Journal articles on the topic 'Target binding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Target binding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cheung, S. H., G. E. Legge, S. T. L. Chung, and B. S. Tjan. "Target-flanker binding releases crowding." Journal of Vision 6, no. 6 (March 24, 2010): 807. http://dx.doi.org/10.1167/6.6.807.
Full textPOOLSAP, UNYANEE, YUKI KATO, KENGO SATO, and TATSUYA AKUTSU. "USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs." Journal of Bioinformatics and Computational Biology 09, no. 06 (December 2011): 697–713. http://dx.doi.org/10.1142/s0219720011005628.
Full textJOHNSTON, Angus, and Eva VAN DER MAREL. "How Binding are the EU’s ‘Binding’ Renewables Targets?" Cambridge Yearbook of European Legal Studies 18 (August 9, 2016): 176–214. http://dx.doi.org/10.1017/cel.2016.7.
Full textPark, Keunwan, Young-Joon Ko, Prasannavenkatesh Durai, and Cheol-Ho Pan. "Machine learning-based chemical binding similarity using evolutionary relationships of target genes." Nucleic Acids Research 47, no. 20 (August 31, 2019): e128-e128. http://dx.doi.org/10.1093/nar/gkz743.
Full textLipovsek, D. "Adnectins: engineered target-binding protein therapeutics." Protein Engineering Design and Selection 24, no. 1-2 (November 10, 2010): 3–9. http://dx.doi.org/10.1093/protein/gzq097.
Full textChen, Zihao, Long Hu, Bao-Ting Zhang, Aiping Lu, Yaofeng Wang, Yuanyuan Yu, and Ge Zhang. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (March 30, 2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Full textMolina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, Takahiro Seki, E. Andreas Larsson, Chen Dan, Lekshmy Sreekumar, Yihai Cao, and Pär Nordlund. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay." Science 341, no. 6141 (July 4, 2013): 84–87. http://dx.doi.org/10.1126/science.1233606.
Full textYim, Hyung-Soon, and Jae-Hak Lee. "Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites." Journal of Marine Bioscience and Biotechnology 7, no. 2 (December 31, 2015): 35–41. http://dx.doi.org/10.15433/ksmb.2015.7.2.035.
Full textGanotra, Gaurav K., and Rebecca C. Wade. "Prediction of Drug–Target Binding Kinetics by Comparative Binding Energy Analysis." ACS Medicinal Chemistry Letters 9, no. 11 (October 4, 2018): 1134–39. http://dx.doi.org/10.1021/acsmedchemlett.8b00397.
Full textHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (August 17, 2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Full textBriskin, Daniel, Peter Y. Wang, and David P. Bartel. "The biochemical basis for the cooperative action of microRNAs." Proceedings of the National Academy of Sciences 117, no. 30 (July 13, 2020): 17764–74. http://dx.doi.org/10.1073/pnas.1920404117.
Full textJulio, Ashley R., and Keriann M. Backus. "New approaches to target RNA binding proteins." Current Opinion in Chemical Biology 62 (June 2021): 13–23. http://dx.doi.org/10.1016/j.cbpa.2020.12.006.
Full textKadonosono, Tetsuya. "A smart design of target-binding molecules." Japanese Journal of Pesticide Science 46, no. 2 (August 20, 2021): 168–72. http://dx.doi.org/10.1584/jpestics.w21-33.
Full textHolmberg, Eric, Kazuo Maruyama, Stephen Kennel, Alexander Klibanov, Vladimir Torchilin, Una Ryan, and Leaf Huang. "Target-Specific Binding of Immunoliposomes in Vivo." Journal of Liposome Research 1, no. 4 (January 1990): 393–406. http://dx.doi.org/10.3109/08982109009036003.
Full textWu, Yung-Peng, Chee Ying Chew, Tian-Neng Li, Tzu-Hsuan Chung, En-Hao Chang, Chak Hin Lam, and Kui-Thong Tan. "Target-activated streptavidin–biotin controlled binding probe." Chemical Science 9, no. 3 (2018): 770–76. http://dx.doi.org/10.1039/c7sc04014h.
Full textGuhaThakurta, D., and G. D. Stormo. "Identifying target sites for cooperatively binding factors." Bioinformatics 17, no. 7 (July 1, 2001): 608–21. http://dx.doi.org/10.1093/bioinformatics/17.7.608.
Full textÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (September 1, 2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Full textde la Rosa, Mario A. Diaz, Elena F. Koslover, Peter J. Mulligan, and Andrew J. Spakowitz. "Target-Site Search of DNA-Binding Proteins." Biophysical Journal 98, no. 3 (January 2010): 221a. http://dx.doi.org/10.1016/j.bpj.2009.12.1194.
Full textOğul, Hasan, Sinan U. Umu, Y. Yener Tuncel, and Mahinur S. Akkaya. "A probabilistic approach to microRNA-target binding." Biochemical and Biophysical Research Communications 413, no. 1 (September 2011): 111–15. http://dx.doi.org/10.1016/j.bbrc.2011.08.065.
Full textLoach, Daniel, and Paloma Marí-Beffa. "Post-target inhibition: A temporal binding mechanism?" Visual Cognition 10, no. 5 (June 2003): 513–26. http://dx.doi.org/10.1080/13506280244000203.
Full textDrwal, Malgorzata N., Guillaume Bret, and Esther Kellenberger. "Multi-target Fragments Display Versatile Binding Modes." Molecular Informatics 36, no. 10 (July 10, 2017): 1700042. http://dx.doi.org/10.1002/minf.201700042.
Full textRobers, M. B., R. Friedman-Ohana, K. V. M. Huber, L. Kilpatrick, J. D. Vasta, B. T. Berger, C. Chaudhry, et al. "Quantifying Target Occupancy of Small Molecules Within Living Cells." Annual Review of Biochemistry 89, no. 1 (June 20, 2020): 557–81. http://dx.doi.org/10.1146/annurev-biochem-011420-092302.
Full textTan, Zhixin Cyrillus, Brian T. Orcutt-Jahns, and Aaron S. Meyer. "A quantitative view of strategies to engineer cell-selective ligand binding." Integrative Biology 13, no. 11 (November 2021): 269–82. http://dx.doi.org/10.1093/intbio/zyab019.
Full textBandorowicz-Pikuła, J., M. Danieluk, A. Wrzosek, R. Buś, R. Buchet, and S. Pikuła. "Annexin VI: an intracellular target for ATP." Acta Biochimica Polonica 46, no. 3 (September 30, 1999): 801–12. http://dx.doi.org/10.18388/abp.1999_4152.
Full textMohebbi, Mohammad, Liang Ding, Russell L. Malmberg, Cory Momany, Khaled Rasheed, and Liming Cai. "Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex." Journal of Bioinformatics and Computational Biology 16, no. 04 (August 2018): 1850013. http://dx.doi.org/10.1142/s0219720018500130.
Full textLee and Kim. "In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning." Genes 10, no. 11 (November 7, 2019): 906. http://dx.doi.org/10.3390/genes10110906.
Full textLiao, Jianbo, Qinyu Wang, Fengxu Wu, and Zunnan Huang. "In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets." Molecules 27, no. 20 (October 20, 2022): 7103. http://dx.doi.org/10.3390/molecules27207103.
Full textLi, Shiyuan, Duyu Chen, Qingtong Zhou, Wei Wang, Lingfeng Gao, Jie Jiang, Haojun Liang, Yangzhong Liu, Gaolin Liang, and Hua Cui. "A General Chemiluminescence Strategy for Measuring Aptamer–Target Binding and Target Concentration." Analytical Chemistry 86, no. 11 (May 16, 2014): 5559–66. http://dx.doi.org/10.1021/ac501061c.
Full textSchulmeyer, Kayley H., Manisha R. Diaz, Thomas B. Bair, Wes Sanders, Cindy J. Gode, Alain Laederach, Matthew C. Wolfgang, and Timothy L. Yahr. "Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF." Journal of Bacteriology 198, no. 18 (July 5, 2016): 2458–69. http://dx.doi.org/10.1128/jb.00343-16.
Full textSchmidt, Denis, Magdalena M. Scharf, Dominique Sydow, Eva Aßmann, Maria Martí-Solano, Marina Keul, Andrea Volkamer, and Peter Kolb. "Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening." Molecules 26, no. 3 (January 26, 2021): 629. http://dx.doi.org/10.3390/molecules26030629.
Full textShlyakhtenko, Luda S., Alexander Y. Lushnikov, Atsushi Miyagi, and Yuri L. Lyubchenko. "Specificity of Binding of Single-Stranded DNA-Binding Protein to Its Target." Biochemistry 51, no. 7 (February 6, 2012): 1500–1509. http://dx.doi.org/10.1021/bi201863z.
Full textBrokx, Richard D., Maria M. Lopez, Hans J. Vogel, and George I. Makhatadze. "Energetics of Target Peptide Binding by Calmodulin Reveals Different Modes of Binding." Journal of Biological Chemistry 276, no. 17 (January 29, 2001): 14083–91. http://dx.doi.org/10.1074/jbc.m011026200.
Full textXiong, Li, Junfeng Cao, Yixin Qiu, Yinyin Fu, Siyi Chen, Mengjia He, Shengyan Chen, et al. "Exploring the Mechanism of Aspirin in the Treatment of Kawasaki Disease Based on Molecular Docking and Molecular Dynamics." Evidence-Based Complementary and Alternative Medicine 2022 (August 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/9828518.
Full textKlimentová, Eva, Václav Hejret, Ján Krčmář, Katarína Grešová, Ilektra-Chara Giassa, and Panagiotis Alexiou. "miRBind: A Deep Learning Method for miRNA Binding Classification." Genes 13, no. 12 (December 9, 2022): 2323. http://dx.doi.org/10.3390/genes13122323.
Full textKim, Minjee, and Young Bong Kim. "Uncovering Quercetin’s Effects against Influenza A Virus Using Network Pharmacology and Molecular Docking." Processes 9, no. 9 (September 9, 2021): 1627. http://dx.doi.org/10.3390/pr9091627.
Full textOtero-Ramirez, Manuel, Toby Passioura, and Hiroaki Suga. "Structural Features and Binding Modes of Thioether-Cyclized Peptide Ligands." Biomedicines 6, no. 4 (December 13, 2018): 116. http://dx.doi.org/10.3390/biomedicines6040116.
Full textTalukder, Amlan, Xiaoman Li, and Haiyan Hu. "Position-wise binding preference is important for miRNA target site prediction." Bioinformatics 36, no. 12 (March 18, 2020): 3680–86. http://dx.doi.org/10.1093/bioinformatics/btaa195.
Full textBodén, Mikael, and Timothy L. Bailey. "Associating transcription factor-binding site motifs with target GO terms and target genes." Nucleic Acids Research 36, no. 12 (June 10, 2008): 4108–17. http://dx.doi.org/10.1093/nar/gkn374.
Full textBaguley, Bruce C., Catherine J. Drummond, Ying Yi Chen, and Graeme J. Finlay. "DNA-Binding Anticancer Drugs: One Target, Two Actions." Molecules 26, no. 3 (January 21, 2021): 552. http://dx.doi.org/10.3390/molecules26030552.
Full textPrigozhin, Daniil. "Predicting target binding sites in plant immune receptors." Acta Crystallographica Section A Foundations and Advances 78, a1 (July 29, 2022): a198. http://dx.doi.org/10.1107/s2053273322098011.
Full textDeBouver, Nicholas, Longxing Cao, Brian Coventry, Asim Bera, Wei Yang, Steffen Bernard, Lance Stewart, et al. "Protein-binding proteins designed from target structural information." Acta Crystallographica Section A Foundations and Advances 78, a1 (July 29, 2022): a281. http://dx.doi.org/10.1107/s2053273322097182.
Full textMurase, T., and T. Iio. "The binding reaction between Calmodulin and Target Peptide." Seibutsu Butsuri 39, supplement (1999): S132. http://dx.doi.org/10.2142/biophys.39.s132_2.
Full textHong, Ze, Jiahao Mei, Chenhui Li, Guohui Bai, Munire Maimaiti, Haiyang Hu, Wenying Yu, et al. "STING inhibitors target the cyclic dinucleotide binding pocket." Proceedings of the National Academy of Sciences 118, no. 24 (June 7, 2021): e2105465118. http://dx.doi.org/10.1073/pnas.2105465118.
Full textGrebenkov, Denis S., and Aanjaneya Kumar. "Reversible target-binding kinetics of multiple impatient particles." Journal of Chemical Physics 156, no. 8 (February 28, 2022): 084107. http://dx.doi.org/10.1063/5.0083849.
Full textSmith, Ewan, and Ian Collins. "Photoaffinity labeling in target- and binding-site identification." Future Medicinal Chemistry 7, no. 2 (February 2015): 159–83. http://dx.doi.org/10.4155/fmc.14.152.
Full textKonc, Janez. "Binding site comparisons for target-centered drug discovery." Expert Opinion on Drug Discovery 14, no. 5 (March 11, 2019): 445–54. http://dx.doi.org/10.1080/17460441.2019.1588883.
Full textOrsini, F., E. R. Zanier, R. Gesuete, M. Stravalaci, D. De Blasio, B. Oortwijn, M. L. M. Mannesse, M. Gobbi, and M. G. De Simoni. "Mannose binding lectin as a target for neuroprotection." Molecular Immunology 47, no. 13 (August 2010): 2200. http://dx.doi.org/10.1016/j.molimm.2010.05.020.
Full textBernard, Elyse D., Michael A. Beking, Karunanithi Rajamanickam, Eve C. Tsai, and Maria C. DeRosa. "Target binding improves relaxivity in aptamer–gadolinium conjugates." JBIC Journal of Biological Inorganic Chemistry 17, no. 8 (August 19, 2012): 1159–75. http://dx.doi.org/10.1007/s00775-012-0930-z.
Full textThevendran, Ramesh, Tholasi Nadhan Navien, Xin Meng, Kechun Wen, Qiao Lin, Shigdar Sarah, Thean-Hock Tang, and Marimuthu Citartan. "Mathematical approaches in estimating aptamer-target binding affinity." Analytical Biochemistry 600 (July 2020): 113742. http://dx.doi.org/10.1016/j.ab.2020.113742.
Full textBhattacharya, Shibani, Christopher G. Bunick, and Walter J. Chazin. "Target selectivity in EF-hand calcium binding proteins." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1742, no. 1-3 (December 2004): 69–79. http://dx.doi.org/10.1016/j.bbamcr.2004.09.002.
Full text