Academic literature on the topic 'Taupo Volcanic Zone (N Z )'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Taupo Volcanic Zone (N Z ).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Taupo Volcanic Zone (N Z )"

1

Barkle, G. F., R. Stenger, and Th Wöhling. "Fate of urine nitrogen through a volcanic vadose zone." Soil Research 52, no. 7 (2014): 658. http://dx.doi.org/10.1071/sr13282.

Full text
Abstract:
To investigate the fate of nitrogen (N) from urine, dairy cow urine was amended with bromide (Br) and chloride (Cl), and applied onto a loamy sand soil with an underlying vadose zone of gritty coarse sands and pumice fragments with groundwater at ~5.5 m depth. Textural changes and hydrophobicity resulted in heterogeneous flow and high variability in the Cl, Br and N masses captured. Three forms of N derived from the urine, organic-N (org-N), ammonium-N (NH4-N) and nitrate-N (NO3-N), were measured at 0.4 m depth. At 1.0 m depth, effectively all measured N was NO3-N. At 4.2 m, the mass of recovered N (average 33% of applied N, s.d. 21%), although solely speciated as NO3-N, was not significantly different from that at 0.4 m (average 24.5% of applied N, s.d. 0.1%), suggesting that no substantial assimilation of NO3-N had occurred in this vadose zone. Below the interface of the Taupo Ignimbrite and the Palaeosol at 4.2 m depth, recoveries of the Cl and Br tracers were negligible. In addition, the isotopic signatures (δ18O and δ15N) of the nitrate were different and the NO3-N concentrations were higher than in the upper vadose zone. These results all suggest that the Palaeosol was acting as a hydraulically limiting layer resulting in lateral unsaturated flow occurring at this interface. The fact that no nitrate assimilation was observed in this field study, despite previous laboratory studies showing substantial assimilative capacity, underlines that that the nitrate assimilative capacity in the vadose zone is a function of both hydrological and biogeochemical factors.
APA, Harvard, Vancouver, ISO, and other styles
2

Sylvester, Paul J., Kodjo Attoh, and Klaus J. Schulz. "Tectonic setting of late Archean bimodal volcanism in the Michipicoten (Wawa) greenstone belt, Ontario." Canadian Journal of Earth Sciences 24, no. 6 (June 1, 1987): 1120–34. http://dx.doi.org/10.1139/e87-109.

Full text
Abstract:
The tectono-stratigraphic relationships, depositional environments, rock associations, and major- and trace-element compositions of the late Archean (2744–2696 Ma) bimodal basalt–rhyolite volcanic rocks of the Michipicoten (Wawa) greenstone belt, Ontario, are compatible with an origin along a convergent plate margin that varied laterally from an immature island arc built on oceanic crust to a more mature arc underlain by continental crust. This environment is similar to that of the Cenozoic Taupo–Kermadec–Tonga volcanic zone. Michipicoten basaltic rocks, most of which are proximal deposits compositionally similar ([La/Yb]n = 0.63–1.18) to modern oceanic island-arc tholeiites, are interpreted as having formed along the largely submerged island arc. Voluminous Michipicoten rhyolitic pyroclastic rocks ([La/Yb]n = 4.3–18.7, Ybn = 5.7–15.9) probably erupted subaerially from the continental arc, with distal facies deposited subaqueously on the adjacent oceanic island arc and proximal facies deposited in subaerial and shallow subaqueous environments on, or along the flanks of, the continental arc. The compositional similarity between the lower (2744 Ma) and upper (2696 Ma) volcanic sequences of the belt suggests that this island- and continental-arc configuration existed for at least 45 Ma. The Michipicoten belt may be a remnant of a larger, laterally heterogeneous volcanic terrane that also included the Abitibi greenstone belt.
APA, Harvard, Vancouver, ISO, and other styles
3

Mroczek, Stefan, Martha K. Savage, Chet Hopp, and Steven M. Sewell. "Anisotropy as an indicator for reservoir changes: example from the Rotokawa and Ngatamariki geothermal fields, New Zealand." Geophysical Journal International 220, no. 1 (September 5, 2019): 1–17. http://dx.doi.org/10.1093/gji/ggz400.

Full text
Abstract:
SUMMARY We investigate the relation between geothermal field production and fracture density and orientation in the Ngatamariki and Rotokawa geothermal fields, located in the Taupo Volcanic Zone, New Zealand using shear wave splitting (SWS). We determine the SWS parameters for 17 702 microseismic events across 38 stations spanning close to 4 yr from 2012 to 2015. We compare the strength of anisotropy to changes in field production and injection. We also compare the orientation of the anisotropy to in situ and regional measurements of maximum horizontal stress orientation. ($S_{\mathrm{ H}_{\mathrm{ max}}}$). Due to the volume of unique events (approximately 160 000), shear wave phases are picked automatically. We carry out automatic SWS measurements using the Multiple Filter Automatic Splitting Technique (MFAST). The SWS measurements are interpreted in the context of stress aligned microcracks. Outside both fields and within Ngatamariki, fast polarizations align with the NE–SW regional orientation of $S_{\mathrm{ H}_{\max}}$. Within Rotokawa a greater complexity is observed, with polarizations tending toward N–S. We observe increases in per cent anisotropy coinciding with the start of production/injection in Ngatamariki and then a later correlated drop in per cent anisotropy and vP/vS ratios in southern Ngatamariki as injection is shifted to the north. This relationship is consistent with pore fluid pressure within the reservoir being affected by local changes in production and injection of geothermal fluids causing cracks to open and close in response.
APA, Harvard, Vancouver, ISO, and other styles
4

H., Findlay R. "Geometry, kinematics and regional significance of faulting and related lamprophyric intrusion in the mineralised zone at the Pu Sam Cap complex, Northwest Vietnam." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 4 (September 18, 2018): 320–40. http://dx.doi.org/10.15625/0866-7187/40/4/13102.

Full text
Abstract:
The alkali volcanics and intrusive rocks, dated at around 35-33Ma, are cut by mineralised northeast and east trending faults showing predominant evidence for strike-slip. Mineralisation includes haematite-Au-Cu and is accompanied by iron-rich alteration of the volcanic rocks. Detailed assessment of the geometry of the fault system at Pu Sam Cap suggests that the faults formed as a Riedel shear system during left-lateral slip within the Song Hong-Song Chay shear zone and the numerous contemporaneous northwest trending faults to the south; the northeast trending faults are interpreted as dextral “book-end’’ faults between major northwest trending faults enclosing the Pu Sam Cap massif. As mineralisation is hosted within these faults and is also associated with lamprohyric dykes it confirms a thermal event younger than the alkaline volcanics and syenitic intrusives at Pu Sam Cap, suggesting a hidden, young porphyry system. The age of faulting, and thus the maximum age for this young intrusive event, is attributed to the 23-21Ma period of late-stage left-lateral strike-slip motion across northwest Vietnam.ReferencesAnczkiewicz R., Viola G., Muntener O., Thrirlwall M., Quong N.Q., 2007. Structure and shearing conditions in the Day Nui Con Voi massif: implications for the evolution of the Red River Fault. Tectonics 26: TC2002.Cao Shunyun, Liu Junlai, Leis B., Zhao Chunquiang 2010. New zircon U/Pb geochronology of the post-kinematic granitic plutons in Diancang Shan Massif along the Ailao-Shan-Red River Shear Zone and its geological implications. Acta Geologica Sinica (English Edition), 84, 1474-1487.Chung S.-L., Lee T., Lo C., et al., 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone.Geology, 25, 311-314.Cloos H., 1928. Experimentezurinnern Tektonik. Zentralblatt fur Mineralogie und Palaeontologie, 1928, 609-621.Findlay R.H., Phan Trong Trinh 1997. The structural setting of the Song Ma region, Vietnam, and the Indochina-South China plate boundary problem. Gondwana Research, 1, 11-33.Jolivet L., Beysasac O., Goffe B., Avigad D., Leprevrier C., Maluski H., Ta Trong Thang, 2001. Oligo-Miocene midcrustal subhorizontal shear in Indochina. Tectonics, 20, 46-57.Khuong The Hung 2010. The complex tectonic events and their influence on formation of mineral deposits in northwest Vietnam. Unpublished PhD Thesis, University of Science and Technology, Cracow, 167p.Leloup P.H., N. Arnau, R. Lacassin, J.R. Kienast, T.M. Harrison, P.T. Trinh, A. Replumaz and P. Tapponnier, 2001. New constraints on the structure, thermochronology and timing of the Ailao Shan - Red river shear zone, SE Asia, J. G. R., 106, 6657-6671.Leloup PH.., R. Lacassin, P. Tapponnier, U. Scharer, Zhong Dalai, Liu Xaohan, Zhangshan, Ji Shaocheng and PT.Trinh, 1995. The Ailao Shan - Red river shear zone (Yunnan, China), Tertiary transform boundary of Indochina, Tectonophysics, 251, 3-84. Leprevier C., Maluski H., Nguyen Van Vuong, Roques D., Axente V., Rangin C., 1996. Indosinian NW-trending shear zones within the Truong Son belt, Vietnam: 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283, 105-107.Lien-Sheng Zhang, Scharer U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contributions to Mineralogy and Petrology, 134, 67-85.Nagy E.A., Scharer U., Minh N.T., 2000. Oligo-Miocene granitic magmatismin central Vietnam and implications for continental deformation in Indochina. Terra Nova, 12, 67-76.Nguyen Thi Bich Thuy, 2016. Isotop dating U-Pb Zircon of Syenit Formation, Pu Sam Cap. Journal of Geology, A Serie, 356, 30-36. (In Vietnamese).Pei-Long Wang, Ching-Hua Lo, Tung-Yi Lee, Sun-ling Chun, Ching-Yan Lan, Nguyen Trong Yem 1998. Thermochronological evidence for the movement of the Ailo Shan-Red River shear zone, a perspective from Vietnam. Geology, 26, 887-890.Phan Trong Trinh, Nguyen Trong Yem, Herve L.P., Tapponnier P., 1994. Late Cenozoic stress fields in North Vietnam from microtectonic measurements. Proceedings of the International Workshop on Seismotectonics and Seismic Hazard in Southeast Asia. Geological Survey of SR Vietnam, Hanoi, 182-186.Riedel W., 1929. Zur Mechanikgreologischer Brucherscheinungen. Zentralblatt fur Mineralogie und Palaeontologie, Abhandlung B, 354-368.Scharer U., Tapponnier P., Lacassin R., Leloup P.H., Dalai Z., Shaosheng J., 1990. Intraplate tectonics in Asia: a precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth and Planetary Science Letters, 97, 65-77.Scharer U., Zhang L.S., Tapponnier P., 1994. Duration of strike-slip movements in large shear zones: the Red River belt, China. Earth and Planetary Science Letters, 126, 379-397.Searle M.P., 2006. Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society, London, 163, 1025-1036.Searle M.P., Meng-Wan Yeh, Te-Hsien Lin, Sun-Lin Chung, 2010. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6, 316-338.Tapponnier P., Lacassin R., Leloup H., Scharer U., Zhong Dalai, Wu Hawei, Liu Ziaohan, Ji Shaocheng, Zhang Lianshang, Zong Jiayou, 1990. The Ailao Shan/ Red River metamorphic belt: Tertiary left-lateral shear between Indochina and south China. Nature, 342, 431-437.Tchalenko J.S., 1970. Similarities between shear zones of different magnitudes. Bulletin of the Geological Society of America, 81, 1625-1640.Viola G., Anczkiewicz R. 2009. Exhumation history of the Red River shear zone in northern Vietnam: new insights from zircon and apatite fission-track analysis. Journal of Asian Earth Sciences, 33, 78-90.Yang Yiseng, Hong Qun, Hu Huan-ting, Hieu Pham Trung, Nguyen Thi Bich Thuy, Chen Fu-kun, 2013. Geochemical characteristics and genesis of the Cenozoic porphyry in the Laizhou area, northwestern Vietnam. Acta Petrologica Sinica, 29(3), 899-911. (In Chinese with English abstract, full English version through Google Translate).
APA, Harvard, Vancouver, ISO, and other styles
5

"Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand." Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 343, no. 1668 (May 15, 1993): 205–306. http://dx.doi.org/10.1098/rsta.1993.0050.

Full text
Abstract:
Taupo volcano is the southerly of two dormant caldera volcanoes in the rhyolite-dominated central portion of the Taupo Volcanic Zone in the North Island of New Zealand. Taupo has an average magma output rate of 0.2 m 3 s -1 over the past 65 000 years, and is one of the most frequently active and productive rhyolite volcanoes known. The structure of the modern ‘inverse’ volcano was formed largely by caldera collapse associated with the voluminous 22 600 14 C years BP Oruanui eruption, and has been little modified since except for collapse following the 1850 14 C years BP eruption. The products of 28 eruptions (labelled T, f2, A, ..., Z), all of which post-date the Oruanui eruption, are defined and described here. Twenty-seven of these eruptions are represented by pyroclastic deposits (of which three were accompanied by a mappable lava extrusion), and one eruption (Z) solely by evidence for a lava extrusion. The deposits of seven eruptions (B, C, E, S, V, X and Y) largely correspond to previously defined tephra formations (Karapiti, Poronui, Opepe, Waimihia, Whakaipo, Mapara and Taupo, respectively). The previously defined Motutere and Hinemaiaia Tephras are reinterpreted to represent the products of 12 eruptions (G to R), while the remaining eight deposits and one eruption are newly recognized. Eruption T occurred at ca . 17200 14 C or 20500 calibrated years BP and eruption Z about 1740 calibrated years BP. Eruption volumes vary by more than three orders of magnitude between 0.01 and more than 44 km 3 , and repose periods by more than two orders of magnitude from ca . 20 to 6000 years. The eruption deposits reflect great variations in parameters such as volume, the dispersal characteristics of the fall deposits, the presence or absence of intraeruptive time breaks, the formation of pyroclastic flows, the degree of magmawater interaction, the vesiculation state of the magma on fragmentation and the relative proportions of juvenile obsidian versus foreign lithologies in the lithic fractions. All but seven fall deposits are plinian in dispersal; two (Y1 and probably W) are sub-plinian, one (Y5) has been termed ‘ultraplinian’, while 4/ and A are too poorly preserved for their dispersal to be assessed. The lengths of repose periods in the post-Oruanui sequence range are not randomly distributed but show self-similar properties (fractal dimensionality); repose intervals ( r , in years) of not more than 350 years follow n = 53.5r-0'21, and those of not less than 350 years follow n = 2096 r -0-83 , where n is the number of eruptions. The shorter repose periods may reflect triggering processes, such as regional extension, affecting magma bodies during their viable lifetimes, while longer repose intervals (i.e. not less than 350 years) may reflect an episodicity of major rifting events or the production of magma bodies below the volcano. Bulk volumes ( v , in km 3 ) of the eruption products also show self-similar properties (fractal dimensionality), with n = 6.17 v -0.46 . However, there are then apparently random relationships between eruption volumes and the preceding or succeeding repose period such that prediction of the time and size of the next eruption is impossible. The post-Oruanui activity at Taupo represents ‘noise’ superimposed on the more uniform, longer term activity in the central Taupo Volcanic Zone, where large (greater than 100 km 3 ) eruptions, such as the Oruanui, occur at more evenly spaced intervals of one per 40-60000 years.
APA, Harvard, Vancouver, ISO, and other styles
6

Romano, Valentina, Patricia M. Gregg, Yan Zhan, Daniel J. Fornari, Michael R. Perfit, Dorsey Wanless, Maurizio Battaglia, and Molly Anderson. "The formation of the 8˚20’ N seamount chain, east pacific rise." Marine Geophysical Research 43, no. 4 (November 10, 2022). http://dx.doi.org/10.1007/s11001-022-09502-z.

Full text
Abstract:
AbstractNear-axis seamounts provide a unique setting to investigate three-dimensional mantle processes associated with the formation of new oceanic crust and lithosphere. Here, we investigate the characteristics and evolution of the 8˚20’N Seamount Chain, a lineament of seamounts that extends ~ 175 km west of the East Pacific Rise (EPR) axis, just north of the fracture zone of the Siqueiros Transform Fault. Shipboard gravity, magnetic, and bathymetric data acquired in 2016 are utilized to constrain models of seamount emplacement and evolution. Geophysical observations indicate that these seamounts formed during four distinct episodes of volcanism coinciding with changes in regional plate motion that are also reflected in the development of intra-transform spreading centers (ITSCs) along the Siqueiros transform fault (Fornari et al. 1989; Pockalny et al. 1997). Although volcanism is divided into distinct segments, the magnetic data indicate continuous volcanic construction over long portions of the chain. Crustal thickness variations along the chain up to 0.75 km increase eastward, inferred from gravity measurements, suggest that plate reorganization has considerably impacted melt distribution in the area surrounding the Siqueiros-EPR ridge transform intersection. This appears to have resulted in increased volcanism and the formation of the 8˚20’N Seamounts. These findings indicate that melting processes in the mantle and subsequently the formation of new oceanic crust and lithosphere are highly sensitive to tectonic stress changes in the vicinity of fast-spreading transform fault offsets.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography