Academic literature on the topic 'Systems for Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Systems for Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Systems for Machine Learning"
Molino, Piero, and Christopher Ré. "Declarative machine learning systems." Communications of the ACM 65, no. 1 (January 2022): 42–49. http://dx.doi.org/10.1145/3475167.
Full textMolino, Piero, and Christopher Ré. "Declarative Machine Learning Systems." Queue 19, no. 3 (June 30, 2021): 46–76. http://dx.doi.org/10.1145/3475965.3479315.
Full textSchneier, Bruce. "Attacking Machine Learning Systems." Computer 53, no. 5 (May 2020): 78–80. http://dx.doi.org/10.1109/mc.2020.2980761.
Full textLitz, Heiner, and Milad Hashemi. "Machine Learning for Systems." IEEE Micro 40, no. 5 (September 1, 2020): 6–7. http://dx.doi.org/10.1109/mm.2020.3016551.
Full textSidorov, Denis, Fang Liu, and Yonghui Sun. "Machine Learning for Energy Systems." Energies 13, no. 18 (September 10, 2020): 4708. http://dx.doi.org/10.3390/en13184708.
Full textEt. al., Mathew Chacko,. "Cyber-Physical Quality Systems in Manufacturing." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 11, 2021): 2006–18. http://dx.doi.org/10.17762/turcomat.v12i2.1805.
Full textKelly, Terence. "Steampunk Machine Learning." Queue 19, no. 6 (December 31, 2021): 5–17. http://dx.doi.org/10.1145/3511543.
Full textAmbore, Anil Kumar, T. Sri Sai Charan, U. Rohit Reddy, T. Samara Simha Reddy, and Tarun G. "Flood Prediction using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 363–67. http://dx.doi.org/10.22214/ijraset.2023.51528.
Full textAnggi Rachmawati and Yossaepurrohman. "Analysis of Machine Learning Systems for Cyber Physical Systems." International Transactions on Education Technology (ITEE) 1, no. 1 (November 24, 2022): 1–9. http://dx.doi.org/10.34306/itee.v1i1.170.
Full textAnggi Rachmawati and Yossaepurrohman. "Analysis of Machine Learning Systems for Cyber Physical Systems." International Transactions on Education Technology (ITEE) 1, no. 1 (November 24, 2022): 1–9. http://dx.doi.org/10.33050/itee.v1i1.170.
Full textDissertations / Theses on the topic "Systems for Machine Learning"
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Full textData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Swere, Erick A. R. "Machine learning in embedded systems." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4969.
Full textVerleyen, Wim. "Machine learning for systems pathology." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4512.
Full textRoderus, Jens, Simon Larson, and Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Full textJohansson, Richard. "Machine learning på tidsseriedataset : En utvärdering av modeller i Azure Machine Learning Studio." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71223.
Full textSchneider, C. "Using unsupervised machine learning for fault identification in virtual machines." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7327.
Full textMichailidis, Marios. "Investigating machine learning methods in recommender systems." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10031000/.
Full textIlyas, Andrew. "On practical robustness of machine learning systems." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122911.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 71-79).
We consider the importance of robustness in evaluating machine learning systems, an in particular systems involving deep learning. We consider these systems' vulnerability to adversarial examples--subtle, crafted perturbations to inputs which induce large change in output. We show that these adversarial examples are not only theoretical concern, by desigining the first 3D adversarial objects, and by demonstrating that these examples can be constructed even when malicious actors have little power. We suggest a potential avenue for building robust deep learning models by leveraging generative models.
by Andrew Ilyas.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
ROSA, BRUSIN ANN MARGARETH. "Machine Learning Applications to Optical Communication Systems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2967019.
Full textBooks on the topic "Systems for Machine Learning"
Chen, Joy Iong-Zong, Haoxiang Wang, Ke-Lin Du, and V. Suma, eds. Machine Learning and Autonomous Systems. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7996-4.
Full textAo, Sio-Iong, Burghard Rieger, and Mahyar A. Amouzegar, eds. Machine Learning and Systems Engineering. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9419-3.
Full textB, Rieger Burghard, Amouzegar Mahyar A, and SpringerLink (Online service), eds. Machine Learning and Systems Engineering. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textNandan Mohanty, Sachi, Vicente Garcia Diaz, and G. A. E. Satish Kumar, eds. Intelligent Systems and Machine Learning. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35078-8.
Full textNandan Mohanty, Sachi, Vicente Garcia Diaz, and G. A. E. Satish Kumar, eds. Intelligent Systems and Machine Learning. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35081-8.
Full textChandran, C. Karthik, M. Rajalakshmi, Sachi Nandan Mohanty, and Subrata Chowdhury. Machine Learning for Healthcare Systems. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003438816.
Full textErtekin, Şeyda. Algorithms for efficient learning systems: Online and active learning approaches. Saarbrücken: VDM Verlag Dr. Müller, 2009.
Find full textBeyerer, Jürgen, Christian Kühnert, and Oliver Niggemann, eds. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58485-9.
Full textBeyerer, Jürgen, Alexander Maier, and Oliver Niggemann, eds. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62746-4.
Full textNiggemann, Oliver, and Jürgen Beyerer, eds. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48838-6.
Full textBook chapters on the topic "Systems for Machine Learning"
Zielesny, Achim. "Machine Learning." In Intelligent Systems Reference Library, 221–380. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21280-2_4.
Full textGrosan, Crina, and Ajith Abraham. "Machine Learning." In Intelligent Systems Reference Library, 261–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21004-4_10.
Full textZielesny, Achim. "Machine Learning." In Intelligent Systems Reference Library, 229–406. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32545-3_4.
Full textSubramanian, Devika, and Trevor A. Cohen. "Machine Learning Systems." In Cognitive Informatics in Biomedicine and Healthcare, 135–211. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09108-7_6.
Full textWehenkel, Louis A. "Machine Learning." In Automatic Learning Techniques in Power Systems, 99–144. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5451-6_5.
Full textSotiropoulos, Dionisios N., and George A. Tsihrintzis. "Artificial Immune Systems." In Machine Learning Paradigms, 159–235. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47194-5_7.
Full textHulten, Geoff. "Machine Learning Intelligence." In Building Intelligent Systems, 245–61. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3432-7_20.
Full textKulkarni, Parag. "Systemic Machine Learning." In Intelligent Systems Reference Library, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55312-2_3.
Full textKulkarni, Parag. "Creative Machine Learning." In Intelligent Systems Reference Library, 87–118. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55312-2_5.
Full textGalakatos, Alex, Andrew Crotty, and Tim Kraska. "Distributed Machine Learning." In Encyclopedia of Database Systems, 1–6. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_80647-1.
Full textConference papers on the topic "Systems for Machine Learning"
Chu, Albert B., Du T. Nguyen, Alan D. Kaplan, and Brian Giera. "Image classification and control of microfluidic systems." In Applications of Machine Learning, edited by Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal, and Khan M. Iftekharuddin. SPIE, 2019. http://dx.doi.org/10.1117/12.2530416.
Full text"Machine Learning." In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2019. http://dx.doi.org/10.1109/iwssip.2019.8787334.
Full text"Machine Learning." In 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2022. http://dx.doi.org/10.1109/iwssip55020.2022.9854395.
Full textIvanov, Tonislav, Ayush Kumar, Denis Sharoukhov, Francis A. Ortega, and Matthew Putman. "DeepFocus: A deep learning model for focusing microscope systems." In Applications of Machine Learning 2020, edited by Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal, and Khan M. Iftekharuddin. SPIE, 2020. http://dx.doi.org/10.1117/12.2568990.
Full textAxtell, Travis, Lucas A. Overbey, and Lisa Woerner. "Machine learning in complex systems." In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, edited by Tien Pham, Michael A. Kolodny, and Dietrich M. Wiegmann. SPIE, 2018. http://dx.doi.org/10.1117/12.2309547.
Full textZhang, Jeff Jun, Kang Liu, Faiq Khalid, Muhammad Abdullah Hanif, Semeen Rehman, Theocharis Theocharides, Alessandro Artussi, Muhammad Shafique, and Siddharth Garg. "Building Robust Machine Learning Systems." In DAC '19: The 56th Annual Design Automation Conference 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3316781.3323472.
Full textMartin, Hugo, Juliana Alves Pereira, Mathieu Acher, and Paul Temple. "Machine Learning and Configurable Systems." In SPLC 2019: 23rd International Systems and Software Product Line Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3336294.3342383.
Full textFanca, Alexandra, Adela Puscasiu, Dan-Ioan Gota, and Honoriu Valean. "Recommendation Systems with Machine Learning." In 2020 21th International Carpathian Control Conference (ICCC). IEEE, 2020. http://dx.doi.org/10.1109/iccc49264.2020.9257290.
Full textEL MESTARI, Soumia Zohra. "Privacy Preserving Machine Learning Systems." In AIES '22: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514094.3539530.
Full textPereira, Juliana Alves, Hugo Martin, Paul Temple, and Mathieu Acher. "Machine learning and configurable systems." In SPLC '20: 24th ACM International Systems and Software Product Line Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3382025.3414976.
Full textReports on the topic "Systems for Machine Learning"
Rouet-Leduc, Bertrand Philippe Gerard. Fault systems monitoring using machine learning. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569601.
Full textCary, Dakota, and Daniel Cebul. Destructive Cyber Operations and Machine Learning. Center for Security and Emerging Technology, November 2020. http://dx.doi.org/10.51593/2020ca003.
Full textGordon, Diane F., and William M. Spears. Machine Learning Systems: Part 1. Concept Learning from Examples with AQ15 and Related Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada242472.
Full textMusser, Micah. Adversarial Machine Learning and Cybersecurity. Center for Security and Emerging Technology, April 2023. http://dx.doi.org/10.51593/2022ca003.
Full textValasek, John, and Suman Chakravorty. Machine Learning Control For Highly Reconfigurable High-Order Systems. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada614672.
Full textStone, Peter, and Manuela Veloso. Multiagent Systems: A Survey from a Machine Learning Perspective. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada333248.
Full textAnania, Mark, George Corbin, Matthew Kovacs, Kevin Nelson, and Jeremy Tobias. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2016. http://dx.doi.org/10.21236/ad1011870.
Full textNickerson, Jeffrey, Kalle Lyytinen, and John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, April 2022. http://dx.doi.org/10.4271/epr2022009.
Full textSzunyogh, Istvan, Edward Ott, and Brian Hunt. Machine-Learning-Assisted Hybrid Earth System Modelling. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769745.
Full textRudner, Tim, and Helen Toner. Key Concepts in AI Safety: Interpretability in Machine Learning. Center for Security and Emerging Technology, March 2021. http://dx.doi.org/10.51593/20190042.
Full text