.201802388r.
Full textShen, Y., L. Zhang, H. Zhao, and C. L. Shen. "TC-1 mediate the TBC1D3 oncogene induced migration of MCF-7 breast cancer cells." Annals of Oncology 29 (November 2018): ix19. http://dx.doi.org/10.1093/annonc/mdy428.017.
Full textKong, Chen, Jeffrey J. Lange, Dmitri Samovski, Xiong Su, Jialiu Liu, Sinju Sundaresan, and Philip D. Stahl. "Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation." Biochemical and Biophysical Research Communications 434, no. 2 (May 2013): 388–93. http://dx.doi.org/10.1016/j.bbrc.2013.04.001.
Full textZhang, Pei, Lei Zhu, and Xiaodong Pan. "A comprehensive analysis of the oncogenic and prognostic role of TBC1Ds in human hepatocellular carcinoma." PeerJ 12 (May 14, 2024): e17362. http://dx.doi.org/10.7717/peerj.17362.
Full textRoach, William G., Jose A. Chavez, Cristinel P. Mîinea, and Gustav E. Lienhard. "Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1." Biochemical Journal 403, no. 2 (March 26, 2007): 353–58. http://dx.doi.org/10.1042/bj20061798.
Full textHodzic, Didier, Chen Kong, Marisa J. Wainszelbaum, Audra J. Charron, Xiong Su, and Philip D. Stahl. "TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12." Genomics 88, no. 6 (December 2006): 731–36. http://dx.doi.org/10.1016/j.ygeno.2006.05.009.
Full textKong, Chen, Dmitri Samovski, Priya Srikanth, Marisa J. Wainszelbaum, Audra J. Charron, Jialiu Liu, Jeffrey J. Lange, et al. "Ubiquitination and Degradation of the Hominoid-Specific Oncoprotein TBC1D3 Is Mediated by CUL7 E3 Ligase." PLoS ONE 7, no. 9 (September 27, 2012): e46485. http://dx.doi.org/10.1371/journal.pone.0046485.
Full textHe, Ze, Tian Tian, Dan Guo, Huijuan Wu, Yang Chen, Yongchen Zhang, Qing Wan, et al. "Cytoplasmic Retention of a Nucleocytoplasmic Protein TBC1D3 by Microtubule Network Is Required for Enhanced EGFR Signaling." PLoS ONE 9, no. 4 (April 8, 2014): e94134. http://dx.doi.org/10.1371/journal.pone.0094134.
Full textJessen, Niels, Ding An, Aina S. Lihn, Jonas Nygren, Michael F. Hirshman, Anders Thorell, and Laurie J. Goodyear. "Exercise increases TBC1D1 phosphorylation in human skeletal muscle." American Journal of Physiology-Endocrinology and Metabolism 301, no. 1 (July 2011): E164—E171. http://dx.doi.org/10.1152/ajpendo.00042.2011.
Full textWang, Bei, Dandan Chen, and Haiying Hua. "TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma." Molecular Therapy - Oncolytics 22 (September 2021): 528–38. http://dx.doi.org/10.1016/j.omto.2021.06.014.
Full textZhou, Zhou, Franziska Menzel, Tim Benninghoff, Alexandra Chadt, Chen Du, Geoffrey D. Holman, and Hadi Al-Hasani. "Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking." FEBS Letters 591, no. 1 (December 20, 2016): 88–96. http://dx.doi.org/10.1002/1873-3468.12509.
Full textMcMillin, Shawna L., Erin C. Stanley, Luke A. Weyrauch, Jeffrey J. Brault, Barbara B. Kahn, and Carol A. Witczak. "Insulin Resistance Is Not Sustained Following Denervation in Glycolytic Skeletal Muscle." International Journal of Molecular Sciences 22, no. 9 (May 6, 2021): 4913. http://dx.doi.org/10.3390/ijms22094913.
Full textHatakeyama, Hiroyasu, Taisuke Morino, Takuya Ishii, and Makoto Kanzaki. "Cooperative actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4-trafficking activities." Journal of Biological Chemistry 294, no. 4 (November 27, 2018): 1161–72. http://dx.doi.org/10.1074/jbc.ra118.004614.
Full textWainszelbaum, Marisa J., Jialu Liu, Chen Kong, Priya Srikanth, Dmitri Samovski, Xiong Su, and Philip D. Stahl. "TBC1D3, a Hominoid-Specific Gene, Delays IRS-1 Degradation and Promotes Insulin Signaling by Modulating p70 S6 Kinase Activity." PLoS ONE 7, no. 2 (February 13, 2012): e31225. http://dx.doi.org/10.1371/journal.pone.0031225.
Full textMann, Gagandeep, Michael C. Riddell, and Olasunkanmi A. J. Adegoke. "Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States." Diabetology 3, no. 3 (July 28, 2022): 423–46. http://dx.doi.org/10.3390/diabetology3030032.
Full textKothari, Charu, Alisson Clemenceau, Geneviève Ouellette, Kaoutar Ennour-Idrissi, Annick Michaud, René C.-Gaudreault, Caroline Diorio, and Francine Durocher. "TBC1D9: An Important Modulator of Tumorigenesis in Breast Cancer." Cancers 13, no. 14 (July 16, 2021): 3557. http://dx.doi.org/10.3390/cancers13143557.
Full textZhao, H. "18P TC-1 is required for TBC1D3-induced Wnt/beta-catenin accumulation and cell migration in MCF-7 breast cancer cells." Annals of Oncology 27 (December 2016): ix5. http://dx.doi.org/10.1016/s0923-7534(21)00180-0.
Full textLipsey, Crystal C., Adriana Harbuzariu, Robert W. Robey, Lyn M. Huff, Michael M. Gottesman, and Ruben R. Gonzalez-Perez. "Leptin Signaling Affects Survival and Chemoresistance of Estrogen Receptor Negative Breast Cancer." International Journal of Molecular Sciences 21, no. 11 (May 27, 2020): 3794. http://dx.doi.org/10.3390/ijms21113794.
Full textSakamoto, Kei, and Geoffrey D. Holman. "Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic." American Journal of Physiology-Endocrinology and Metabolism 295, no. 1 (July 2008): E29—E37. http://dx.doi.org/10.1152/ajpendo.90331.2008.
Full textHenriques, Andreia F. A., Paulo Matos, Ana Sofia Carvalho, Mikel Azkargorta, Felix Elortza, Rune Matthiesen, and Peter Jordan. "WNK1 phosphorylation sites in TBC1D1 and TBC1D4 modulate cell surface expression of GLUT1." Archives of Biochemistry and Biophysics 679 (January 2020): 108223. http://dx.doi.org/10.1016/j.abb.2019.108223.
Full textWang, Bei, Huzi Zhao, Lei Zhao, Yongchen Zhang, Qing Wan, Yong Shen, Xiaodong Bu, Meiling Wan, and Chuanlu Shen. "Up-regulation of OLR1 expression by TBC1D3 through activation of TNFα/NF-κB pathway promotes the migration of human breast cancer cells." Cancer Letters 408 (November 2017): 60–70. http://dx.doi.org/10.1016/j.canlet.2017.08.021.
Full textCartee, Gregory D. "Let's get real about the regulation of TBC1D1 and TBC1D4 phosphorylation in skeletal muscle." Journal of Physiology 592, no. 2 (January 2014): 253–54. http://dx.doi.org/10.1113/jphysiol.2013.269092.
Full textZhao, Huzi, Lina Zhang, Yongchen Zhang, Lei Zhao, Qing Wan, Bei Wang, Xiaodong Bu, Meiling Wan, and Chuanlu Shen. "Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells." Oncotarget 8, no. 22 (March 31, 2017): 36383–98. http://dx.doi.org/10.18632/oncotarget.16756.
Full textPark, Sang-Youn, and Soon-Jong Kim. "TBC1D1 and TBC1D4 (AS160) RabGAP Domains are Characterized as Monomers in Solution by Analytical Ultracentrifugation." Bulletin of the Korean Chemical Society 32, no. 6 (June 20, 2011): 2125–28. http://dx.doi.org/10.5012/bkcs.2011.32.6.2125.
Full textCastorena, Carlos M., James G. MacKrell, Makoto Kanzaki, Jonathan S. Bogan, and Gregory D. Cartee. "GLUT4, TBC1D1, TBC1D4, TUG and RUVBL2: Relationships with Each Other and Rat Muscle Fiber Type." Medicine & Science in Sports & Exercise 42 (October 2010): 12–13. http://dx.doi.org/10.1249/01.mss.0000389501.47832.4f.
Full textCartee, Gregory D. "Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle." Diabetologia 58, no. 1 (October 4, 2014): 19–30. http://dx.doi.org/10.1007/s00125-014-3395-5.
Full textSchnurr, Theresia M., Emil Jørsboe, Alexandra Chadt, Inger K. Dahl-Petersen, Jonas M. Kristensen, Jørgen F. P. Wojtaszewski, Christian Springer, et al. "Physical activity attenuates postprandial hyperglycaemia in homozygous TBC1D4 loss-of-function mutation carriers." Diabetologia 64, no. 8 (April 29, 2021): 1795–804. http://dx.doi.org/10.1007/s00125-021-05461-z.
Full textGunsilius, Harald, Horst Borrmann, Arndt Simon, and Werner Urland. "Zur Polymorphie von TbCI3/ Polymorphism of TbCl3." Zeitschrift für Naturforschung B 43, no. 8 (August 1, 1988): 1023–28. http://dx.doi.org/10.1515/znb-1988-0819.
Full textZhang, Jianxian, Yan Xue, Hengling Gao, Yunxi Yu, Huabin Cheng, Xukun Lv, and Ke Ke. "circZC3HAV1 Regulates TBC1D9 to Affect the Biological Behavior of Colorectal Cancer Cells." BioMed Research International 2022 (September 16, 2022): 1–17. http://dx.doi.org/10.1155/2022/7386946.
Full textChang, Wen-Lin, Lina Cui, Yanli Gu, Minghua Li, Qian Ma, Zeng Zhang, Jing Ye, Fangting Zhang, Jing Yu, and Yaoting Gui. "TBC1D20 deficiency induces Sertoli cell apoptosis by triggering irreversible endoplasmic reticulum stress in mice." Molecular Human Reproduction 25, no. 12 (October 21, 2019): 773–86. http://dx.doi.org/10.1093/molehr/gaz057.
Full textZhou, Z., F. Menzel, T. Benninghoff, A. Chadt, C. Du, GD Holman, and H. Al-Hasani. "Rab28 ist ein neu beschriebenes Substrat für TBC1D1/TBC1D4 und beteiligt an der regulierten Translokation von GLUT4." Diabetologie und Stoffwechsel 12, S 01 (May 5, 2017): S1—S84. http://dx.doi.org/10.1055/s-0037-1601642.
Full textTreebak, Jonas T., Christian Pehmøller, Jonas M. Kristensen, Rasmus Kjøbsted, Jesper B. Birk, Peter Schjerling, Erik A. Richter, Laurie J. Goodyear, and Jørgen F. P. Wojtaszewski. "Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle." Journal of Physiology 592, no. 2 (December 23, 2013): 351–75. http://dx.doi.org/10.1113/jphysiol.2013.266338.
Full textFukuda, Mitsunori. "TBC proteins: GAPs for mammalian small GTPase Rab?" Bioscience Reports 31, no. 3 (January 14, 2011): 159–68. http://dx.doi.org/10.1042/bsr20100112.
Full textPeifer-Weiß, Leon, Hadi Al-Hasani, and Alexandra Chadt. "AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle." International Journal of Molecular Sciences 25, no. 3 (February 5, 2024): 1910. http://dx.doi.org/10.3390/ijms25031910.
Full textHargett, Stefan R., Natalie N. Walker, and Susanna R. Keller. "Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice." American Journal of Physiology-Endocrinology and Metabolism 310, no. 4 (February 15, 2016): E276—E288. http://dx.doi.org/10.1152/ajpendo.00342.2015.
Full textChadt, Alexandra, Anja Immisch, Christian de Wendt, Christian Springer, Zhou Zhou, Torben Stermann, Geoffrey D. Holman, et al. "Deletion of Both Rab-GTPase–Activating Proteins TBC1D1 and TBC1D4 in Mice Eliminates Insulin- and AICAR-Stimulated Glucose Transport." Diabetes 64, no. 3 (September 23, 2014): 746–59. http://dx.doi.org/10.2337/db14-0368.
Full textPark, Sang-Youn, Wanzhu Jin, Ju Rang Woo, and Steven E. Shoelson. "Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation." Journal of Biological Chemistry 286, no. 20 (March 23, 2011): 18130–38. http://dx.doi.org/10.1074/jbc.m110.217323.
Full textDi Chiara, Marianna, Bob Glaudemans, Dominique Loffing-Cueni, Alex Odermatt, Hadi Al-Hasani, Olivier Devuyst, Nourdine Faresse, and Johannes Loffing. "Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney." American Journal of Physiology-Renal Physiology 309, no. 9 (November 1, 2015): F779—F790. http://dx.doi.org/10.1152/ajprenal.00139.2015.
Full textHargett, Stefan R., Natalie N. Walker, Syed S. Hussain, Kyle L. Hoehn, and Susanna R. Keller. "Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice." American Journal of Physiology-Endocrinology and Metabolism 309, no. 3 (August 1, 2015): E233—E245. http://dx.doi.org/10.1152/ajpendo.00007.2015.
Full textPehmøller, Christian, Jonas T. Treebak, Jesper B. Birk, Shuai Chen, Carol MacKintosh, D. Grahame Hardie, Erik A. Richter, and Jørgen F. P. Wojtaszewski. "Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle." American Journal of Physiology-Endocrinology and Metabolism 297, no. 3 (September 2009): E665—E675. http://dx.doi.org/10.1152/ajpendo.00115.2009.
Full textVichaiwong, Kanokwan, Suneet Purohit, Ding An, Taro Toyoda, Niels Jessen, Michael F. Hirshman, and Laurie J. Goodyear. "Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle." Biochemical Journal 431, no. 2 (September 28, 2010): 311–20. http://dx.doi.org/10.1042/bj20101100.
Full textGutierrez, Jorge A., Christian M. Shannon, Shaun A. Nguyen, Ted A. Meyer, and Paul R. Lambert. "Comparison of Transcutaneous and Percutaneous Implantable Hearing Devices for the Management of Congenital Aural Atresia: A Systematic Review and Meta-Analysis." Otology & Neurotology 45, no. 1 (November 26, 2023): 1–10. http://dx.doi.org/10.1097/mao.0000000000004061.
Full textMafakheri, Samaneh, Ralf R. Flörke, Sibylle Kanngießer, Sonja Hartwig, Lena Espelage, Christian De Wendt, Tina Schönberger, et al. "AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP." Journal of Biological Chemistry 293, no. 46 (October 1, 2018): 17853–62. http://dx.doi.org/10.1074/jbc.ra118.005040.
Full text