Dissertations / Theses on the topic 'Systems for Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Systems for Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Full textData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Swere, Erick A. R. "Machine learning in embedded systems." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4969.
Full textVerleyen, Wim. "Machine learning for systems pathology." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4512.
Full textRoderus, Jens, Simon Larson, and Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Full textJohansson, Richard. "Machine learning på tidsseriedataset : En utvärdering av modeller i Azure Machine Learning Studio." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71223.
Full textSchneider, C. "Using unsupervised machine learning for fault identification in virtual machines." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7327.
Full textMichailidis, Marios. "Investigating machine learning methods in recommender systems." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10031000/.
Full textIlyas, Andrew. "On practical robustness of machine learning systems." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122911.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 71-79).
We consider the importance of robustness in evaluating machine learning systems, an in particular systems involving deep learning. We consider these systems' vulnerability to adversarial examples--subtle, crafted perturbations to inputs which induce large change in output. We show that these adversarial examples are not only theoretical concern, by desigining the first 3D adversarial objects, and by demonstrating that these examples can be constructed even when malicious actors have little power. We suggest a potential avenue for building robust deep learning models by leveraging generative models.
by Andrew Ilyas.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
ROSA, BRUSIN ANN MARGARETH. "Machine Learning Applications to Optical Communication Systems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2967019.
Full textThomas, Sabin M. (Sabin Mammen). "A system analysis of improvements in machine learning." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/100386.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 50-51).
Machine learning algorithms used for natural language processing (NLP) currently take too long to complete their learning function. This slow learning performance tends to make the model ineffective for an increasing requirement for real time applications such as voice transcription, language translation, text summarization topic extraction and sentiment analysis. Moreover, current implementations are run in an offline batch-mode operation and are unfit for real time needs. Newer machine learning algorithms are being designed that make better use of sampling and distributed methods to speed up the learning performance. In my thesis, I identify unmet market opportunities where machine learning is not employed in an optimum fashion. I will provide system level suggestions and analyses that could improve the performance, accuracy and relevance.
by Sabin M. Thomas.
S.M. in Engineering and Management
Tynong, Anton. "Machine learning for planning in warehouse management." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178108.
Full textChi, Chih-Lin Street William N. "Medical decision support systems based on machine learning." Iowa City : University of Iowa, 2009. http://ir.uiowa.edu/etd/283.
Full textHsu, David. "Silicon primitives for machine learning /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6909.
Full textChi, Chih-Lin. "Medical decision support systems based on machine learning." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/283.
Full textEagle, Nathan Norfleet. "Machine perception and learning of complex social systems." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32498.
Full textIncludes bibliographical references (p. 125-136).
The study of complex social systems has traditionally been an arduous process, involving extensive surveys, interviews, ethnographic studies, or analysis of online behavior. Today, however, it is possible to use the unprecedented amount of information generated by pervasive mobile phones to provide insights into the dynamics of both individual and group behavior. Information such as continuous proximity, location, communication and activity data, has been gathered from the phones of 100 human subjects at MIT. Systematic measurements from these 100 people over the course of eight months has generated one of the largest datasets of continuous human behavior ever collected, representing over 300,000 hours of daily activity. In this thesis we describe how this data can be used to uncover regular rules and structure in behavior of both individuals and organizations, infer relationships between subjects, verify self- report survey data, and study social network dynamics. By combining theoretical models with rich and systematic measurements, we show it is possible to gain insight into the underlying behavior of complex social systems.
by Nathan Norfleet Eagle.
Ph.D.
Prueller, Hans. "Distributed online machine learning for mobile care systems." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10875.
Full textYang, Yizhan. "Machine Learning Based Beam Tracking in mmWave Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292754.
Full textEfterfrågan på hög datahastighetskommunikation och brist på spektrum i befintliga mikrovågsband har varit nyckelaspekten i 5G. För att uppfylla dessa krav har millimetervåg (mmWave) med stora bandbredder föreslagits för att förbättra effektiviteten och stabiliteten i 5G-nätverket. I mmWavekommunikation utförs koncentrationen av överföringssignalen från antennen genom strålformning och strålspårning. Toppmoderna metoder inom strålspårning leder dock till hög resursförbrukning. För att lösa detta problem utvecklar vi två maskininlärningsbaserade lösningar för reduktion av omkostnader. I det här dokumentet föreslås en scenariokonfigurationssimulator som datainsamlingsmetod. Flera LSTM-baserade modeller för förutsägelse av tidsserier tränas för experiment. Eftersom omkostnaderna reduceras genom att minska svepstrålarna i lösningar föreslås flera datainputeringsmetoder för att förbättra lösningens prestanda. Dessa metoder är baserade på Multipel Imputation by Chained Equations (MICE) och generativa kontroversiella nätverk. Både kvalitativa och kvantitativa experimentella resultat på flera typer av datamängder visar effektiviteten i vår lösning.
Al-Khoury, Fadi. "Safety of Machine Learning Systems in Autonomous Driving." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218020.
Full textMaskininlärning, och i synnerhet deep learning, är extremt kapabla verktyg för att lösa problem som är svåra, eller omöjliga att hantera analytiskt. Applikationsområden inkluderar mönsterigenkänning, datorseende, tal‐ och språkförståelse. När utvecklingen inom bilindustrin går mot en ökad grad av automatisering, blir problemen som måste lösas alltmer komplexa, vilket har lett till ett ökat användande av metoder från maskininlärning och deep learning. Med detta tillvägagångssätt lär sig systemet lösningen till ett problem implicit från träningsdata och man kan inte direkt utvärdera lösningens korrekthet. Detta innebär problem när systemet i fråga är del av en säkerhetskritisk funktion, vilket är fallet för självkörande fordon. Detta examensarbete behandlar säkerhetsaspekter relaterade till maskininlärningssystem i autonoma fordon och applicerar en safety monitoring‐metodik på en kollisionsundvikningsfunktion. Simuleringar utförs, med ett deep learning‐system som del av systemet för perception, som ger underlag för styrningen av fordonet, samt en safety monitor för kollisionsundvikning. De relaterade operationella situationerna och säkerhetsvillkoren studeras för en autonom körnings‐funktion, där potentiella fel i det lärande systemet introduceras och utvärderas. Vidare introduceras ett förslag på ett mått på trovärdighet hos det lärande systemet under drift.
Salehi, Shahin. "Machine Learning for Contact Mechanics from Surface Topography." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76531.
Full textBall, N. R. "Cognitive maps in Learning Classifier Systems." Thesis, University of Reading, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280670.
Full textLi, Cui. "Image quality assessment using algorithmic and machine learning techniques." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted: no access until June 2, 2014, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=26521.
Full textWith: An image quality metric based in corner, edge and symmetry maps / Li Cui, Alastair R. Allen. With: An image quality metric based on a colour appearance model / Li Cui and Alastair R. Allen. ACIVS / J. Blanc-Talon et al. eds. 2008 LNCS 5259, 696-707. Includes bibliographical references.
Tarberg, Alexander. "Skydd av Kritisk Infrastruktur med Machine Learning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74514.
Full textThe purpose of this paper is to evaluate if the Nash-strategy could be an alternative to Stackelberg for protection of subway stations, with the help of Machine Learning and Game Theory. This thesis describes the development and testing of two algorithms in a simulated environment, chess. Chess worked as a test environment, to get accurate results and scoring. At the same time the author got confirmation that the Nashstrategy worked for games were all information is available. These results and the best performing algorithm were used to decide on which stations NBK-sensors should be placed, which protects against nuclear, biological and chemical attacks. The results of the study showed that the Nash-strategy with the help of the Minimax algorithm is a viable option to Stackelberg in the security domain, but also outside the security domain. The conclusions that were made is that Nash has good potential for future studies and should be examined further with more variables and the effects of using Nash instead of Stackelberg in security games
Badayos, Noah Garcia. "Machine Learning-Based Parameter Validation." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/47675.
Full textPh. D.
Chlon, Leon. "Machine learning methods for cancer immunology." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/268068.
Full textArnold, Naomi (Naomi Aiko). "Wafer defect prediction with statistical machine learning." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105633.
Full textThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 81-83).
In the semiconductor industry where the technology continues to grow in complexity while also striving to achieve lower manufacturing costs, it is becoming increasingly important to drive cost savings by screening out defective die upstream. The primary goal of the project is to build a statistical prediction model to facilitate operational improvements across two global manufacturing locations. The scope of the project includes one high-volume product line, an off-line statistical model using historical production data, and experimentation with machine learning algorithms. The prediction model pilot demonstrates there exists a potential to improve the wafer sort process using random forest classifier on wafer and die-level datasets. Yet more development is needed to conclude final memory test defect die-level predictions are possible. Key findings include the importance of model computational performance in big data problems, necessity of a living model that stays accurate over time to meet operational needs, and an evaluation methodology based on business requirements. This project provides a case study for a high-level strategy of assessing big data and advanced analytics applications to improve semiconductor manufacturing.
by Naomi Arnold.
S.M. in Engineering Systems
M.B.A.
Thomson, John D. "Using machine learning to automate compiler optimisation." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3194.
Full textHe, Haibo. "Dynamically Self-reconfigurable Systems for Machine Intelligence." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1152717376.
Full textNiemi, Mikael. "Machine Learning for Rapid Image Classification." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97375.
Full textBepler, Tristan(Tristan Wendland). "Machine learning for understanding protein sequence and structure." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129888.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 183-200).
Proteins are the fundamental building blocks of life, carrying out a vast array of functions at the molecular level. Understanding these molecular machines has been a core problem in biology for decades. Recent advances in cryo-electron microscopy (cryoEM) has enabled high resolution experimental measurement of proteins in their native states. However, this technology remains expensive and low throughput. At the same time, ever growing protein databases offer new opportunities for understanding the diversity of natural proteins and for linking sequence to structure and function. This thesis introduces a variety of machine learning methods for accelerating protein structure determination by cryoEM and for learning from large protein databases. We first consider the problem of protein identification in the large images collected in cryoEM. We propose a positive-unlabeled learning framework that enables high accuracy particle detection with few labeled data points, both improving data quality and analysis speed. Next, we develop a deep denoising model for cryo-electron micrographs. By learning the denoising model from large amounts of real cryoEM data, we are able to capture the noise generation process and accurately denoise micrographs, improving the ability of experamentalists to examine and interpret their data. We then introduce a neural network model for understanding continuous variability in proteins in cryoEM data by explicitly disentangling variation of interest (structure) for nuisance variation due to rotation and translation. Finally, we move beyond cryoEM and propose a method for learning vector embeddings of proteins using information from structure and sequence. Many of the machine learning methods developed here are general purpose and can be applied to other data domains.
by Tristan Bepler.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Computational and Systems Biology Program
Tham, Alan (Alan An Liang). "A guiding framework for applying machine learning in organizations." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107598.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-97).
Machine Learning (ML) is an emerging business capability that have transformed many organizations by enabling them to learn from past data and helping them predict or make decisions on unknown future events. While ML is no longer the preserve of large IT companies, there are abundant opportunities for mid-sized organizations who do not have the resources of the larger IT companies to exploit their data through ML so as to gain deeper insights. This thesis outlines these opportunities and provide guidance for the adoption of ML by these organizations. This thesis examines available literature on current state of adoption of ML by organizations which highlight the gaps that motivate the thesis in providing a guiding framework for applying ML. To achieve this, the thesis provides the practitioner with an overview of ML from both technology and business perspectives that are integrated from multiple sources, categorized for ease of reference and communicated at the decision making level without delving into the mathematics behind ML. The thesis thereafter proposes the ML Integration framework for the System Architect to review the enterprise model, identify opportunities, evaluate technology adoption and architect the ML System. In this framework, system architecting methodologies as well as Object-Process Diagrams are used to illustrate the concepts and the architecture. The ML Integration framework is subsequently applied in the context of a hypothetical mid-sized hospital to illustrate how an architect would go about utilizing this framework. Future work is needed to validate the ML Integration framework, as well as improve the overview of ML specific to application domains such as recommender systems and speech/image recognition.
by Alan Tham.
S.M. in Engineering and Management
Sheikholeslami, Sina. "Ablation Programming for Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258413.
Full textEftersom maskininlärningssystem används i ett ökande antal applikationer från analys av data från satellitsensorer samt sjukvården till smarta virtuella assistenter och självkörande bilar blir de också mer och mer komplexa. Detta innebär att mer tid och beräkningsresurser behövs för att träna modellerna och antalet designval och hyperparametrar kommer också att öka. På grund av denna komplexitet är det ofta svårt att förstå vilken effekt varje komponent samt designval i ett maskininlärningssystem har på slutresultatet.En enkel metod för att få insikt om vilken påverkan olika komponenter i ett maskinlärningssytem har på systemets prestanda är att utföra en ablationsstudie. En ablationsstudie är en vetenskaplig undersökning av maskininlärningssystem för att få insikt om effekterna av var och en av dess byggstenar på dess totala prestanda. Men i praktiken så är ablationsstudier ännu inte vanligt förekommande inom maskininlärning. Ett av de viktigaste skälen till detta är det faktum att för närvarande så krävs både stora ändringar av koden för att utföra en ablationsstudie, samt extra beräkningsoch tidsresurser.Vi har försökt att ta itu med dessa utmaningar genom att använda en kombination av distribuerad asynkron beräkning och maskininlärning. Vi introducerar maggy, ett ramverk med öppen källkodsram för asynkron och parallell hyperparameteroptimering och ablationsstudier med PySpark och TensorFlow. Detta ramverk möjliggör bättre resursutnyttjande samt ablationsstudier och hyperparameteroptimering i ett enhetligt och utbyggbart API.
Tripathi, Nandita. "Two-level text classification using hybrid machine learning techniques." Thesis, University of Sunderland, 2012. http://sure.sunderland.ac.uk/3305/.
Full textAdjodah, Dhaval D. K. (Adjodlah Dhaval Dhamnidhi Kumar). "Understanding social influence using network analysis and machine learning." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81111.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 61-62).
If we are to enact better policy, fight crime and decrease poverty, we will need better computational models of how society works. In order to make computational social science a useful reality, we will need generative models of how social influence sprouts at the interpersonal level and how it leads to emergent social behavior. In this thesis, I take steps at understanding the predictors and conduits of social influence by analyzing real-life data, and I use the findings to create a high-accuracy prediction model of individuals' future behavior. The funf dataset which comprises detailed high-frequency data gathered from 25 mobile phone-based signals from 130 people over a period of 15 months, will be used to test the hypothesis that people who interact more with each other have a greater ability to influence each other. Various metrics of interaction will be investigated such as self-reported friendships, call and SMS logs and Bluetooth co-location signals. The Burt Network Constraint of each pair of participants is calculated as a measure of not only the direct interaction between two participants but also the indirect friendships through intermediate neighbors that form closed triads with both the participants being assessed. To measure influence, the results of the live funf intervention will be used where behavior change of each participant to be more physically active was rewarded, with the reward being calculated live. There were three variants of the reward structure: one where each participant was rewarded for her own behavior change without seeing that of anybody else (the control), one where each participant was paired up with two 'buddies' whose behavior change she could see live but she was still rewarded based on her own behavior, and one where each participant who was paired with two others was paid based on their behavior change that she could see live. As a metric for social influence, it will be considered how the change in slope and average physical activity levels of one person follows the change in slope and average physical activity levels of the buddy who saw her data and/or was rewarded based on her performance. Finally, a linear regression model that uses the various types of direction and indirect network interactions will be created to predict the behavior change of one participant based on her closeness with her buddy. In addition to explaining and demonstrating the causes of social influence with unprecedented detail using network analysis and machine learning, I will discuss the larger topic of using such a technology-driven approach to changing behavior instead of the traditional policy-driven approach. The advantages of the technology-driven approach will be highlighted and the potential political-economic pitfalls of implementing such a novel approach will also be addressed. Since technology-driven approaches to changing individual behavior can have serious negative consequences for democracy and the free-market, I will introduce a novel dimension to the discussion of how to protect individuals from the state and from powerful private organizations. Hence, I will describe how transparency policies and civic engagement technologies can further this goal of 'watching the watchers'.
by Dhaval D.K. Adjodah.
S.M.in Technology and Policy
Liu, Han. "Rule based systems for classification in machine learning context." Thesis, University of Portsmouth, 2015. https://researchportal.port.ac.uk/portal/en/theses/rule-based-systems-for-classification-in-machine-learning-context(1790225c-ceb1-48d3-9e05-689edbfa3ef1).html.
Full textTesti, Enrico. "Machine Learning for User Traffic Classification in Wireless Systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textBerral, García Josep Lluís. "Improved self-management of datacenter systems applying machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134360.
Full textSonal, Manish. "Machine Learning for PAPR Distortion Reduction in OFDM Systems." Thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-197682.
Full textSyftet med detta projekt är att undersöka möjligheterna att använda modernmaskininlärning för att beskriva ickelinjära analoga enheter såsom effektförstärkareoch att studera hur användbart det är att använda sådana modeller föratt designa trådlösa kommunikationssystem. OFDM (ortogonal frekvensmultiplex)är en av de vanligast förekommande modulationsteknikerna, som användsi standarder såsom 802.11a, 802.11n, 802.11ac and andra. Telekommunikationssystemsom LTE, LTE/A och WiMAX baseras också på OFDM. Dock resulterarOFDM i hög toppeffekt i förhållande till medeleffekten (hög PAPR) i tidsdomänen,eftersom signalen består av många delkanaler som summeras mha inversdiskret fouriertransform (IFFT). En hög PAPR resulterar i ökad symbolfelshaltoch försämrar effektiviteten hos effektförstärkaren. Digital predistortion (DPD)kan förbättra situationen men ger fortfarande hög symbolfelshalt och försämradförstärkareffektivitet, när man drar ned sändeffekten för undvika kvarvarandeickelineariteter. Att minska förvrängningen från ickelineariteterna vid mottagarenkan motiveras i system där basstationerna har hög beräkningsförmåga. Enmetod för att reducera förvrängningarna kan implementeras på mottagarsidan,baserad på iterativ beslutsåterkoppling, under antagandet om att sändarens effektförstärkarehar en minneslös ickelinearitet. För att störningsreduceringenska fungera väl, krävs god kunskap om sändarens effektförstärkare. Författarenföreslår att identifiera en ickelinjär modell för förstärkaren mha maskininlärningstekniker,såsom ickelinjär regression och djup inlärning. Resultaten visarlovande förbättringar av symbolfelshalten med en låg inlärningstid för förstärkarmodellen.
Maglaras, Leandros. "Intrusion detection in SCADA systems using machine learning techniques." Thesis, University of Huddersfield, 2018. http://eprints.hud.ac.uk/id/eprint/34578/.
Full textGrzeidak, Emerson. "Identification of nonlinear systems based on extreme learning machine." reponame:Repositório Institucional da UnB, 2016. http://repositorio.unb.br/handle/10482/21603.
Full textSubmitted by Camila Duarte (camiladias@bce.unb.br) on 2016-09-14T17:33:55Z No. of bitstreams: 1 2016_EmersonGrzeidak.pdf: 5274560 bytes, checksum: 0f649b217c325601c125fad908bc164f (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-10-21T18:14:35Z (GMT) No. of bitstreams: 1 2016_EmersonGrzeidak.pdf: 5274560 bytes, checksum: 0f649b217c325601c125fad908bc164f (MD5)
Made available in DSpace on 2016-10-21T18:14:35Z (GMT). No. of bitstreams: 1 2016_EmersonGrzeidak.pdf: 5274560 bytes, checksum: 0f649b217c325601c125fad908bc164f (MD5)
O presente trabalho considera o problema de identificação de sistemas não-lineares comestrutura incerta na presença de distúrbios limitados. Dado a estrutura incerta do sistema, a estimação dos estados é baseada em redes neurais com uma camada escondida e então, para assegurar a convergência dos erros residuais de estimação dos estados para zero, as leis de aprendizagem são projetadas usando a teoria de estabilidade de Lyapunov e resultados já disponíveis na teoria de controle adaptativo. Primeiramente, um esquema de identificação usando aprendizagem extrema é apresentado. O modelo proposto assegura a convergência dos erros residuais de estimação dos estados para zero e a limitação de todos os demais erros e distúrbios. Usando o lema de Barbalat e uma análise tipo Lyapunov, é empregado um modelo de rede neural dinâmica com uma camada escondida (SHLNN) gerada aleatoriamente para assegurar as propriedades supramencionadas. Dessa maneira, assegura-se uma convergência mais rápida e melhor eficiência computacional do que os modelos SHLNN convencionais. Além disso, com algumas modificações que envolvem a seleção da função ativação e a estrutura do vetor regressor, o algoritmo proposto pode ser aplicado para qualquer rede neural parametrizável linearmente. Em seguida, como uma extensão da metodologia proposta, um modelo de rede neural com uma camada escondida e parametrizável não-linearmente (SHLNN) é estudado. Os pesos da camada escondida e de saída são ajustados simultaneamente por leis adaptativas robustas obtidas através da teoria de estabilidade de Lyapunov. O segundo esquema também assegura a convergência dos erros residuais de estimação dos estados para zero e a limitação de todos os demais erros de aproximação associados, mesmo na presença de erros de aproximação e distúrbios. Adicionalmente, como no primeiro esquema, não é necessário conhecimento prévio sobre os pesos ideias, erros de aproximação ou distúrbios. Simulações extensivas para a validação dos resultados teóricos e demonstração dos métodos propostos são fornecidos. _________________________________________________________________________________________________ ABSTRACT
The present research work considers the identification problem of nonlinear systems with uncertain structure and in the presence of bounded disturbances. Given the uncertain structure of the system, the state estimation is based on single-hidden layer neural networks and then, to ensure the convergence of the state estimation residual errors to zero, the learning laws are designed using the Lyapunov stability theory and already available results in adaptive control theory. First, an identification scheme via extreme learning machine neural network is developed. The proposed model ensures the convergence of the state estimation residual errors to zero and boundedness of all associated approximation errors, even in the presence of approximation error and disturbances. Lyapunov-like analysis using Barbalat’s Lemma and a dynamic single-hidden layer neural network (SHLNN) model with hidden nodes randomly generated to establish the aforementioned properties are employed. Hence, faster convergence and better computational efficiency than conventional SHLNNs is assured. Furthermore, with a few modifications regarding the selection of activation function and the regressor vector’s structure, the proposed algorithm can be applied to any linearly parameterized neural network model. Next, as an extension of the proposed methodology, a nonlinearly parameterized single-hidden layer neural network model (SHLNN) is studied. The hidden and output weights are simultaneously adjusted by robust adaptive laws that are designed via Lyapunov stability theory. The second scheme also ensures the convergence of the state estimation residual errors to zero and boundedness of all associated approximation errors, even in the presence of approximation error and disturbances. Additionally, as in the first scheme, it is not necessary any previous knowledge about the ideal weights, approximation error and disturbances. Extensive simulations to validate the theoretical results and show the effectiveness of the two proposed methods are also provided.
Barkrot, Felicia, and Mathias Berggren. "Using machine learning for control systems in transforming environments." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166984.
Full textANSARI, NAZLI. "MACHINE LEARNING METHODS TO IMPROVE NETWORK INTRUSION DETECTION SYSTEMS." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2605.
Full textAdurti, Devi Abhiseshu, and Mohit Battu. "Optimization of Heterogeneous Parallel Computing Systems using Machine Learning." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21834.
Full textBeale, Dan. "Autonomous visual learning for robotic systems." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558886.
Full textKostiadis, Kostas. "Learning to co-operate in multi-agent systems." Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248696.
Full textKanwar, John. "Smart cropping tools with help of machine learning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74827.
Full textMaskinlärning har funnits en lång tid. Deras jobb varierar från flera olika ämnen. Allting från självkörande bilar till data mining. När en person tar en bild med en mobiltelefon händer det lätt att bilden är lite sned. Det händer också att en tar spontana bilder med sin mobil, vilket kan leda till att det kommer med något i kanten av bilden som inte bör vara där. Det här examensarbetet kombinerar maskinlärning med fotoredigeringsverktyg. Det kommer att utforska möjligheterna hur maskinlärning kan användas för att automatiskt beskära bilder estetsikt tilltalande samt hur maskinlärning kan användas för att skapa ett porträttbeskärningsverktyg. Det kommer även att gå igenom hur en räta-till-funktion kan bli implementerad med hjälp av maskinlärning. Till sist kommer det att jämföra dessa verktyg med andra programs automatiska beskärningsverktyg.
Drugowitsch, Jan. "Learning classifier systems from first principles : a probabilistic reformulation of learning classifier systems from the perspective of machine learning." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500684.
Full textPanholzer, Georg. "Identifying Deviating Systems with Unsupervised Learning." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1146.
Full textWe present a technique to identify deviating systems among a group of systems in a
self-organized way. A compressed representation of each system is used to compute similarity measures, which are combined in an affinity matrix of all systems. Deviation detection and clustering is then used to identify deviating systems based on this affinity matrix.
The compressed representation is computed with Principal Component Analysis and
Kernel Principal Component Analysis. The similarity measure between two compressed
representations is based on the angle between the spaces spanned by the principal
components, but other methods of calculating a similarity measure are suggested as
well. The subsequent deviation detection is carried out by computing the probability of
each system to be observed given all the other systems. Clustering of the systems is
done with hierarchical clustering and spectral clustering. The whole technique is demonstrated on four data sets of mechanical systems, two of a simulated cooling system and two of human gait. The results show its applicability on these mechanical systems.
Hellborg, Per. "Optimering av datamängder med Machine learning : En studie om Machine learning och Internet of Things." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13747.
Full textTataru, Augustin. "Metrics for Evaluating Machine Learning Cloud Services." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-37882.
Full text