Academic literature on the topic 'Targeted Maximum Likelihood Estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Targeted Maximum Likelihood Estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Targeted Maximum Likelihood Estimation"
Pang, Menglan, Tibor Schuster, Kristian B. Filion, Maria Eberg, and Robert W. Platt. "Targeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research." Epidemiology 27, no. 4 (July 2016): 570–77. http://dx.doi.org/10.1097/ede.0000000000000487.
Full textLendle, Samuel D., Bruce Fireman, and Mark J. van der Laan. "Targeted maximum likelihood estimation in safety analysis." Journal of Clinical Epidemiology 66, no. 8 (August 2013): S91—S98. http://dx.doi.org/10.1016/j.jclinepi.2013.02.017.
Full textZheng, Wenjing, and Mark J. van der Laan. "Targeted Maximum Likelihood Estimation of Natural Direct Effects." International Journal of Biostatistics 8, no. 1 (January 6, 2012): 1–40. http://dx.doi.org/10.2202/1557-4679.1361.
Full textDijkhuis, Talko B., and Frank J. Blaauw. "Transfering Targeted Maximum Likelihood Estimation for Causal Inference into Sports Science." Entropy 24, no. 8 (July 31, 2022): 1060. http://dx.doi.org/10.3390/e24081060.
Full textSchuler, Megan S., and Sherri Rose. "Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies." American Journal of Epidemiology 185, no. 1 (December 9, 2016): 65–73. http://dx.doi.org/10.1093/aje/kww165.
Full textLuque-Fernandez, Miguel Angel, Michael Schomaker, Bernard Rachet, and Mireille E. Schnitzer. "Targeted maximum likelihood estimation for a binary treatment: A tutorial." Statistics in Medicine 37, no. 16 (April 23, 2018): 2530–46. http://dx.doi.org/10.1002/sim.7628.
Full textCho, Sunyoung, Heejo Koo, Beom Kyung Kim, and Euna Han. "Causal Analyses of Statin to Prevent Liver Disease Progression: A Nationwide Study Using Superlearning Targeted Maximum Likelihood Estimation." Yakhak Hoeji 68, no. 1 (February 28, 2024): 44–55. http://dx.doi.org/10.17480/psk.2024.68.1.44.
Full textCai, Weixin, and Mark J. Laan. "One‐step targeted maximum likelihood estimation for time‐to‐event outcomes." Biometrics 76, no. 3 (November 28, 2019): 722–33. http://dx.doi.org/10.1111/biom.13172.
Full textStitelman, Ori M., C. William Wester, Victor De Gruttola, and Mark J. van der Laan. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis." International Journal of Biostatistics 7, no. 1 (January 30, 2011): 1–34. http://dx.doi.org/10.2202/1557-4679.1307.
Full textGrossman, J., M. Ghadessi, A. Contijoch, H. Ostojic, A. Cervantes, J. M. O'Connor, and M. Ducreux. "MSR75 Correlate: Assessing Dose Effect Using Targeted Maximum Likelihood Estimation (TMLE)." Value in Health 26, no. 12 (December 2023): S407. http://dx.doi.org/10.1016/j.jval.2023.09.2134.
Full textDissertations / Theses on the topic "Targeted Maximum Likelihood Estimation"
Schnitzer, Mireille. "Targeted maximum likelihood estimation for longitudinal data." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114242.
Full textDes méthodes d'analyse causale semi-paramétriques et efficaces ont été développées pour estimer les paramètres causaux efficacement et de façon robuste. Comme c'est le cas en général pour l'estimation causale, ces méthodes se basent sur un ensemble d'hypothèses mathématiques qui impliquent que la structure causale et les facteurs de confusion doivent être connus. La méthode d'estimation par le maximum de vraisemblance ciblé (TMLE) se veut une amélioration des équations d'estimation efficaces: elle a les propriétés de double robustesse (sans biais même avec une erreur de spécification partielle) et d'efficacité semi-paramétrique, mais peut également garantir des estimés finis pour les paramètres et la production d'un seul estimé en plus d'être robuste si les données sont éparses. Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles recherches sur l'analyse avec le TMLE de données longitudinales et de données de survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit décrit la construction d'un TMLE à deux points dans le temps avec une distribution de la famille exponentielle généralisée comme fonction de perte du modèle de la réponse. Il démontre à l'aide d'une étude de simulation la robustesse de la version continue de cet algorithme TMLE, et utilise une version Poisson de la méthode pour une analyse simplifiée de l'étude PROmotion of Breastfeeding Intervention Trial (PROBIT) qui donne des signes d'un effet causal protecteur de l'allaitement sur les infections gastrointestinales. Le deuxième manuscrit présente une description de plusieurs estimateurs de substitution pour données longitudinales, une implémentation spéciale de la méthode TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie déjà développée), lequel est implémenté de façon non-paramétrique avec le Super Learner. Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier manuscrit et offre des avantages en terme de calcul et de facilité d'implémentation. L'analyse compare les moyennes de dénombrements du nombre d'infections gastrointestinales dans la première année de vie d'un nouveau-né par durée d'allaitement et avec aucune censure, et conclut à la présence d'un effet protecteur. Des données simulées semblables au jeu de données PROBIT sont également générées, et la performance du TMLE de nouveau étudiée. Le troisième manuscrit développe une méthodologie pour estimer des modèles structurels marginaux pour données de survie. En utilisant l'algorithme séquentiel du TMLE longitudinal pour estimer des courbes de survie spécifiques à l'exposition pour tous les patrons d'exposition, il montre une façon de combiner les inférences pour modéliser la réponse à l'aide d'une spécification linéaire. Cet article présente la construction théorique de deux différents types de modèles structurels marginaux (modélisant le log du rapport des chances de survie et le risque) et présente une étude de simulation démontrant l'absence de biais de la technique. Il décrit ensuite une analyse de l'Étude de la Cohorte Canadienne de Co-Infection à l'aide d'une des méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de risque du développement de la maladie chronique du foie (ESLD) conditionnellement au temps et à l'élimination du virus de l'hépatite C.
Sarovar, Varada. "Targeted Maximum Likelihood Estimation for Evaluation of the Health Impacts of Air Pollution." Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10279902.
Full textThe adverse effects of air pollution on human life is of serious concern for today’s society. Two population groups that are especially vulnerable to air pollution are pregnant women and their growing fetuses, and the focus of this thesis is to study the effects of air pollution on these populations. In order to address the methodological limitations in prior research, we quantify the impact of air pollution on various adverse pregnancy outcomes, utilizing machine learning and novel causal inference methods. Specifically, we utilize two semi-parametric, double robust, asymptotically efficient substitution estimators to estimate the causal attributable risk of various pregnancy outcomes of interest. Model fitting via machine learning algorithms helps to avoid reliance on misspecified parametric models and thereby improve both the robustness and precision of our estimates, ensuring meaningful statistical inference. Under assumptions, the causal attributable risk that we estimate translates to the absolute change in adverse pregnancy outcome risk that would be observed under a hypothetical intervention to change pollution levels, relative to currently observed levels. The estimated causal attributable risk provides a quantitative estimate of a quantity with more immediate public health and policy relevance.
Khanafer, Sajida. "Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23422.
Full textRuprecht, Jürg. "Maximum likelihood estimation of multipath channels /." [S.l.] : [s.n.], 1989. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8789.
Full textHorbelt, Werner. "Maximum likelihood estimation in dynamical systems." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963810812.
Full textSabbagh, Yvonne. "Maximum Likelihood Estimation of Hammerstein Models." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2061.
Full textIn this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated.
Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input.
Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.
Leeuw, Johannes Leonardus van der. "Maximum likelihood estimation of exact ARMA models /." Tilburg : Tilburg University Press, 1997. http://www.gbv.de/dms/goettingen/265169976.pdf.
Full textEhlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Full textZou, Yiqun. "Attainment of Global Convergence in Maximum Likelihood Estimation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511845.
Full textMariano, Machado Robson José. "Penalised maximum likelihood estimation for multi-state models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10060352/.
Full textBooks on the topic "Targeted Maximum Likelihood Estimation"
Eliason, Scott. Maximum Likelihood Estimation. 2455 Teller Road, Newbury Park California 91320 United States of America: SAGE Publications, Inc., 1993. http://dx.doi.org/10.4135/9781412984928.
Full textEggermont, P. P. B., and V. N. LaRiccia. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-0716-1244-6.
Full textLaRiccia, Vincent N., and Paul P. Eggermont. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b12285.
Full textN, LaRiccia V., ed. Maximum penalized likelihood estimation. New York: Springer, 2001.
Find full textMillar, Russell B. Maximum Likelihood Estimation and Inference. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470094846.
Full textJeffrey, Pitblado, Sribney William, and Stata Corporation, eds. Maximum likelihood estimation with stata. 3rd ed. College Station, Tex: Stata Press, 2006.
Find full textS, Pitblado Jeffrey, and Poi Brian, eds. Maximum likelihood estimation with Stata. 4th ed. College Station, Tex: Stata Press, 2010.
Find full textNagelkerke, Nico J. D. Maximum Likelihood Estimation of Functional Relationships. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2858-5.
Full textNagelkerke, Nico J. D. Maximum likelihood estimation of functional relationships. Berlin: Springer-Verlag, 1992.
Find full textRuprecht, Jürg. Maximum-likelihood estimation of multipath channel. Konstanz: Hartung-Gorre, 1989.
Find full textBook chapters on the topic "Targeted Maximum Likelihood Estimation"
Gruber, Susan, and Mark van der Laan. "Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies." In Biopharmaceutical Applied Statistics Symposium, 1–23. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7826-2_1.
Full textBaig, Nauman Anwar, Muhammad Anwar Baig, Thawban Anwar Baig, Adnan Anwar Baig, and Abdullah Anwar Baig. "Estimation of Phase, Range, Doppler of Targets Using Maximum Likelihood Estimator." In Proceedings of the Future Technologies Conference (FTC) 2018, 483–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02683-7_34.
Full textHeidenreich, Philipp, and Abdelhak M. Zoubir. "Computational Aspects of Maximum Likelihood DOA Estimation of Two Targets with Applications to Automotive Radar." In Smart Mobile In-Vehicle Systems, 3–18. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9120-0_1.
Full textKelley Pace, R. "Maximum Likelihood Estimation." In Handbook of Regional Science, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-36203-3_88-1.
Full textLee, Myoung-jae. "Maximum Likelihood Estimation." In Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models, 41–67. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2550-6_4.
Full textNguyen, Hung T., and Gerald S. Rogers. "Maximum Likelihood Estimation." In Springer Texts in Statistics, 129–36. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8914-9_20.
Full textPan, Jian-Xin, and Kai-Tai Fang. "Maximum Likelihood Estimation." In Growth Curve Models and Statistical Diagnostics, 77–158. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21812-0_3.
Full textBrown, Jonathon D. "Maximum-Likelihood Estimation." In Linear Models in Matrix Form, 69–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_3.
Full textKrolzig, Hans-Martin. "Maximum Likelihood Estimation." In Lecture Notes in Economics and Mathematical Systems, 89–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-51684-9_7.
Full textHaynes, Winston. "Maximum Likelihood Estimation." In Encyclopedia of Systems Biology, 1190–91. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1235.
Full textConference papers on the topic "Targeted Maximum Likelihood Estimation"
Zheng, Hao, Yong Cheng, and Yang Liu. "Maximum Expected Likelihood Estimation for Zero-resource Neural Machine Translation." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/594.
Full textMoghari, Mehdi Hedjazi, and Purang Abolmaesumi. "Maximum likelihood estimation of the distribution of target registration error." In Medical Imaging, edited by Michael I. Miga and Kevin R. Cleary. SPIE, 2008. http://dx.doi.org/10.1117/12.768868.
Full textZhang, Mengdi, Hongyi Lu, Shiyin Li, and Zhiwei Li. "Maneuvering target imaging and motion parameter estimation based on improved maximum likelihood estimation." In IET International Radar Conference (IRC 2023). Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/icp.2024.1674.
Full textSchatzberg, Alon, Anthony J. Devaney, and Ross Deming. "Maximum likelihood estimation of target location in acoustic and electromagnetic imaging." In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887557.
Full textRamsay, Gordon, and Li Deng. "Maximum-likelihood estimation for articulatory speech recognition using a stochastic target model." In 4th European Conference on Speech Communication and Technology (Eurospeech 1995). ISCA: ISCA, 1995. http://dx.doi.org/10.21437/eurospeech.1995-225.
Full textBaum, Marcus, and Peter Willett. "A hybrid data association model for efficient multi-target maximum likelihood estimation." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854395.
Full textDianat, Mojtaba, Mohammad Reza Taban, and Ali Akbar Tadaion. "A new approach for target localization using Maximum Likelihood Estimation in MIMO radar." In 2011 24th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2011. http://dx.doi.org/10.1109/ccece.2011.6030554.
Full textLu, Chengye, Jinzhou Li, Miao Wang, and Jinfeng Hu. "Parameter Estimation for Maneuvering Target in OTHR Relying on Improved Maximum-Likelihood Algorithm." In 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS). IEEE, 2019. http://dx.doi.org/10.1109/iucc/dsci/smartcns.2019.00143.
Full textVikalo, H., B. Hassibi, and A. Hassibi. "On joint maximum-likelihood estimation of PCR efficiency and initial amount of target." In 2006 IEEE International Workshop on Genomic Signal Processing and Statistics. IEEE, 2006. http://dx.doi.org/10.1109/gensips.2006.353149.
Full textHou, Wang, Gucan Long, Zhihui Lei, and Jing Dong. "The small target detection based on maximum likelihood estimation and spot detection operator." In Selected Proceedings of the Photoelectronic Technology Committee Conferences held July-December 2013, edited by Jorge Ojeda-Castaneda, Shensheng Han, Ping Jia, Jiancheng Fang, Dianyuan Fan, Liejia Qian, Yuqiu Gu, and Xueqing Yan. SPIE, 2014. http://dx.doi.org/10.1117/12.2054032.
Full textReports on the topic "Targeted Maximum Likelihood Estimation"
Ljung, Lennart, Sanjoy K. Mitter, and Jose M. Moura. Optimal Recursive Maximum Likelihood Estimation,. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada187980.
Full textAdams, Terry. Maximum Likelihood Estimation: Some Basics. Office of Scientific and Technical Information (OSTI), January 2025. https://doi.org/10.2172/2496644.
Full textAit-Sahalia, Yacine, and Robert Kimmel. Maximum Likelihood Estimation of Stochastic Volatility Models. Cambridge, MA: National Bureau of Economic Research, June 2004. http://dx.doi.org/10.3386/w10579.
Full textBates, David. Maximum Likelihood Estimation of Latent Affine Processes. Cambridge, MA: National Bureau of Economic Research, May 2003. http://dx.doi.org/10.3386/w9673.
Full textAvdis, Efstathios, and Jessica Wachter. Maximum likelihood estimation of the equity premium. Cambridge, MA: National Bureau of Economic Research, November 2013. http://dx.doi.org/10.3386/w19684.
Full textAinsleigh, P. L., J. D. George, and V. K. Jain. Maximum Likelihood Parameter Estimation for Acoustic Transducer Calibration. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada204923.
Full textMoore, Terrence, and Brian Sadler. Maximum-Likelihood Estimation and Scoring Under Parametric Constraints. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada448612.
Full textDiebold, Francis, and Til Schuermann. Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models. Cambridge, MA: National Bureau of Economic Research, April 1996. http://dx.doi.org/10.3386/t0194.
Full textHall, Jr, Lehnigk Charles E., Viswanath Siegfried H., and Guttalu R. Maximum-Likelihood Parameter Estimation of a Generalized Gumbel Distribution. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207994.
Full textLake, Douglas. Efficient Maximum Likelihood Estimation for Multiple and Coupled Harmonics. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada372834.
Full text