Academic literature on the topic 'Target binding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Target binding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Target binding"
Cheung, S. H., G. E. Legge, S. T. L. Chung, and B. S. Tjan. "Target-flanker binding releases crowding." Journal of Vision 6, no. 6 (March 24, 2010): 807. http://dx.doi.org/10.1167/6.6.807.
Full textPOOLSAP, UNYANEE, YUKI KATO, KENGO SATO, and TATSUYA AKUTSU. "USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs." Journal of Bioinformatics and Computational Biology 09, no. 06 (December 2011): 697–713. http://dx.doi.org/10.1142/s0219720011005628.
Full textJOHNSTON, Angus, and Eva VAN DER MAREL. "How Binding are the EU’s ‘Binding’ Renewables Targets?" Cambridge Yearbook of European Legal Studies 18 (August 9, 2016): 176–214. http://dx.doi.org/10.1017/cel.2016.7.
Full textPark, Keunwan, Young-Joon Ko, Prasannavenkatesh Durai, and Cheol-Ho Pan. "Machine learning-based chemical binding similarity using evolutionary relationships of target genes." Nucleic Acids Research 47, no. 20 (August 31, 2019): e128-e128. http://dx.doi.org/10.1093/nar/gkz743.
Full textLipovsek, D. "Adnectins: engineered target-binding protein therapeutics." Protein Engineering Design and Selection 24, no. 1-2 (November 10, 2010): 3–9. http://dx.doi.org/10.1093/protein/gzq097.
Full textChen, Zihao, Long Hu, Bao-Ting Zhang, Aiping Lu, Yaofeng Wang, Yuanyuan Yu, and Ge Zhang. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (March 30, 2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Full textMolina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, Takahiro Seki, E. Andreas Larsson, Chen Dan, Lekshmy Sreekumar, Yihai Cao, and Pär Nordlund. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay." Science 341, no. 6141 (July 4, 2013): 84–87. http://dx.doi.org/10.1126/science.1233606.
Full textYim, Hyung-Soon, and Jae-Hak Lee. "Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites." Journal of Marine Bioscience and Biotechnology 7, no. 2 (December 31, 2015): 35–41. http://dx.doi.org/10.15433/ksmb.2015.7.2.035.
Full textGanotra, Gaurav K., and Rebecca C. Wade. "Prediction of Drug–Target Binding Kinetics by Comparative Binding Energy Analysis." ACS Medicinal Chemistry Letters 9, no. 11 (October 4, 2018): 1134–39. http://dx.doi.org/10.1021/acsmedchemlett.8b00397.
Full textHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (August 17, 2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Full textDissertations / Theses on the topic "Target binding"
Collins, K. M. "Target recognition by multi-domain RNA-binding proteins." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1460867/.
Full textBolotin, Eugene Leonidovich. "Investigation of transcription factor binding sequences and target genes using protein binding microarrays." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019822801&SrchMode=2&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274203752&clientId=48051.
Full textIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Also issued in print.
Djurberg, Klara. "Applying Model Selection on Ligand-Target Binding Kinetic Analysis." Thesis, KTH, Proteinvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302137.
Full textInteraktioner kan analyseras med hjälp av LigandTracer. Data från ett LigandTracer experiment kan sedan analyseras med avseende på en kinetisk modell. Det finns olika kinetiska modeller, och modellvalet motiveras vanligen utifrån tidigare kunskap om interaktionen, vilket är problematiskt när den tillgängliga informationen om en interaktion är otillräcklig. I det här projektet implementerades en Bayesiansk metod för att motivera valet av modell utifrån data från ett LigandTracer experiment. Modellvalsmetoden implementerades för fyra kinetiska modeller, 1:1 modellen, 1:2 modellen, den bivalenta modellen och en ny version av den bivalenta modellen. Bayesiansk inferens användes för att få fram aposteriorifördelningarna för de olika modellernas parametrar utifrån den givna datan. Sedan beräknades Bayes faktor utifrån numeriska approximationer av marginalsannolikeheten. Fyra numeriska metoder implementerades för att approximera marginalsannolikheten; Naïve Monte Carlo estimator, det harmoniska medelvärdet av likelihood-funktionen, Importance Sampling och Sekventiell Monte Carlo. När modellvalsmetoden testades på simulerad data gav metoden Importance Sampling den mest tillförlitliga förutsägelsen om vilken modell som generade datan. Metoden testades också på experimentell data som förväntades följa en 1:1 interaktion och resultatet avvek från det förväntade resultatet. Följaktligen kunde ingen slutsas dras av resultet från modelvalsmetoden när den sedan används för att analysera interaktionen mellan anti-CD antikroppen Rituximab och Daudi-celler.
Zhao, Qian, and 赵倩. "Identification of a binding target of triptolide and related studies." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48199163.
Full textpublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Kasturi, Rama. "Kinetics of calmodulin binding to its smooth muscle target proteins /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487694702782747.
Full textXie, He Fang. "Understanding the interaction between xylan-binding domains and their target ligands." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324858.
Full textChapman, Edwin R. "Functional domains of neuromodulin and the interaction of calmodulin with target peptides /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/6288.
Full textFarnie, Gillian. "MDM2-p53 binding interaction as a potential therapeutic target for cancer." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437553.
Full textMa, Jun. "Mass Spectrometry Method Development to Identify Binding Ligands Against A2AR Nanodisc Complex." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/380580.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Zhou, Yiqing, and 周怡青. "Identification of a cellular target of triptonide and its functional study." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46923561.
Full textBooks on the topic "Target binding"
Symposium on RNA Biology (2nd 1997 North Carolina Biotechnology Center). Symposium on RNA Biology: RNA tool and target : held at North Carolina Biotechnology Center, Research Triangle Park, North Carolina, USA, October 17-19, 1997. [Oxford]: Oxford University Press, 1997.
Find full textSnoeck, Eric. Mechanism-based pharmacokinetic-pharmacodynamic modelling of specific target site binding to red blood cells: Application to the development of draflazine. [Leiden: University of Leiden, 1998.
Find full textPodjarny, Alberto, Annick P. Dejaegere, and Bruno Kieffer, eds. Biophysical Approaches Determining Ligand Binding to Biomolecular Targets. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849732666.
Full textPonte-Sucre, Alicia. ABC transporters in microorganisms: Research, innovation and value as targets against drug resistance. Norfolk, UK: Caister Academic, 2009.
Find full textChandrudu, M. V. Rama. Bench marking of APRLP processes: Binding the programs with processes : redefining targets. Secunderabad: WASSAN, 2006.
Find full textDufau, Maria. Hormone Binding and Target Cell Activation in the Testis. Springer, 2013.
Find full textDufau, Maria. Hormone Binding and Target Cell Activation in the Testis. Springer, 2012.
Find full textMatulis, Daumantas. Carbonic Anhydrase as Drug Target: Thermodynamics and Structure of Inhibitor Binding. Springer, 2019.
Find full textMing, Liang. Identification of DNA-binding domains and target genes of the Hindsight zinc-finger protein. 2006.
Find full textBaauw, Sergio. The Acquisition of Binding and Coreference. Edited by Jeffrey L. Lidz, William Snyder, and Joe Pater. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199601264.013.22.
Full textBook chapters on the topic "Target binding"
Copeland, Robert A. "Drug-Target Residence Time." In Thermodynamics and Kinetics of Drug Binding, 155–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673025.ch8.
Full textNorden, Diana M., and Benjamin J. Doranz. "Testing for Off-target Binding." In Translational Medicine, 117–30. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003124542-13.
Full textRodríguez, Santiago, Juan I. Alice, Carolina L. Bellera, and Alan Talevi. "Structure-Based Binding Pocket Detection and Druggability Assessment." In Drug Target Selection and Validation, 83–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95895-4_5.
Full textKairys, Visvaldas, Kliment Olechnovič, Vytautas Raškevičius, and Daumantas Matulis. "In Silico Modeling of Inhibitor Binding to Carbonic Anhydrases." In Carbonic Anhydrase as Drug Target, 215–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_15.
Full textPaketurytė, Vaida, Asta Zubrienė, Wen-Yih Chen, Sandro Keller, Margarida Bastos, Matthew J. Todd, John E. Ladbury, and Daumantas Matulis. "Inhibitor Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry." In Carbonic Anhydrase as Drug Target, 79–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_6.
Full textPetrauskas, Vytautas, Asta Zubrienė, Matthew J. Todd, and Daumantas Matulis. "Inhibitor Binding to Carbonic Anhydrases by Fluorescent Thermal Shift Assay." In Carbonic Anhydrase as Drug Target, 63–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_5.
Full textZubrienė, Asta, and Daumantas Matulis. "Observed Versus Intrinsic Thermodynamics of Inhibitor Binding to Carbonic Anhydrases." In Carbonic Anhydrase as Drug Target, 107–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_8.
Full textDemchenko, Alexander P. "Basic Theoretical Description of Sensor-Target Binding." In Introduction to Fluorescence Sensing, 37–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19089-6_2.
Full textSmirnov, Alexey, Elena Manakova, and Daumantas Matulis. "Correlations Between Inhibitor Binding Thermodynamics and Co-crystal Structures with Carbonic Anhydrases." In Carbonic Anhydrase as Drug Target, 249–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_17.
Full textSkvarnavičius, Gediminas, Daumantas Matulis, and Vytautas Petrauskas. "Change in Volume Upon Inhibitor Binding to Carbonic Anhydrases by Fluorescent Pressure Shift Assay." In Carbonic Anhydrase as Drug Target, 97–106. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_7.
Full textConference papers on the topic "Target binding"
Li, Mei, Sihan Xu, Xiangrui Cai, Zhong Zhang, and Hua Ji. "Contrastive Meta-Learning for Drug-Target Binding Affinity Prediction." In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995372.
Full textZhao, Qichang, Fen Xiao, Mengyun Yang, Yaohang Li, and Jianxin Wang. "AttentionDTA: prediction of drug–target binding affinity using attention model." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8983125.
Full textReyes-Herrera, Paula Helena, Andrea Acquaviva, Elisa Ficarra, and Enrico Macii. "MicroRNA Target Prediction and Exploration through Candidate Binding Sites Generation." In 2010 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS). IEEE, 2010. http://dx.doi.org/10.1109/cisis.2010.129.
Full textBarroso, Margarida, Alena Rudkouskaya, Jason Smith, John Williams, and Xavier Intes. "Antibody-target binding in living tumors using macroscopy fluorescence lifetime imaging." In Multiphoton Microscopy in the Biomedical Sciences XXII, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2022. http://dx.doi.org/10.1117/12.2609024.
Full textZhijian, Lyu, Jiang Shaohua, Liang Yigao, and Gao Min. "GDGRU-DTA: Predicting Drug-Target Binding Affinity based on GNN and Double GRU." In 3rd International Conference on Data Mining and Machine Learning (DMML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120703.
Full textUllal, Adeeti V., Thomas Reiner, Katherine S. Yang, Rostic Gorbatov, Changwook Min, David Issadore, Hakho Lee, and Ralph Weissleder. "Abstract 1968: Nanoparticle mediated measurement of target-drug binding in cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1968.
Full textGhazaly, Essam A., John Le Quesne, Dahai Jiang, Selanere L. Mangala, James Chettle, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein, et al. "Abstract B30: The RNA-binding protein LARP1 is a cancer therapeutic target." In Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-b30.
Full textLennox, Mark, Neil Robertson, and Barry Devereux. "Modelling Drug-Target Binding Affinity using a BERT based Graph Neural network." In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9629695.
Full textNguyen, Thai Huu, and Qiao Lin. "An Aptamer-Functionalized Microfluidic Platform for Biomolecular Purification and Sensing." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82142.
Full textVishwakarma, Ajaykumar, Yi Sun, Amina Fu, Emily Robitschek, Arvin Iracheta-Vellve, Susanna Stinson, Aliasger Salem, Robert Manguso, and Russell Jenkins. "Abstract B065: TANK-Binding Kinase 1 (TBK1) as a novel cancer immunotherapy target." In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b065.
Full textReports on the topic "Target binding"
Beerman, Terry A. Discovery of DNA Binding Anticancer Drugs That Target Oncogenic Transcription Factors Associated With Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada403322.
Full textDeSombre, E. R. Receptor-DNA binding to target auger electrons for cancer therapy. Final report, August 1, 1993--January 31, 1997. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/477720.
Full textKolodny, Gerald M., and Joel Yisraeli. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613755.
Full textKolodny, Gerald M., and Joel Yisraeli. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada594525.
Full textRahimipour, Shai, and David Donovan. Renewable, long-term, antimicrobial surface treatments through dopamine-mediated binding of peptidoglycan hydrolases. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597930.bard.
Full textWhitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Full textFromm, Hillel, and Joe Poovaiah. Calcium- and Calmodulin-Mediated Regulation of Plant Responses to Stress. United States Department of Agriculture, September 1993. http://dx.doi.org/10.32747/1993.7568096.bard.
Full textGurevitz, Michael, Michael E. Adams, Boaz Shaanan, Oren Froy, Dalia Gordon, Daewoo Lee, and Yong Zhao. Interacting Domains of Anti-Insect Scorpion Toxins and their Sodium Channel Binding Sites: Structure, Cooperative Interactions with Agrochemicals, and Application. United States Department of Agriculture, December 2001. http://dx.doi.org/10.32747/2001.7585190.bard.
Full textFromm, A., Avihai Danon, and Jian-Kang Zhu. Genes Controlling Calcium-Enhanced Tolerance to Salinity in Plants. United States Department of Agriculture, March 2003. http://dx.doi.org/10.32747/2003.7585201.bard.
Full textLandau, Sergei Yan, John W. Walker, Avi Perevolotsky, Eugene D. Ungar, Butch Taylor, and Daniel Waldron. Goats for maximal efficacy of brush control. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7587731.bard.
Full text