Academic literature on the topic 'T cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'T cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "T cells"

1

F. Abdel Hamid, Mahmoud, Safaa M. Morsy, Mostafa Abou El Ela, Rehab A. Hegazy, Marwa M. Fawzy, Laila A. Rashed, Ahmed M. Omar, Eman R. Abdel Fattah, and Doaa M. Hany. "T helper-17 cells and T regulatory cells in vitiligo." International Journal of Academic Research 5, no. 6 (December 10, 2013): 273–78. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Yuvraj. "Chimeric Antigen Receptors T Cells (CAR T) Therapy." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 1563–66. http://dx.doi.org/10.21275/sr24523173932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Y, Elshimali. "Chimeric Antigen Receptor T-Cell Therapy (Car T-Cells) in Solid Tumors, Resistance and Success." Bioequivalence & Bioavailability International Journal 6, no. 1 (2022): 1–6. http://dx.doi.org/10.23880/beba-16000163.

Full text
Abstract:
CARs are chimeric synthetic antigen receptors that can be introduced into an immune cell to retarget its cytotoxicity toward a specific tumor antigen. CAR T-cells immunotherapy demonstrated significant success in the management of hematologic malignancies. Nevertheless, limited studies are present regarding its efficacy in solid and refractory tumors. It is well known that the major concerns regarding this technique include the risk of relapse and the resistance of tumor cells, in addition to high expenses and limited affordability. Several factors play a crucial role in improving the efficacy of immunotherapy, including tumor mutation burden (TMB), microsatellite instability (MSI), loss of heterozygosity (LOH), the APOBEC Protein Family, tumor microenvironment (TMI), and epigenetics. In this minireview, we address the current and future applications of CAR T-Cells against solid tumors and their measure for factors of resistance and success.
APA, Harvard, Vancouver, ISO, and other styles
4

CPK, Cheung. "T Cells, Endothelial Cell, Metabolism; A Therapeutic Target in Chronic Inflammation." Open Access Journal of Microbiology & Biotechnology 5, no. 2 (2020): 1–6. http://dx.doi.org/10.23880/oajmb-16000163.

Full text
Abstract:
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, stimulated immune cells need to generate sufficient energy and biomolecules to support growth, proliferation and effector functions, including migration, cytotoxicity and production of cytokines. Thus, immune cells switch from oxidative phosphorylation to aerobic glycolysis, increasing their glucose uptake. A similar metabolic reprogramming has been described in endothelial cells which have the ability to interact with and modulate the function of immune cells and vice versa. Nonetheless, this complicated interplay between local environment, endothelial and immune cells metabolism, and immune functions remains incompletely understood. We analyze the metabolic reprogramming of endothelial and T cells during inflammation and we highlight some key components of this metabolic switch that can lead to the development of new therapeutics in chronic inflammatory disease.
APA, Harvard, Vancouver, ISO, and other styles
5

Meuer, Stefan C. "T cells." Immunology Today 12, no. 1 (January 1991): 49. http://dx.doi.org/10.1016/0167-5699(91)90117-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stauss, Hans J. "Engineered T cells can fight malignant T cells." Blood 126, no. 8 (August 20, 2015): 927–28. http://dx.doi.org/10.1182/blood-2015-07-652057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scott, David W. "T regulatory cells turn on T regulatory cells." Blood 114, no. 19 (November 5, 2009): 3975–76. http://dx.doi.org/10.1182/blood-2009-09-241406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zahran F, Zahran F., Al-haggar M. Al-haggar M, and Derbala S. A. Derbala S.A. "Regulatory T Cells in Pediatric Lupus Nephritis." Indian Journal of Applied Research 3, no. 10 (October 1, 2011): 1–3. http://dx.doi.org/10.15373/2249555x/oct2013/91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ng, Y. H., M. H. Oberbarnscheidt, H. C. K. Chandramoorthy, R. Hoffman, and G. Chalasani. "B Cells Help Alloreactive T Cells Differentiate Into Memory T Cells." American Journal of Transplantation 10, no. 9 (August 27, 2010): 1970–80. http://dx.doi.org/10.1111/j.1600-6143.2010.03223.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki, Haruhiko, Zhe Shi, Yusuke Okuno, and Ken-ichi Isobe. "Are CD8+CD122+ cells regulatory T cells or memory T cells?" Human Immunology 69, no. 11 (November 2008): 751–54. http://dx.doi.org/10.1016/j.humimm.2008.08.285.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "T cells"

1

Carson, Bryan David. "Impaired T cell receptor signaling in regulatory T cells /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lloyd, Angharad. "Gene editing in T-cells and T-cell targets." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/98512/.

Full text
Abstract:
Recent years have witnessed a rapid proliferation of gene editing in mammalian cells due to the increasing ease and reduced cost of targeted gene knockout. There has been much excitement about the prospect of engineering T-cells by gene editing in order to provide these cells with optimal attributes prior to adoptive cell therapy for cancer and autoimmune disease. I began by attempting to compare short hairpin RNA (shRNA) and zinc finger nuclease (ZFN) approaches using the CD8A gene as a target for proof of concept of gene editing in Molt3 cells. During the course of my studies the clustered regularly interspaced short palindromic repeats (CRISPR) mechanism for gene editing was discovered so I also included CRISPR/Cas9 in my studies. A direct comparison of the three gene editing tools indicated that the CRISPR/Cas9 system was superior in terms of ease, efficiency of knockout and cost. As the use of gene editing tools increases there are concerns about the inherent risks associated with the use of nuclease based gene editing tools prior to cellular therapy. Expression of nucleases can lead to off target mutagenesis and malignancy. To circumvent this problem I generated a non-nuclease based gene silencing system using the CD8A zinc finger (ZF) fused to a Krüppel associated box (KRAB) repressor domain. The ZF-KRAB fusion resulted in effective silencing of the CD8A gene in both the Molt3 cell line and in primary CD8+ T-cells. Importantly, unlike CRISPR/Cas9 based gene editing, the ZF-KRAB fusion was small enough to be transferred in a single lentiviral vector with a TCR allowing simultaneous redirection of patient T-cell specificity and alteration of T-cell function in a single construct. To improve the efficiency of gene editing with CRISPR/Cas9 I developed an ‘all in one’ CRISPR/Cas9 system which incorporated all elements of the CRISPR/Cas9 gene editing system in a single plasmid. The ‘all in one’ system was utilised to derive MHC-related protein 1 (MR1) deficient clones from the A549 lung carcinoma and THP-1 monocytic cell lines in order to study MR1 biology. Mucosal-associated invariant T-cell (MAIT) clones were not activated by MR1 deficient A549 or THP-1 clones infected with bacteria.
APA, Harvard, Vancouver, ISO, and other styles
3

Stefkova, Martina. "Regulatory T cells control the CD4 T cell repertoire." Doctoral thesis, Universite Libre de Bruxelles, 2016. https://dipot.ulb.ac.be/dspace/bitstream/2013/233151/3/Table.pdf.

Full text
Abstract:
Des études récentes menées chez l’homme et la souris ont suggéré que la diversité du répertoire TCR pourrait jouer un rôle dans la protection contre des pathogènes à haut pouvoir mutagène. Afin d’étudier le répertoire des lymphocytes T CD4, nous avons utilisé un modèle de souris TCRβ transgéniques exprimant une chaine β spécifique du peptide env122-141 dans le contexte du MHCII. Suite à l’immunisation des souris TCRβ transgéniques avec des cellules dendritiques pulsées avec le peptide env, une rapide prolifération et une restriction du répertoire des lymphocytes T Vα2 CD4 spécifiques est observée. L’analyse de la diversité du répertoire de ces cellules par séquençage à haut débit, a montré l’émergence d’un répertoire plus divers dans des souris déplétées en lymphocytes T régulateurs. Ces résultats suggèrent qu’en plus du rôle des Tregs dans le contrôle de la magnitude de la réponse immunitaire, ces cellules pourraient également contrôler la diversité du répertoire des lymphocytes T suite à une stimulation antigénique.
Recent studies conducted in mice and humans have suggested a role for the TCR repertoire diversity in immune protection against pathogens displaying high antigenic variability. To study the CD4 T cell repertoire, we used a mouse model in which T cells transgenically express the TCRβ chain of a TCR specific to a MHCII-restricted peptide, env122-141. Upon immunization with peptide-pulsed dendritic cells, antigen-specific Vα2+ CD4+ T cells rapidly expand and display a restricted TCRα repertoire. In particular, analysis of receptor diversity by high-throughput TCR sequencing in immunized mice suggests the emergence of a broader CDR3 Vα2 repertoire in Treg-depleted mice. These results suggest that Tregs may play a role in the restriction of the CD4 T cell repertoire during an immune response, raising therefore the possibility that in addition to controlling the magnitude of an immune response, regulatory cells may also control the diversity of TCRs in response to antigen stimulation.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
4

Butcher, Sarah A. "T cell receptor genes of influenza A haemagglutinin specific T cells." Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crawford, A. "How B cells influence T cell responses." Thesis, University of Edinburgh, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.645118.

Full text
Abstract:
Although studies using B cell deficient mice have been useful in understanding the importance of B cells under different conditions, it is difficult to then dissect exactly how B cells could be regulating T cell responses. By transferring OT-II transgenic T cells into either B cell deficient (μMT) or C57BL/6 mice, expansion and contraction of T cells can be tracked ex vivo. Expansion of OT-II cells is reduced in μMT mice compared to C57BL/6 mice. Thus, B cells can provide costimulatory signals, secrete cytokines and influence the lymphoid microarchitecture. To dissect which B cell factor(s) are involved in enhancing OT-II T cell expansion, a model system was used where one molecule on the B cells is depleted at one time. This was achieved by creating bone-marrow chimeras using a combination of μMT bone-marrow and wildtype or deficient bone-marrow. Thus, all the B cells are either wildtype or deficient for a particular molecule. The molecules examined were MHC-II, which is required for antigen presentation, CD40, due to its costimulatory role, and lymphotoxin-alpha, for its role in maintenance of splenic architecture. Using the OT-II adoptive transfer system, we have shown a requirement for MHC-II but not CD40 on B cells for efficient T cell expansion. In light of these observations, the role of B cell-derived MHC-II for T cell memory generation was examined. To do this, I used MHC-II tetramers to track a polyclonal population of T cells in the host.  Using this technique, I have shown that T cell memory is also diminished when the B cells do not express MHC-II. Thus, a cognate interaction with B cells is required for both efficient expansion and memory generation of CD4+ T cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Sarris, Milka. "Dynamics of helper T cell and regulatory T cell interactions with dendritic cells." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Trevor Robert Frank. "Modulation of CD4+ T cell responses by CD4+CD25+ regulatory T cells and modified T cell epitopes." Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/11317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murray, Nicholas. "Costimulation of T cells and its role in T cell recognition of malignant colorectal cells in vitro." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Ming 1957. "Generation of CD8+ T cell immunity with help from CD4+ T cells." Monash University, Dept. of Pathology and Immunology, 2002. http://arrow.monash.edu.au/hdl/1959.1/8476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soper, David Michael. "Interleukin-2 receptor and T cell receptor signaling in regulatory T cells /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8344.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "T cells"

1

Marc, Feldmann, Lamb Jonathan R, and Owen M. J, eds. T cells. New York: Wiley, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annunziato, Francesco, Laura Maggi, and Alessio Mazzoni, eds. T-Helper Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1311-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gigante, Margherita, and Elena Ranieri, eds. Cytotoxic T-Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1507-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ono, Masahiro, ed. Regulatory T-Cells. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2647-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zanetti, Maurizio, and Stephen P. Schoenberger, eds. Memory T Cells. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6451-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ranieri, Elena, ed. Cytotoxic T-Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1158-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Waisman, Ari, and Burkhard Becher, eds. T-Helper Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1212-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kassiotis, George, and Adrian Liston, eds. Regulatory T Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zanetti, M. Memory T cells. New York: Springer Science+Business Media, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Graca, Luis, ed. T-Follicular Helper Cells. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1736-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "T cells"

1

Srinivasan, Ramachandran. "T Cells." In Encyclopedia of Systems Biology, 2119. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nomura, Takashi, and Aya Shinohara. "T Cells." In Immunology of the Skin, 57–94. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55855-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arampatzis, Adamantios, Lida Mademli, Thomas Reilly, Mike I. Lambert, Laurent Bosquet, Jean-Paul Richalet, Thierry Busso, et al. "T Cells." In Encyclopedia of Exercise Medicine in Health and Disease, 843. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakaguchi, Shimon. "Regulatory T Cells: History and Perspective." In Regulatory T Cells, 3–17. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lahl, Katharina, and Tim Sparwasser. "In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model." In Regulatory T Cells, 157–72. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daniel, Carolin, Hidde Ploegh, and Harald von Boehmer. "Antigen-Specific Induction of Regulatory T Cells In Vivo and In Vitro." In Regulatory T Cells, 173–85. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nouzé, Clémence, Lise Pasquet, and Joost P. M. van Meerwijk. "In Vitro Expansion of Alloantigen-Specific Regulatory T Cells and Their Use in Prevention of Allograft Rejection." In Regulatory T Cells, 187–96. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

d’Hennezel, Eva, and Ciriaco A. Piccirillo. "Analysis of Human FOXP3+ Treg Cells Phenotype and Function." In Regulatory T Cells, 199–218. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hobeika, Amy C., Michael A. Morse, Takuya Osada, Sharon Peplinski, H. Kim Lyerly, and Timothy M. Clay. "Depletion of Human Regulatory T Cells." In Regulatory T Cells, 219–31. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, Anya, and Jane H. Buckner. "Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay." In Regulatory T Cells, 233–41. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "T cells"

1

Mamonkin, Maksim. "Abstract IA17: CAR T cells for T-cell lymphoma." In Abstracts: AACR Virtual Meeting: Advances in Malignant Lymphoma; August 17-19, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2643-3249.lymphoma20-ia17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, M. N., A. Chester, A. McCormack, K. Ayyasola, N. Zaghloul, E. Miller, and M. Yacoub. "CD4+ ChAT+ T Cells (ChAT T Cells) as a New Vasodilator." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Correia, Eduardo, Clara Andrade, Leonardo Silva, Brenno Sessa, Luiza Abdo, Karina Hajdu, Emmanuel Aragão, and Martín Bonamino. "Generation of 19bbz CAR-T cells in tcr knockout T-cells." In International Symposium on Immunobiologicals. Instituto de Tecnologia em Imunobiológicos, 2023. http://dx.doi.org/10.35259/isi.2023_58059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rabin, Moriah, Erin Cole, Scott Garforth, Jian Hua Zheng, Steven Almo, and Harris Goldstein. "295 Novel T-cell immunotherapeutics enable the selective generation of more potently cytotoxic CD19 chimeric antigen receptor T-cells (CAR-T cells) from CMV-specific cytotoxic T-cells." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsuda, Tatsuo, Taigo Kato, Yuji Ikeda, Matthias Leisegang, Sachiko Yoshimura, Tetsuro Hikichi, Makiko Harada, et al. "Abstract 625: Eradication of cancer cells by T-cell receptor-engineered T cells targeting neoantigens/oncoantigens." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greenberg, Philip D., Sebastian Ochsenreither, Tom Schmitt, David Aggen, David Kranz, Matthias Wolfl, Jurgen Kuball, et al. "Abstract IA1: T cells vs. tumor cells: Arming/deploying T cells for a successful battle." In Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-ia1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kristensen, Nikolaj Pagh, Christina Heeke, Siri A. Tvingsholm, Anne-Mette Bjerregaard, Arianna Draghi, Amalie Kai Bentzen, Rikke Andersen, Marco Donia, Inge Marie Svane, and Sine Reker Hadrup. "Abstract A14: Neoepitope-specific CD8+ T cells in adoptive T-cell transfer." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jing, Ran, Mohamad Najia, Eleanor Meader, Luca Hensch, Edroaldo Lummertz da Rocha, R. Grant Rowe, Thorsten Schlaeger, Marcela Maus, Trista North, and George Daley. "950 Epigenetic reprogramming of iPSC-derived T cells for CAR T cell therapy." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hwang, Sunhee, Young H. Kim, Yeeun Bak, and Byoung S. Kwon. "442-L Development of Panck T cells, MR1-restricted pan-cancer-killing CD8+T cells, as an adoptive T cell therapeutics." In SITC 38th Annual Meeting (SITC 2023) Abstracts Supplement 2. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0442-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qian, Feng, Jianqun Liao, Anthony J. Miliotto, Katherine A. Collins, and Kunle Odunsi. "Abstract A35: Ovarian cancer stem cells subvert tumor-specific T cells by disrupting T cells’ metabolic fitness." In Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-a35.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "T cells"

1

Chen, Xiuxu, and Jenny E. Gumperz. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada462826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Jr, and K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada487614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Jr, and K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada510759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Knutson, Keith L. CD8 T Cells and Immunoediting of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada624685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Junghans, Richard P. Designer T-Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada394380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada398295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada408881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Junghans, Richard. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada383028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coukos, George. Targeting Breast Cancer with T Cells Redirected to the Vasculature. Addendum. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada570217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marshall, Renee M. Regulation of T-Type Cyclin/CDK9 Complexes in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada460789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography