Academic literature on the topic 'Target domain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Target domain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Target domain"
Li, Haoliang, Wen Li, and Shiqi Wang. "Discovering and incorporating latent target-domains for domain adaptation." Pattern Recognition 108 (December 2020): 107536. http://dx.doi.org/10.1016/j.patcog.2020.107536.
Full textChoi, Jongwon, Youngjoon Choi, Jihoon Kim, Jinyeop Chang, Ilhwan Kwon, Youngjune Gwon, and Seungjai Min. "Visual Domain Adaptation by Consensus-Based Transfer to Intermediate Domain." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 10655–62. http://dx.doi.org/10.1609/aaai.v34i07.6692.
Full textXu, Yifan, Kekai Sheng, Weiming Dong, Baoyuan Wu, Changsheng Xu, and Bao-Gang Hu. "Towards Corruption-Agnostic Robust Domain Adaptation." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 4 (November 30, 2022): 1–16. http://dx.doi.org/10.1145/3501800.
Full textGLYNN, Paul. "Neuropathy target esterase." Biochemical Journal 344, no. 3 (December 8, 1999): 625–31. http://dx.doi.org/10.1042/bj3440625.
Full textYe, Fei, and Mingjie Zhang. "Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures." Biochemical Journal 455, no. 1 (September 13, 2013): 1–14. http://dx.doi.org/10.1042/bj20130783.
Full textYeung, W. K., and S. Evans. "Time-domain microwave target imaging." IEE Proceedings H Microwaves, Antennas and Propagation 132, no. 6 (1985): 345. http://dx.doi.org/10.1049/ip-h-2.1985.0063.
Full textXu, Minghao, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang. "Adversarial Domain Adaptation with Domain Mixup." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6502–9. http://dx.doi.org/10.1609/aaai.v34i04.6123.
Full textRen, Chuan-Xian, Yong-Hui Liu, Xi-Wen Zhang, and Ke-Kun Huang. "Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain." IEEE Transactions on Image Processing 31 (2022): 2122–35. http://dx.doi.org/10.1109/tip.2022.3152052.
Full textJin, Wei, and Nan Jia. "Learning Transferable Convolutional Proxy by SMI-Based Matching Technique." Shock and Vibration 2020 (October 14, 2020): 1–15. http://dx.doi.org/10.1155/2020/8873137.
Full textDoğan, Tunca, Ece Akhan Güzelcan, Marcus Baumann, Altay Koyas, Heval Atas, Ian R. Baxendale, Maria Martin, and Rengul Cetin-Atalay. "Protein domain-based prediction of drug/compound–target interactions and experimental validation on LIM kinases." PLOS Computational Biology 17, no. 11 (November 29, 2021): e1009171. http://dx.doi.org/10.1371/journal.pcbi.1009171.
Full textDissertations / Theses on the topic "Target domain"
Gustafsson, Fredrik, and Erik Linder-Norén. "Automotive 3D Object Detection Without Target Domain Annotations." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148585.
Full textCollins, K. M. "Target recognition by multi-domain RNA-binding proteins." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1460867/.
Full textDavis, Alicia Morgan. "CHARACTERIZATION OF INFLUENZA NUCLEOPROTEIN BODY DOMAIN AS ANTIVIRAL TARGET." CSUSB ScholarWorks, 2016. https://scholarworks.lib.csusb.edu/etd/364.
Full textBishoff, Josef P. "Target detection using oblique hyperspectral imagery : a domain trade study /." Online version of thesis, 2008. http://hdl.handle.net/1850/7834.
Full textAtkins, Jane. "Biochemical characterisation of the catalytic domain of neuropathy target esterase." Thesis, University of Leicester, 2000. http://hdl.handle.net/2381/29643.
Full textKucheruk, Liliya. "Modern English Legal Terminology : linguistic and cognitive aspects." Thesis, Bordeaux 3, 2013. http://www.theses.fr/2013BOR30016/document.
Full textThe present doctoral dissertation entitled “Modern English Legal Terminology: linguistic and cognitive aspects” investigates the contemporary legal idiom, from a cognitive linguistics perspective. The aim of this study is to map out the peculiarities of English legal terminology and develop principles of systematization, within the framework of conceptual metaphor theory. This means 1) determining the basic concepts used metaphorically in English legal language, and 2) establishing the main cross-domain mappings and correlations between separate items within concrete domains.The Corpus of Legal English (COLE) was set up and a quantitative analysis performed, in which metaphorical expressions related to legal terminology were searched for and classified on the basis of meanings, conceptual domains and mappings. Thus, the conceptual metaphors of WAR, MEDICINE, SPORT and CONSTRUCTION were found to be the most numerous and valuable in Legal English. The main cross-domain mappings between these source domains and the target domain of LAW were established.In order to carry out this data-driven study, 156 legal texts were selected and compiled into the Corpus of Legal English (COLE). The source-texts represent various thematic categories. The COLE was systematically used to interpret frequency counts from the point of view of conceptual metaphor theory
Дисертаційне дослідження на тему «Сучасна англійська юридична термінологія: лінгвокогнитивний аспект» досліджує сучасну мову права з точки зору когнітивної лінгвістики. Головною метою дослідження було дослідження особливостей англійської юридичної термінології та принципів її систематизації з точки зору когнітивної теорії і власне теорії концептуальної метафори. В ході написання роботи були поставлені наступні цілі: 1) визначити головні концепти які використовуються у якості метафор в англійській мові права; 2) встановити головні концептуальні зв’язки між окремими елементами доменів.З метою вирішення цих питань і задач був проведений кількісний аналіз корпусу юридичної англійської мови. В ході цього аналізу біли виділені та класифіковані метафоричні вирази які пов’язані з юридичною термінологією згідно їх метафоричного значення. В результаті аналізу було виявлено що концептуальні метафори WAR, MEDICINE, SPORT та CONSTRUCTION займають домінуюче положення в мові права. Також були встановлені основні концептуальні зв’язки між сферою-джерелом та сферою-ціллю.В даному дослідженні було використано спеціально створений корпус, який включає в себе 156 правових текстів різноманітної сюжетної направленості, для проведення кількісного аналізу з точки зору концептуальної метафори
Niemiec, Moritz Sebastian. "Human copper ion transfer : from metal chaperone to target transporter domain." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100511.
Full textSchaus, Brian M. "Improving maritime domain awareness using neural networks for target of interest classification." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45252.
Full textTechniques for classifying maritime domain targets-of-interest within images are explored in this thesis. Geometric and photometric features within each image are extracted from processed images and are used to train a neural network. The trained neural network is tested with features of a known object. In the binary classification case, the neural network is used to determine whether a ship is present or not present in the image. In the multi-class and multi-level classification cases, the neural network is used to determine if the object belongs to one of four classes specified: warship, cargo ship, small boat, or other. The Hough transformation is used to identify and characterize linear patterns exhibited by objects in images. As an alternative to geometric and photometric features to classify targets-of-interest, these linear patterns are used to train a neural network. The performance of the neural network is then tested for binary, multi-class, and multi-level classification schemes. The development of neural-network-based techniques for automated target-of-interest classification is a significant result of this thesis.
Ferrari, Giovanna Maria. "The interaction of the α2 chimaerin SH2 domain with target proteins." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325678.
Full textChen, Yen-Lun. "Margin and Domain Classifications for Target Detection over Huge Population of Outliers." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269539889.
Full textBooks on the topic "Target domain"
Dewey, John K. Electrostatic target detection: A preliminary investigation. Monterey, Calif: Naval Postgraduate School, 1994.
Find full textLee, Christina. The SH3 domain of the yeast protein Fus1 binds and unusual target sequence. Ottawa: National Library of Canada, 2002.
Find full textBehrle, Charles D. Computer simulation studies of multiple broadband target localization via frequency domain beamforming for planar arrays. Monterey, California: Naval Postgraduate School, 1988.
Find full textBerube, Christina Louise. Characterization of PIDD, a death domain-containing p53 target gene. 2006.
Find full textBohon, Cara. Research Domain Criteria. Edited by W. Stewart Agras and Athena Robinson. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190620998.013.2.
Full textAnagnostopoulou, Elena. Voice, manners, and results in adjectival passives. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198767886.003.0005.
Full textGoldman, Alvin I. Theory of Mind. Edited by Eric Margolis, Richard Samuels, and Stephen P. Stich. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780195309799.013.0017.
Full textSkopeteas, Stavros. Information Structure in Modern Greek. Edited by Caroline Féry and Shinichiro Ishihara. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199642670.013.15.
Full textPillai, Jagan A. Predementia Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0009.
Full textAxel-Tober, Katrin. Origins of verb-second in Old High German. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813545.003.0003.
Full textBook chapters on the topic "Target domain"
Ranger, Graham. "Anyway: Configuration by Target Domain." In Discourse Markers, 93–134. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70905-5_3.
Full textDalgaard, Johnny. "ISPS Code Implementation: Overkill and Off-Target." In Sustainability in the Maritime Domain, 131–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69325-1_7.
Full textZuo, Hua, Guangquan Zhang, and Jie Lu. "Fuzzy Domain Adaptation Using Unlabeled Target Data." In Neural Information Processing, 242–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04182-3_22.
Full textLv, Fengmao, Hao Chen, Jinzhao Wu, Linfeng Zhong, Xiaoyu Li, and Guowu Yang. "Improving Target Discriminability for Unsupervised Domain Adaptation." In Neural Information Processing, 287–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04221-9_26.
Full textBracamonte, Javier, Michael Ansorge, Fausto Pellandini, and Pierre-André Farine. "Efficient Compressed Domain Target Image Search and Retrieval." In Lecture Notes in Computer Science, 154–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11526346_19.
Full textMartin, Douglas W., and Whitlow W. L. Au. "An Automatic Target Recognition Algorithm Using Time-Domain Features." In Animal Sonar, 829–33. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7493-0_89.
Full textMironov, Ilya. "Domain Extension for Enhanced Target Collision-Resistant Hash Functions." In Fast Software Encryption, 153–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13858-4_9.
Full textZhou, Haiyan. "Design of Bifunctional Antisense Oligonucleotides for Exon Inclusion." In Methods in Molecular Biology, 53–62. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_3.
Full textGe, Hongwei, Yao Yao, Zheng Chen, and Liang Sun. "Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Multi-domain Image Translation." In Computer Vision – ACCV 2018, 398–413. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20890-5_26.
Full textSchultz, Joachim E., Torsten Dunkern, Elvira Gawlitta-Gorka, and Gabriele Sorg. "The GAF-Tandem Domain of Phosphodiesterase 5 as a Potential Drug Target." In Phosphodiesterases as Drug Targets, 151–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17969-3_6.
Full textConference papers on the topic "Target domain"
Weeks, Deborah, and Samuel Rivera. "Domain adaptation by topology regularization." In Automatic Target Recognition XXXI, edited by Timothy L. Overman, Riad I. Hammoud, and Abhijit Mahalanobis. SPIE, 2021. http://dx.doi.org/10.1117/12.2585705.
Full textZhang, Xiaohong, Haofeng Zhang, Jianfeng Lu, Ling Shao, and Jingyu Yang. "Target-targeted Domain Adaptation for Unsupervised Semantic Segmentation." In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9560785.
Full textLiang, Jian, Dapeng Hu, and Jiashi Feng. "Domain Adaptation with Auxiliary Target Domain-Oriented Classifier." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.01636.
Full textTang, Jianheng, Tiancheng Zhao, Chenyan Xiong, Xiaodan Liang, Eric Xing, and Zhiting Hu. "Target-Guided Open-Domain Conversation." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-1565.
Full textHavlicek, Joseph P., Chuong T. Nguyen, and Mark Yeary. "Modulation domain infrared target models." In Defense and Security Symposium, edited by Wendell R. Watkins and Dieter Clement. SPIE, 2006. http://dx.doi.org/10.1117/12.666340.
Full textYao, Chun-Han, Boqing Gong, Hang Qi, Yin Cui, Yukun Zhu, and Ming-Hsuan Yang. "Federated Multi-Target Domain Adaptation." In 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2022. http://dx.doi.org/10.1109/wacv51458.2022.00115.
Full textPeng, Minlong, Qi Zhang, Yu-gang Jiang, and Xuanjing Huang. "Cross-Domain Sentiment Classification with Target Domain Specific Information." In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/p18-1233.
Full textZhu, Feng, Yan Wang, Chaochao Chen, Guanfeng Liu, and Xiaolin Zheng. "A Graphical and Attentional Framework for Dual-Target Cross-Domain Recommendation." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/415.
Full textOsahor, Uche, and Nasser Nasrabadi. "Deep adversarial attack on target detection systems." In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, edited by Tien Pham. SPIE, 2019. http://dx.doi.org/10.1117/12.2518970.
Full textWawer, Aleksander. "Towards Domain-Independent Opinion Target Extraction." In 2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE, 2015. http://dx.doi.org/10.1109/icdmw.2015.255.
Full textReports on the topic "Target domain"
Hammerman, Peter. Characterization of the Discoidin Domain Receptor 2 Kinase as a Novel Therapeutic Target for Squamous Cell Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada573105.
Full textFluhr, Robert, and Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697123.bard.
Full textAnderson, Gerald L., and Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Full textFromm, Hillel, and Joe Poovaiah. Calcium- and Calmodulin-Mediated Regulation of Plant Responses to Stress. United States Department of Agriculture, September 1993. http://dx.doi.org/10.32747/1993.7568096.bard.
Full textEshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Full textMei, Kenneth K. Time Domain Scattering of Focused Electromagnetic Beam by Lossy Targets. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada227741.
Full textCurran, Meghan. Soft Targets & Black Markets: Terrorist Activities in the Maritime Domain. One Earth Future, May 2019. http://dx.doi.org/10.18289/oef.2019.038.
Full textGafni, Yedidya, Moshe Lapidot, and Vitaly Citovsky. Dual role of the TYLCV protein V2 in suppressing the host plant defense. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597935.bard.
Full textZhang, Zhongfei. Qualitive Detection of Independently Moving Targets in MPEG Video Within the Compressed Domain. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427149.
Full textSongyang, Zhou. A Proteomic Approach to Identify Phosphorylation-Dependent Targets of BRCT Domains. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada487327.
Full text